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In this paper, we consider a concept of adaptive identification of vertices and sets of vertices in different graphs,
which was recently introduced by Ben-Haim, Gravier, Lobstein and Moncel (2008). The motivation for adaptive
identification comes from applications such as sensor networks and fault detection in multiprocessor systems.

We present an optimal adaptive algorithm for identifying vertices in cycles. We also give efficient adaptive algorithms
for identifying sets of vertices in different graphs such as cycles, king lattices and square lattices. Adaptive identifica-
tion is also considered in Hamming spaces, which is one of the most widely studied graphs in the field of identifying
codes.
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1 Introduction
Let G = (V,E) be a simple connected undirected graph with V as the set of vertices and E as the set
of edges. Assume that the set V of vertices of G is finite. Then the set E of edges of G is also finite. A
non-empty subset of V is called a code, and its elements are called codewords. The distance d(x, y) is
the number of edges in any shortest path between the vertices x and y. Let r be a positive integer. We say
that x r-covers y if d(x, y) ≤ r. Define then the r-ball Br(x) of radius r centered at x ∈ V by

Br(x) = {y ∈ V | d(x, y) ≤ r}.

If all the r-balls in G have the same cardinality, then the cardinality of an r-ball is denoted by Vr(G). For
X ⊆ V , we denote

Br(X) =
⋃
x∈X

Br(x).

Let C ⊆ V be a code and X be subset of V . An I-set of the set X with respect to the code C is

Ir(C;X) = Ir(X) = Br(X) ∩ C.
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A codeC is called an r-covering (or an r-covering code), if the set Ir(C, x) is non-empty for all x ∈ V .
In other words, each vertex in G is r-covered by at least one codeword. The minimum cardinality of an r-
covering of G is denoted by γr(G). A code C is called an r-packing, if the number of vertices in Ir(C, x)
is at most one for all x ∈ V . In other words, the r-balls centered at the vertices of C are all pairwise
disjoint. The maximum cardinality of an r-packing of G is denoted by cr(G). If a code C is both an
r-covering and an r-packing of G, then C is called an r-perfect code.

Definition 1.1 Let r and ` be positive integers. A code C ⊆ V is said to be (r,≤ `)-identifying in G if
for all X,Y ⊆ V such that |X| ≤ `, |Y | ≤ ` and X 6= Y we have

Ir(C;X) 6= Ir(C;Y ).

If ` = 1, then we simply say that C is r-identifying.

Remark 1.2 Let r and ` be positive integers. Then there exists an (r,≤ `)-identifying code C ⊆ V if and
only if for all X,Y ⊆ V such that |X| ≤ `, |Y | ≤ ` and X 6= Y we have

Br(X) 6= Br(Y ).

If there exists an (r,≤ `)-identifying code for a graph G = (V,E), then G is said to be (r,≤ `)-
identifiable.

The original motivation for identification comes from fault detection in multiprocessor systems [15].
A multiprocessor system can be modeled as a graph, where vertices are seen as processor and edges as
links between processors. A set of processors C ⊆ V corresponding to an identifying code is chosen.
Then each processor in C sends an alarm signal, if there exists a faulty processor in its neighborhood.
Now the set of alarming processors corresponds to an I-set I(X) of the identifying code, where X is the
set of faulty processors. Hence, the set of faulty processors X can be located since each I-set is unique.
Identifying codes can also be applied, for example, to sensor networks, where they are used in design
of location and detection systems [17]. The most studied underlying graphs for identification are, e.g.,
square and king lattices, Hamming spaces and cycles [16].

Assume that a given graph G may contain faulty vertices and that we can ask whether there is a faulty
vertex (or faulty vertices) in Br(x) for all x ∈ V . The query Qr : V −→ {0, 1} is equal to 1 for x ∈ V ,
if there is a faulty vertex in Br(x), else Qr(x) is equal to 0. We also say that a vertex y ∈ V is r-covered
by a query Qr(x) (x ∈ V ), if y belongs to the r-ball Br(x). Now the problem is to locate the faulty
vertices using the queries Qr(x). The definition of identifying codes guarantees that if C ⊆ V is an
(r,≤ `)-identifying code in G, then by asking simultaneously all the queries Qr(c) for c ∈ C we can
locate in one step all the faulty vertices in G (assuming that there are at most ` faulty vertices in G).

The definition of identifying codes is based on the fact that all the queries have to be asked simultane-
ously. However, adaptive identification, which has been recently introduced in [2], is based on the idea
that the queries can be asked one after the other, i.e. that a new query may depend on the answers given
by the previous queries. In what follows, we call the identifying codes in Definition 1.1 as regular to
distinguish them from the adaptive ones.

Let ` be the maximum number of faulty vertices in a graph G. The minimum cardinality of an (r,≤ `)-
identifying code in G is then denoted by i(r,≤`)(G). In adaptive identification, the corresponding value
is the minimum number of queries required in the worst case to identify the (at most `) faulty vertices
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and it is denoted by a(r,≤`)(G). We also say that an algorithm (or a series of queries) A is adaptive
(r,≤ `)-identifying, if it can identify the at most ` faulty vertices in G using only the queries Qr(x)
(x ∈ V ).

In Ben-Haim et al. [1], [2] and [3], adaptive (r,≤ 1)-identification is considered in torii of square and
king lattices. They suggest that further study would be needed in these torii when ` > 1. This motivated
the study in Sections 2.2 and 2.4. Adaptive (r,≤ `)-identification in cycles and Hamming spaces are
studied in Sections 2.1 and 2.3, respectively.

In adaptive (r,≤ `)-identification (and in regular (r,≤ `)-identification), it is common that we en-
counter problems with large `. Namely, the considered graph is no longer (r,≤ `)-identifiable with large
enough `. For example, square and king lattices are not (r,≤ `)-identifiable when r > 1 and ` ≥ 3.
Therefore, we introduce a slightly modified version of adaptive (r,≤ `)-identification in Section 3 to
enable the handling of larger `, for example, in king lattices.

2 Adaptive identification
The following theorem is a generalized version of Theorem 1 in [1, 2].

Theorem 2.1 Let r and ` be positive integers. Assume G is an (r,≤ `)-identifiable graph such that each
r-ball in G has the same cardinality. Then we have

a(r,≤`)(G) ≥ cr(G)− 1 +

⌈
log2

(∑̀
i=0

(
K

i

))⌉
,

where K = |G| − (cr(G)− 1)Vr(G).

Proof: Let G = (V,E) be an (r,≤ `)-identifiable graph such that each r-ball in G has the same cardi-
nality. Consider then an algorithm A that is adaptive (r,≤ `)-identifying. It is clearly possible that the
values given by the first cr(G) − 1 queries of A are all equal to 0, i.e. that there are no faulty vertices in
the r-balls of the first cr(G)− 1 queries.

After the first cr(G) − 1 queries there are still at least |G| − (cr(G) − 1)Vr(G) vertices that are not
r-covered by any of the previously asked queries. Furthermore, we know that among these uncovered
vertices there exist from 0 to ` faulty vertices. Therefore, the number of different possibilities for these
faulty vertices to be among these uncovered vertices is

∑`
i=0

(
K
i

)
, where K = |G| − (cr(G)− 1)Vr(G).

Hence, we need at least dlog2(
∑`

i=0

(
K
i

)
)e queries to locate these faulty vertices or to conclude that there

are none. Thus, the following lower bound follows:

a(r,≤`)(G) ≥ cr(G)− 1 +

⌈
log2

(∑̀
i=0

(
K

i

))⌉
.

2

Notice that |G|−(cr(G)−1)Vr(G) ≥ Vr(G) since the value cr(G) is the maximum number of vertices
in an r-packing of G. Thus, the slightly weaker lower bound of Theorem 1 in [1, 2] immediately follows
from the previous result:

a(r,≤1)(G) ≥ cr(G)− 1 + dlog2(Vr(G) + 1)e .
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2.1 Adaptive identification in cycles
Let G be a cycle of length n, i.e. a cycle with n vertices. Regular identification in cycles have been
studied, for example, in [5], [10] and [18]. The following theorem provides the accurate value for the
number of queries a(r,≤1)(G) needed in the adaptive (r,≤ 1)-identification of G, when n > 2r + 1.
Notice also that if n ≤ 2r + 1, then the cycle G is not (r,≤ 1)-identifiable.

Theorem 2.2 Let G be a cycle of length n. If n = 2r + 1 + k with 1 ≤ k ≤ 2r, then we have

a(r,≤1)(G) =

⌊
2r + 1

k

⌋
+

⌈
log2

(
2r + 1− k

(⌊
2r + 1

k

⌋
− 1

))⌉
. (1)

If n ≥ 2(2r + 1), then we have

a(r,≤1)(G) =

⌊
n

2r + 1

⌋
− 1 +

⌈
log2

(
n−

(⌊
n

2r + 1

⌋
− 1

)
(2r + 1) + 1

)⌉
. (2)

Proof: Let G = (V,E) be a cycle of length n and V = {x1, x2, . . . , xn}. Consider first the result (1) for
the cycles of length n = 2r+1+ k with 1 ≤ k ≤ 2r. Notice that now each query outputting 1 tell us that
one of the vertices covered by the query is faulty and also that none of the k uncovered vertices is faulty.

Let us begin by showing a lower bound on a(r,≤1)(G) when n = 2r+ 1+ k with 1 ≤ k ≤ 2r. We can
assume that the first query asked outputs value 1. Therefore, the faulty vertex is one of the 2r+1 vertices
covered by the first query. We can assume that the next b(2r+1)/kc−1 queries also output value 1. By the
considerations in the first paragraph above, there still exists at least 2r+1−k(b(2r+1)/kc− 1) vertices
such that exactly one of them is faulty. Hence, we still need at least dlog2(2r+1−k(b(2r+1)/kc−1))e
queries to locate the faulty vertex. Thus, at least b(2r + 1)/kc+ dlog2(2r + 1− k(b(2r + 1)/kc − 1))e
queries is needed to identify the faulty vertex.

Now the following algorithm is adaptive (r,≤ 1)-identifying:

1. Begin by asking the query Qr(xr+1). If Qr(xr+1) = 0, then there does not exist any faulty vertex
in Br(xr+1). Hence, the possible faulty vertex belongs to the remaining k vertices, which are
consecutive ones in a cycle. Therefore, since k ≤ 2(2r + 1) + 1, we obtain using dichotomic (or
binary) search (as in the step 3) that at most dlog2(k + 1)e queries are needed to locate the faulty
vertex among the remaining k vertices or to conclude there is none. It can be easily verified that in
this case we use at most b(2r + 1)/kc+ dlog2(2r + 1− k(b(2r + 1)/kc − 1))e queries.

2. Assume that Qr(xr+1) = 1. Now for i = 1, 2, . . . , b(2r + 1)/kc − 1 ask the query Qr(xr+1+ik).
If the query Qr(xr+1+jk) = 0 for some j, then the faulty vertex belongs to the set {x(j−1)k+1,
x(j−1)k+2, . . . , xjk}, which consists of k consecutive vertices. Now the faulty vertex can be located
in this set as in the step 3. Again it is easy to verify that also in this case we need at most b(2r +
1)/kc+ dlog2(2r + 1− k(b(2r + 1)/kc − 1))e queries.

3. Assume now that all the b(2r + 1)/kc queries asked in the previous steps outputted the value 1.
Then the faulty vertex is one of the remaining 2r + 1− k(b(2r + 1)/kc − 1) vertices in the set

{xk(b(2r+1)/kc−1)+1, xk(b(2r+1)/kc−1)+2, . . . , x2r+1}.
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Therefore, the faulty vertex can now be located by dichotomic search using at most dlog2(2r+1−
k(b(2r + 1)/kc − 1)e queries. By the considerations in the first paragraph, the dichotomic search
can now, indeed, be used since 2r + 1 − k(b(2r + 1)/kc − 1) < 2k and there are kb(2r + 1)/kc
consecutive vertices that are known to be not faulty (the set of uncovered vertices can now always
be divided into two roughly equal halves).

Thus, we need at most b(2r+1)/kc+ dlog2(2r+1− k(b(2r+1)/kc − 1))e queries to locate the faulty
vertex or to conclude there is none. In conclusion, the first result (1) of the claim holds.

Consider then the result (2) for the cycles with length n ≥ 2(2r+1). Denote first n = q1(2r+1)+ q0,
where 0 ≤ q0 < 2r + 1. Then consider the upper bound on a(r,≤1)(G). The following algorithm is
adaptive (r,≤ 1)-identifying:

1. For i = 1, . . . , q1 − 1 ask the query Qr(xi(2r+1)−r). If Qr(xj(2r+1)−r) = 1 for some 1 ≤ j ≤
q1 − 1, then there exists a faulty vertex in Br(xj(2r+1)−r). The vertices in the ball are clearly
consecutive and, therefore, we can locate the faulty vertex by dichotomic (or binary) search as in
step 2. Thus, the number of queries needed in this case is bounded above by the value given in the
equation (2).

2. Assume then that all the vertices r-covered by the queries in step 1 are not faulty. Now there are
still 2r+1+ q0 vertices that are not r-covered by any of the queries from step 1. Since the number
of uncovered vertices is 2r + 1 + q0 < 2(2r + 1), the possible faulty vertex can be located by
dichotomic search. Hence, we need at most dlog2(2r + 1 + q0 + 1)e queries in this step.

Thus, we have a(r,≤1)(G) ≤ q1 − 1 + dlog2(2r + 1 + q0 + 1)e.
By Theorem 2.1, we have a(r,≤1)(G) ≥ q1 − 1 + dlog2(2r + 1 + q0 + 1)e. Hence, the claim (2)

immediately follows from the upper and lower bounds. 2

Consider then adaptive (r,≤ 2)-identification in a cycle G of length n. By Theorem 2.1, we have

a(r,≤2)(G) ≥
⌊

n

2r + 1

⌋
− 1 +

⌈
log2

(
2∑

i=0

(
K

i

))⌉
, (3)

where K = n − (bn/(2r + 1)c − 1) (2r + 1). The following theorem provides an upper bound on
a(r,≤2)(G).

Theorem 2.3 Let G be a cycle of length n. If n ≥ 3(2r + 1), then we have

a(r,≤2)(G) ≤
⌊

n

2r + 1

⌋
+ 1 + 2 dlog2(2r + 1)e . (4)

Proof: LetG = (V,E) be a cycle of length n and V = {x1, x2, . . . , xn}. Denote also n = q1(2r+1)+q0,
where 0 ≤ q0 < 2r + 1. The following algorithm is adaptive (r,≤ 2)-identifying:

1. For i = 1, . . . , q1, we first ask the queries Qr(xi(2r+1)−r). If two of these queries give value 1,
then we proceed as in step 3. Assuming this is not the case, we need to ask one additional (carefully
chosen) query. If the first query Qr(xr+1) = 1, then the additional query is Qr(xn−r), else it is
Qr(x(q1+1)(2r+1)−r), where the index of x is subtracted by n if it is larger than n. Notice that each
vertex in G has now been r-covered by a query and that if two queries output value 1, then there
exist two faulty vertices in G (one in each query giving value 1).
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2. If all the queries in step 1 output value 0, then there clearly exist no faulty vertices in G.

3. If two of the queries in step 1 give value 1, then there are exactly two faulty vertices in G. Namely,
one faulty vertex in each r-ball corresponding to the queries outputting 1. Denote these r-balls
containing a faulty vertex by B1 and B2. Note that the vertices in B1 and B2 are consecutive
ones. Hence, the faulty vertex in B1 (or B2) can be located by dichotomic search and, in particular,
using queries that do not r-cover vertices from B2 (or B1). (Here we use the assumption that
n ≥ 3(2r + 1).) Therefore, the faulty vertices can be located by dichotomic search using at most
2dlog2(2r + 1)e queries.

4. If there is exactly one query giving value 1, then we know that this query is r-covering 1 or 2 faulty
vertices. Denote the considered r-ball byB = {y1, y2, . . . , y2r+1} and assume that the two vertices
adjacent to y1 are y0 and y2. The faulty vertices in B can then be located as follows:

(i) First the r-ball B is divided into two halves B1 = {y1, . . . , yb(2r+1)/2c} and B2 =
{yb(2r+1)/2c+1, . . . , y2r+1}. Then we find out whether there is a faulty vertex in B1 or B2

using the queries Qr(y0) and Qr(y2r+1).

(ii) If the halves B1 and B2 both contain a faulty vertex, then the faulty vertices from B1 and B2

can be separately located by dichotomic search. Otherwise, we know that only either B1 or
B2 contain faulty vertices. For simplicity, assume that B1 contains faulty vertices. Then we
proceed as in step (i), but we replace the set B by B1.

Thus, in step 4 we locate the faulty vertices using at most 2dlog2(2r + 1)e queries.

In conclusion, the algorithm locates the faulty vertices using at most q1 + 1 + 2dlog2(2r + 1)e queries.
Thus, the claim follows. 2

Notice that the difference between the lower bound (3) and the upper bound (4) is at most 4 queries
for any r and n. Indeed, this can be concluded by estimating the term with logarithm in the lower bound
when the term with logarithm in the upper bound gives a fixed value. Hence, we conclude that the upper
and lower bounds differ only by a constant (for any radius r).

Let G = (V,E) be a cycle of length n with V = {x1, x2, . . . , xn}. Since Br({x1, x3}) =
Br({x1, x2, x3}) for any (positive) r, the cycle G is not (r,≤ `)-identifiable when ` ≥ 3.

2.2 Adaptive identification in torii of king lattice
Let p and q be positive integers. The graph T k

p,q = (V,E) is a p× q torus in the king lattice, if the vertex
set is

V = {(i, j) | 0 ≤ i ≤ p− 1, 0 ≤ j ≤ q − 1}

and the edge set is

E = {((i, j), (i, j + 1)), ((i, j), (i+ 1, j)) | 0 ≤ i ≤ p− 1, 0 ≤ j ≤ q − 1}
∪ {((i, j), (i+ 1, j + 1)), ((i, j), (i+ 1, j − 1)) | 0 ≤ i ≤ p− 1, 0 ≤ j ≤ q − 1},

where the first coordinate is calculated modulo p and the second coordinate is calculated modulo q (see
Figure 1).
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Fig. 1: A 2-ball centered at the black vertex is illustrated in the torus T k
7,7. Notice that the vertices in the border are

wrapped around as suggested by the definition of the edge set E.

Consider then an r-ball in T k
p,q . The r-ball Br((x, y)), which is shortened as Br(x, y), can be seen as

a (2r + 1)× (2r + 1) square in the king lattice since

Br(x, y) = {(i, j) | |x− i| ≤ r, |y − j| ≤ r}.

Now it is easy to see that there exists an r-perfect code C ⊆ T k
p,q if and only if both p and q are dividable

by 2r + 1.
Regular (r,≤ `)-identification in king lattice (or grid) have been studied, for example, in [6] and [11].

Consider then adaptive (r,≤ `)-identification in T k
p,q . If ` ≥ 3, then it can be easily seen that T k

p,q is not
(r,≤ `)-identifiable for any r. The case with ` = 1 is considered in [1, 3]. Thus, we concentrate here on
the case with ` = 2. By Theorem 2.1, we have

a(r,≤2)(T
k
p,q) ≥

pq

(2r + 1)2
− 1 +

⌈
log2

(
2∑

i=0

(
(2r + 1)2

i

))⌉
, (5)

since cr(T k
p,q) = pq/(2r + 1)2. The following theorem provides an upper bound for a(r,≤2)(T k

p,q).

Theorem 2.4 Let p and q be positive integers dividable by 2r + 1. If p ≥ 3(2r + 1) and q ≥ 3(2r + 1),
then we have

a(r,≤2)(T
k
p,q) ≤

pq

(2r + 1)2
+ 4 dlog2(2r + 1)e . (6)

Proof: Assume p and q are positive integers dividable by 2r + 1. Let T k
p,q be a torus in the king lattice

with pq vertices. Now there exists an r-perfect covering C of T k
p,q . The following algorithm is adaptive

(r,≤ 2)-identifying:

1. For every c ∈ C ask the query Qr(c).

2. If all the queries output value 0, then there clearly exist no faulty vertices in T k
p,q .



76 Ville Junnila

3. If two queries output value 1, then there are two queries each r-covering exactly one faulty vertex.
The faulty vertex r-covered by a query can now be found as follows: we first locate by dichotomic
search the column containing a faulty vertex and then from this column we identify the faulty
vertex again using dichotomic search. (Notice that suitable queries used in dichotomic searches
can be found even if the r-balls of the two queries are next to each other. Here we actually use the
assumption that p ≥ 3(2r+1) and q ≥ 3(2r+1).) In conclusion, we need at most 4dlog2(2r+1)e
queries in this step.

4. If there is exactly one query outputting value 1, then this query is r-covering 1 or 2 faulty vertices.
Using similar ideas as in the proof of Theorem 2.3, we can locate the columns (or a column)
containing faulty vertices using at most 2dlog2(2r + 1)e queries (consider columns in the king
lattice as the vertices in cycles) and then from these columns (or a column) identify the faulty
vertices using at most 2dlog2(2r + 1)e queries. Thus, we need at most 4dlog2(2r + 1)e queries in
this step.

In conclusion, the previous algorithm identifies the faulty vertices using at most pq/(2r+1)2+4dlog2(2r+
1)e queries. 2

Using similar arguments as in the case of cycles, we conclude that the difference between the lower
bound (5) and the upper bound (6) is at most 5 queries for any r.

2.3 Adaptive identification in Hamming spaces
In this subsection, we consider adaptive (1,≤ `)-identification in binary Hamming spaces. Let n be
a positive integer. The binary Hamming space Fn is the n-fold Cartesian product of the binary field
F = {0, 1}. The Hamming distance d(x,y) between words x,y ∈ Fn is the number of coordinate places
in which they differ. The following simple lemma, which is needed in the sequel, can be easily proven.

Lemma 2.5 Let x,y ∈ Fn. Then

|B1(x) ∩B1(y)| =

 n+ 1 if x = y,
2 if 1 ≤ d(x,y) ≤ 2,
0 otherwise.

We begin by considering adaptive (1,≤ 1)-identification in Hamming spaces. The following lemma is
needed in the proof of Theorem 2.7, which provides a lower bound for a(1,≤1)(Fn).

Lemma 2.6 Let X be a non-empty subset of Fn. Assume that there is 0 or 1 faulty words in X . Then an
adaptive (1,≤ 1)-identifying algorithm needs at least⌈√

|X|
2

⌉

queries, which are centered at a word in Fn, to locate the faulty word in X or to conclude that there is
none.

Proof: Let X be a non-empty subset of Fn and let A be an algorithm that identifies the faulty word in
X using queries from Fn. Define then k as the maximum number of words in X that are 1-covered by a
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1-ball of Fn, i.e.
k = max

x∈Fn
|B1(x) ∩X|.

Now we have two approaches for the lower bound on the number of queries used in A:

(1) By the previous definition, a query Q1(x) with x ∈ Fn can 1-cover at most k words of X . Assume
that the first b|X|/kc − 1 queries of A output value 0. Now there still exist at least k words that are
not 1-covered by any of the previous queries, and we need at least dlog2(k + 1)e queries to locate
the faulty word among these uncovered words or to conclude that there is none. Thus, the number
of queries used in A is at least b|X|/kc − 1 + dlog2(k + 1)e. If k = 1, then the claim clearly
follows. Otherwise, we need at least |X|/k queries in the algorithm A.

(2) On the other hand, we know by Lemma 2.5 that the number of words in the intersection of two
different 1-balls of Fn is at most 2. Let then x ∈ Fn be a word such that the number of words
in B1(x) ∩ X is equal to k. Assume that there exists a faulty word in B1(x) ∩ X . Using similar
arguments as in the first lower bound from (1), we obtain that the number of queries used in A is at
least {

bk/2c − 1 + dlog2 2e if 2 | k,
bk/2c − 1 + dlog2 3e if 2 - k.

Therefore, the number of queries needed is at least k/2.

By the considerations above, the number of queries needed in A is at least max{|X|/k, k/2}. Therefore,
by straightforward analysis, it can be concluded that (with any choice of k) the number of queries needed
is at least ⌈√

|X|
2

⌉
.

2

The following theorem provides a lower bound for a(1,≤1)(Fn).

Theorem 2.7 We have

a(1,≤1)(Fn) ≥ c1(Fn) +

⌊
n+ 1

8

⌋
.

Proof: Let algorithm A be an adaptive (1,≤ 1)-identifying code (in Fn). (Notice that the size of a ball
of radius 1 in Fn is equal to n+ 1.) Assume then that the first c1(Fn)− d(n+ 1)/8e queries of A output
value 0. (By simple analysis, it can be shown that the number of queries c1(Fn)− d(n+ 1)/8e is chosen
in such a way that it gives the best possible lower bound using this approach.) Then the number of words
that are not 1-covered by the previous queries is at least d(n + 1)/8e(n + 1). Therefore, by Lemma 2.6,
the number of queries used in A is at least

c1(Fn)−
⌈
n+ 1

8

⌉
+

⌈√
d(n+ 1)/8e(n+ 1)

2

⌉

≥ c1(Fn) +

⌈
n+ 1

4

⌉
−
⌈
n+ 1

8

⌉
≥ c1(Fn) +

⌊
n+ 1

8

⌋
,
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where the second inequality is obtained, for example, by considering two cases depending on whether
n+ 1 is dividable by 4 or not. 2

The following theorem provides an upper bound for a(1,≤1)(Fn).

Theorem 2.8 We have

a(1,≤1)(Fn) ≤ γ1(Fn) +

⌈
n+ 1

2

⌉
.

Proof: Let C = {x1,x2, . . . ,x|C|} be a 1-covering code of Fn attaining γ1(Fn). Denote then by ei the
word in Fn that has value 1 in the ith coordinate place and value 0 in all other places. Now the following
algorithm is adaptive (1,≤ 1)-identifying:

1. For i = 1, . . . , |C| − 1 ask the query Q1(xi). If Q1(xi) = 1 for any i = 1, . . . , |C| − 1, then the
faulty word in B1(xi) can be located as in the following step 2.

2. Assume then that all the previous queries output value 0, meaning that none of these queries do
not 1-cover any faulty word. Now we can assume without loss of generality that x|C| = 0. For
i = 1, . . . , dn/2e−1 ask the queryQ1(e2i−1+e2i). If now for any iwe haveQ1(e2i−1+e2i) = 1,
then the faulty word can be located using one more suitably chosen query. Hence, assume that none
of the previous queries 1-cover any faulty word. Now it can be easily seen that we only need two
more queries to locate the faulty word in the remaining words or to conclude that there are none.

In conclusion, the previous algorithm uses at most γ1(Fn)+ dn/2e+1 = γ1(Fn)+ d(n+1)/2e queries.
2

Let then Fn be a Hamming space with integers n = 2s − 1 and s ≥ 3. By [7], we know that there now
exists a 1-perfect covering of Fn. Hence, we have c1(Fn) = γ1(Fn) = 2n/(n + 1). Therefore, for the
previous lengths, Theorems 2.7 and 2.8 can be written as follows:

c1(Fn) +
n+ 1

8
≤ a(1,≤1)(Fn) ≤ c1(Fn) +

n+ 1

2
.

As above, assume that n = 2s− 1 and s ≥ 3. Consider then adaptive (1,≤ `)-identification in Fn with
` > 1. Theorem 2.7 naturally provides a lower bound also for a(1,≤`)(Fn). The following theorem gives
us then an upper bound on a(1,≤`)(Fn).

Theorem 2.9 Let n and s be integers such that n = 2s − 1 and s ≥ 3. If now ` < n/6 + 1, then we have

a(1,≤`) ≤ c1(Fn) + ` · n+ 3

2
.

Proof: Let C be a 1-perfect code of Fn with n = 2s − 1 and s ≥ 3. The number of words in C is
equal to γ1(Fn) = c1(Fn). Denote then n = 2m + 1, where m = 2s−1 − 1. Using c1(Fn) queries, we
can now locate the 1-balls centered at the words of C which contain faulty words. Assume then that the
1-balls B1(x1), B1(x2), . . . , B1(xk) with 1 ≤ k ≤ ` are the ones containing faulty words. Denote the set
consisting of these 1-balls by S.

Consider then locating the faulty words inside B1(x1). We can assume without loss of generality that
x1 = 0. We would now like to 1-cover B1(0) using m words of weight two and 1 word of weight one
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(similarly to the proof of Theorem 2.8). However, here we cannot use such words of weight one and two
which 1-cover words from other 1-balls containing faulty words. The choice of m words of weight two
and 1 word of weight one that 1-cover B1(0) is called a partition of B1(0). Notice that if x and y are two
different words in a partition ofB1(0), then the intersection of the setsB1(x)∩B1(0) andB1(y)∩B1(0)
is empty. A partition is called unavailable, if some of the words in the partition 1-cover words in other
1-balls containing faulty words. In what follows, we show that all partitions are not unavailable.

The number of all different partitions is equal to(
n

2,2,...,2,1

)
m!

=
n!

m! · 2m
, (7)

where the numerator is the usual multinomial coefficient and the number of 2’s in it is equal to m. Notice
that all the 1-balls of S that make partitions unavailable are centered at words of weights three or four,
since words that are of weight at most two are not included in the 1-perfect code C and words of weight
at least five cannot clearly make partitions unavailable. Hence, we consider the number of partitions that
are made unavailable by a 1-ball of S centered at a word of weight three or four.

Each 1-ball centered at a word of weight three that contains faulty words produces at most(
3
2

)(
n−2

2,2,...,2,1

)
(m− 1)!

+

(
3
1

)(
n−1

2,2,...,2

)
m!

=
3(n− 2)!

(m− 1)! · 2m−1
+

3(n− 1)!

m! · 2m
=

6(n− 1)!

m! · 2m
(8)

unavailable partitions. Each 1-ball centered at a word of weight four that contains faulty words produces
at most (

4

2

)( n−2
2,2,...,2,1

)
(m− 1)!

=
6(n− 2)!

(m− 1)! · 2m−1
=

6(n− 1)!

m! · 2m
(9)

unavailable partitions. Hence, by the equations (7), (8) and (9), the number of available partitions is at
least

n!

m! · 2m
− (k − 1) · 6(n− 1)!

m! · 2m
.

Since k ≤ ` < n/6 + 1, the number of available partitions is positive. Thus, there exists a partition that
is not unavailable. In conclusion, we need at most m + 1 = (n + 1)/2 queries to locate which of the m
pairs of two words of weight one contain faulty words and whether there exist faulty words in the pair
containing the last word of weight 1 and the word 0.

Assume now that a pair {ei1 , ei2} contains faulty words, where i1, i2 ∈ {1, 2, . . . , n} (ei defined as in
the proof of Theorem 2.8). In order to conclude whether ei1 is a faulty word, we need a word ei1 + ej of
weight two such that B1(ej) \ {ei1} contains no faulty vertices, i.e. ej is not included in any of the pairs
containing faulty words in B1(x1) and B1(ej) does not intersect with any of the 1-balls of S other than
B1(x1). Now we have that the number of such words of weight two is at least

n− 2(`− k)−
(
4

2

)
(k − 1).

Since ` < n/6 + 1, the previous number of words is positive. Hence, there exists a word of weight two
satisfying the previous conditions. Assume then that the pair {0, ei} (i ∈ {1, 2, . . . , n}) contain faulty
words. Using similar counting arguments as before, we can show that the faulty words can be found in
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this pair by at most two queries. In conclusion, we need at most two queries to locate the faulty words
inside each pair containing them.

If k = `, then, by the previous considerations and by the fact that now we need only one query to
identify the faulty word from a pair {ei1 , ei2}, we need at most

c1(Fn) + ` · n+ 1

2
+ ` = c1(Fn) + ` · n+ 3

2

queries to locate the faulty words in Fn. If 1 ≤ k ≤ `− 1, then we also need at most

c1(Fn) + (`− 1) · n+ 1

2
+ 2` ≤ c1(Fn) + ` · n+ 3

2

queries. Thus, the claim follows. 2

Remark 2.10 It should be noted that the upper bound of the previous theorem can be sharpened to
c1(Fn) + ` · (n + 1)/2. This slight improvement is obtained by more detailed considerations in the last
paragraph of the proof (as pointed out by an anonymous referee).

2.4 Adaptive identification in square lattices
Let p and q be positive integers. The graph Tp,q = (V,E) is a p × q torus in the square lattice, if the
vertex set is

V = {(i, j) | 0 ≤ i ≤ p− 1, 0 ≤ j ≤ q − 1}

and the edge set is

E = {((i, j), (i, j + 1)), ((i, j), (i+ 1, j)) | 0 ≤ i ≤ p− 1, 0 ≤ j ≤ q − 1},

where the first coordinate is calculated modulo p and the second coordinate is calculated modulo q (see
Figure 2).

Fig. 2: A 1-ball centered at the black vertex is illustrated in the torus T7,7.
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Regular (r,≤ `)-identification in square lattice (or grid) have been studied, for example, in [4], [13]
and [14]. Consider then adaptive (1,≤ `)-identification of Tp,q . The case with ` = 1 is considered in
[1, 2]. If, on the other hand, ` ≥ 4, then it is easy to see that Tp,q is not (1,≤ `)-identifiable. Hence, we
concentrate on this subsection to the cases with ` = 2 and ` = 3.

The size of the 1-ball in Tp,q is clearly 5, i.e. V1(Tp,q) = 5 (see Figure 2). By [8] and [9], we know that
there exists a 1-perfect code of Tp,q , if both p and q are dividable by 5.

Consider then adaptive (1,≤ 2)-identification in Tp,q . By Theorem 2.1, we have the lower bound

a(1,≤2)(Tp,q) ≥
pq

5
+ 3. (10)

The following theorem provides an upper bound for a(1,≤2)(Tp,q).

Theorem 2.11 Let p and q be positive integers dividable by 5. If p ≥ 10 and q ≥ 10, then we have

a(1,≤2)(Tp,q) ≤
pq

5
+ 6. (11)

Proof: The proof is similar to and even easier than the proof of Theorem 2.12. Therefore, the proof is
omitted here. 2

Consider then adaptive (1,≤ 3)-identification in Tp,q . Again by Theorem 2.1, we have the lower bound

a(1,≤3)(Tp,q) ≥
pq

5
+ 4. (12)

The following theorem provides an upper bound for a(1,≤3)(Tp,q).

Theorem 2.12 Let p and q be positive integers dividable by 5. If p ≥ 15 and q ≥ 15, then we have

a(1,≤3)(Tp,q) ≤
pq

5
+ 9. (13)

Proof: Assume p and q are positive integers dividable by 5. Let Tp,q be a torus in the square lattice with
pq vertices. Now there exists a 1-perfect covering C of Tp,q . In what follows, we present a sketch of an
adaptive (1,≤ 3)-identifying algorithm:

1. For every c ∈ C ask the query Q1(c).

2. If all the queries output value 0, then there clearly exist no faulty vertices in Tp,q .

3. If exactly one query output value 1, then this query 1-covers 1, 2 or 3 faulty vertices. Assume that
this query is centered at the vertex (x, y). Then ask the queriesQ1(x, y+2),Q1(x+2, y),Q1(x, y−
2) andQ1(x−2, y) (the first coordinate is calculated modulo p and the second is calculated modulo
q). Depending on the answers of these queries, we need at most one auxiliary query to locate all the
(from 1 to 3) faulty vertices in B1(x, y). Thus, we need at most 5 queries in this step.

4. Assume then that there exist two queries outputting 1. Assume first that the 1-balls of these queries
are next to each other, i.e. assume that the queries outputting 1 are Q1(x, y) and Q1(x+ 2, y + 1)
(other cases are symmetrical). Now we need to locate the 1 or 2 faulty vertices in B1(x, y) without
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using queries that 1-cover vertices inB1(x+2, y+1). We start by asking the queryQ1(x, y−1). If
Q1(x, y−1) = 0, then the faulty vertices can be found using queriesQ1(x−1, y−1), Q1(x, y+2)
and Q1(x+ 1, y − 1) as illustrated in Figure 3(a) (totally at most 4 queries).

Assume then Q1(x, y− 1) = 1. Ask the query Q1(x− 1, y+1). If Q1(x− 1, y+1) = 1, then the
faulty vertices can be easily found using totally at most 4 queries. Assume thenQ1(x−1, y+1) = 0.
Ask the query Q1(x− 1, y) (see Figure 3(b)). If Q1(x− 1, y) = 1, then the vertex (x, y) is faulty
and we proceed by asking the query Q1(x + 1, y − 1). If Q1(x + 1, y − 1) = 0, then the vertex
(x, y) is the only faulty one inB1(x, y) (totally 4 queries used). Otherwise, the second faulty vertex
in B1(x, y) can be found by asking the query Q1(x− 1, y − 1) (totally 5 queries used).

We have still not considered the somewhat more problematic case when Q1(x − 1, y) = 0. Now
we know that the vertex (x, y − 1) is faulty and that the vertices (x, y), (x − 1, y) and (x, y + 1)
are not faulty (see Figure 3(c)). However, there exists no fourth query telling whether the vertex
(x+1, y) is faulty, since queries 1-covering vertices in B1(x+2, y+1) cannot be used. Therefore,
we proceed next by locating the faulty vertices in the 1-ball B1(x+ 2, y + 1) using similar queries
as with B1(x, y). (Indeed, the faulty vertices can be located from B1(x + 2, y + 1) using at most
5 queries, since we know that the vertices (x, y) and (x, y + 1) are not faulty.) After locating the
faulty vertices in B1(x+ 2, y + 1), we can also conclude whether the vertex (x+ 1, y) is faulty or
not. Hence, we use in this case at most 9 queries to locate all the faulty vertices in Tp,q .

In other cases, we also proceed by finding the faulty vertices (or a faulty vertex) in B1(x+2, y+1)
using similar queries as with B1(x, y). Notice that if there is only one faulty vertex in a 1-ball, then
it can be located using 4 queries, and if there are two faulty vertices, then they can be located using
5 queries. Hence, in all the cases we need at most 9 queries to locate all the faulty vertices in Tp,q .

It should also be noted that if the two queries outputting 1 after step 1 are not next to each other we
can still use similar techniques to locate the faulty vertices using at most 9 queries.

5. Assume then that three queries in step 1 output value 1. Now each of these queries 1-cover exactly
one faulty vertex. There are again several cases, but here we consider only one case as an example
(others are analogous).

Assume that the queries outputting 1 are Q1(x, y), Q1(x − 1, y + 2) and Q1(x + 2, y + 1). Ask
then the query Q1(x − 1, y − 1) (see Figure 3(d)). If Q1(x − 1, y − 1) = 1, the faulty vertex can
be found by the query Q1(x− 2, y). Otherwise the faulty vertex can be located by asking the query
Q1(x+ 1, y − 1) and depending on the answer we might need one auxiliary query. In conclusion,
we need at most 3 queries to locate the faulty vertex in B1(x, y). Notice that these queries are
chosen in such a way that they do not intersect with the ballsB1(x−1, y+2) andB1(x+2, y+1).
Therefore, we need at most 9 queries to locate the faulty vertices in Tp,q .

With any other choice of the queries outputting 1 in step 1, we can always found the faulty vertices
using at most 9 queries.

In conclusion, the previous algorithm shows that

a(1,≤3)(Tp,q) ≤
pq

5
+ 9.

2
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(x,y)

(a)

(x,y)

(b)

(x,y)

(c)

(x,y)

(d)

Fig. 3: The proof of Theorem 2.12 illustrated. The black and squared vertices respectively represent faulty and non-
faulty vertices. Moreover, at least one of the grey vertices is faulty. Furthermore, the dashed squares represent the
asked queries.
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3 Adaptive weak identification
In this section, we introduce a concept of adaptive weak (r,≤ `)-identification, which enables the handling
of larger `. Similar concept has also been considered in the case of regular (r,≤ `)-identification. These
weakly (r,≤ `)-identifying codes are considered, for example, in [12].

Assume that during the execution of an algorithm we can fix a faulty vertex after one is found and then
proceed with the algorithm. We call such an algorithm as adaptive weakly (r,≤ `)-identifying, if it can fix
all the (at most `) faulty vertices. The minimum of the maximum number of queries needed in an adaptive
weakly (r,≤ `)-identifying algorithm is denoted by aW(r,≤`)(G), where G is the underlying graph.

In what follows, we consider adaptive weak (r,≤ `)-identification in torii of king lattice T k
p,q . The

following theorem provides an upper bound for aW(r,≤`)(T
k
p,q), when p and q are dividable by 2r + 1.

Theorem 3.1 Let p and q be positive integers dividable by 2r + 1. If ` < min{p/(2r + 1), q/(2r + 1)},
then we have

aW(r,≤`)(T
k
p,q) ≤

pq

(2r + 1)2
+ ` (2 dlog2(2r + 1)e+ 1) .

Proof: Assume p and q are positive integers dividable by 2r+1. Let T k
p,q be a torus in the king lattice with

pq vertices. Now there exists an r-perfect code C of T k
p,q . The following algorithm is adaptive weakly

(r,≤ 2)-identifying:

1. For every c ∈ C ask the query Qr(c).

2. If all the queries output value 0, then there clearly exist no faulty vertices in T k
p,q . Let then the

queries outputting value 1 be centered at v1, v2, . . . , vm with 1 ≤ m ≤ `. In what follows, the
first coordinate of a vertex is calculated modulo p and the second one is calculated modulo q.
Choose then vj = (xj , yj) to be such that there do not exist faulty vertices in Br(xj − 2r, yj),
Br(xj−2r, yj+2r) andBr(xj , yj+2r). Indeed, such a vertex always exists since ` < min{p/(2r+
1), q/(2r+1)}. Now using some of the queriesQr(xj−2r, yj), Qr(xj−2r+1, yj), . . . , Qr(xj−
1, yj) we can locate a column containing a faulty vertex by dichotomic search. Assume that this
column is formed by the vertices {(xj +k, yj − r), (xj +k, yj − r+1), . . . , (xj +k, yj + r)} with
−r ≤ k ≤ r. The dichotomic search ensures that the found column is the leftmost of the columns
containing faulty vertices in Br(vj). Therefore, we can locate the faulty vertex in this column by
dichotomic search using some of the queries Qr(xj + k − r, yj + 2r), Qr(xj + k − r, yj + 2r −
1), . . . , Qr(xj + k − r, yj + 1). In conclusion, one faulty vertex in Br(vj) can be identified using
at most 2dlog2(2r + 1)e queries.

3. After locating the faulty vertex, we fix it and ask again the query Qr(vj). Then we proceed as in
the step 2.

In conclusion, the previous algorithm locates the faulty vertices using at most

γr(T
k
p,q) + ` (2 dlog2(2r + 1)e+ 1)

queries. Thus, the claim follows. 2
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As in the previous theorem, let p and q be positive integers dividable by 2r+1. Consider then adaptive
weak (r,≤ `)-identification in T k

p,q with ` = p/(2r + 1). Let then the following sets be two patterns of
faulty vertices in T k

p,q:

X1 = {(i · p/(2r + 1), 0) | i = 0, . . . , `− 1},
X2 = {(1 + i · p/(2r + 1), 0) | i = 0, . . . , `− 1}.

Clearly, if Qr(v) = 1 (v ∈ T k
p,q) when the faulty vertices of T k

p,q are X1, then Qr(v) = 1 when the faulty
vertices of T k

p,q are X2. The same also holds for the other direction. Hence, Qr(v) = 1 (v ∈ T k
p,q) with

fault patternX1 if and only ifQr(v) = 1 with fault patternX2. Thus, we cannot locate any faulty vertices
in T k

p,q . Similar considerations also apply when ` = q/(2r + 1). In conclusion, there does not exist any
adaptive weakly (r,≤ `)-identifying code, if ` ≥ p/(2r + 1) or ` ≥ q/(2r + 1). Therefore, the bound on
` is the best possible in the previous theorem.
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