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We present an algorithm for unification of higher-order patterns modulo simple syntactic equational theories as
defined by Kirchner [14]. The algorithm by Miller [17] for pattern unification, refined by Nipkow [18] is first modified
in order to behave as a first-order unification algorithm. Then the mutation rule for syntactic theories of Kirchner
[13, 14] is adapted to pattern E-unification. If the syntactic algorithm for a theory E terminates in the first-order case,
then our algorithm will also terminate for pattern E-unification. The result is a DAG-solved form plus some equations
of the form λx � F � x ��� λx � F � xπ � , where xπ is a permutation of x. When all function symbols are decomposable these
latter equations can be discarded, otherwise the compatibility of such equations with the solved form remains open.
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1 Introduction
Unification is a crucial mechanism in logic programming and automated theorem proving. Unification
modulo an equational theory E has been introduced by Plotkin [20] and has become an area of research of
its own. With the emergence of higher-order logic programming and rewrite systems [17, 18, 16], the issue
of higher-order unification is of growing interest. Higher-order unification is known to be undecidable
[10, 8], but Miller has shown that the unification problem is decidable for patterns, which are terms of
the simply-typed lambda-calculus in which the arguments of a free variable are always distinct bound
variables‡. Patterns allow to define higher-order functions using pattern matching, as well as interesting
higher-order rewrite systems. The aim of the present work is to apply the methods initiated by Kirchner
for first-order E-unification to the case of pattern E-unification. This requires to adapt the mutation rule
to the case of patterns.

In practice, patterns are very similar to first-order terms because the condition that the arguments of
the free variables are pairwise distinct bound variables forbids to have free variables “in the middle” of
the terms. The free variables (with their restricted kind of arguments) are at the leaves of a pattern. The
syntactic theories have been defined by Kirchner [13, 14] as those collapse-free equational theories which

†This research was supported in part by the EWG CCL, and the “GDR de programmation du CNRS”.
‡ Actually, even the decidability of higher-order matching is still open beyond order 4 [10, 7, 19].
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admit a finite presentation such that every equational theorem can be proved by using at most one axiom
at the root. This property provides us with complete (non-deterministic) top-down strategies for searching
proofs or unifiers. One may guess which axiom applies at the root and then pursue the search in the
subterms.

A difficulty with pattern unification is that one needs to introduce new variables. For instance, the
most general unifier of λxyz � F �

x � y ��� λxyz �G �
z � x � , where the free variables are F and G is σ ��� F �	

λxy �H �
x �
� G �	 λxy �H �

y ��� , where H is a new free variable. We will see that not only the solving of
such flexible-flexible equations (i.e., having a free variable at the top on both sides) require to introduce
new variables. On the other hand, new variables are not needed for first-order unification. Our ultimate
goal is to take advantage of the resemblance of patterns with first-order terms for lifting the methods
that have been developed for two decades for first-order E-unification. In the present paper we want to
present an algorithm for pattern unification modulo syntactic theories which behaves exactly as in the
first-order case, hence yielding in particular a terminating algorithm whenever the first-order algorithm
terminates. For this, we will introduce a preliminary non-deterministic step in which a projection such
as the above substitution σ is chosen. After this step, a first goal is achieved with an algorithm which
does not introduce further new variables and whose (non-failure) rules behave as in first-order unification
(in a sense that will be made precise later). Then, we will adapt Kirchner’s mutation rule to the case
of pattern unification. The flexible-flexible equations with the same head variable on both sides (like
λxy � F �

x � y �� λxy � F �
y � x � ) are frozen. Such equations are always solvable (by a projection), but we do not

know how to test their compatibility with the rest of the problem in general.We will give an interpretation
I of pattern unification problems in terms of first-order unification problems such that if a rule applies to
P yeldinq Q, the corresponding rule of the first-order algorithm will apply to I

�
P � yielding I

�
Q � . Finally,

we will show how to handle the equations like λxy � F � x � y ��� λxy � F � y � x � in the case where all the function
symbols are decomposable.

2 Preliminaries
We assume the reader is familiar with simply-typed lambda-calculus, and equational unification. Some
background is available in e.g. [9, 12] for lambda-calculus and E-unification.

2.1 Patterns and equational theories
Given a set B of base types, the set T of all types is the closure of B under the (right-associative) function
space constructor 	 . The simply-typed lambda-terms are generated from a set � τ � T Vτ of typed variables
and a set � τ � T Cτ of typed constants using the following construction rules:

x � Vτ

x : τ
c � Cτ

c : τ
s : τ 	 τ � t : τ�

s t � : τ �
x : τ s : τ �
λx � s : τ 	 τ �

The order of a base type is 1, and the order of an arrow type τ 	 τ � is the maximum of the order of τ
plus 1 and the order of τ � . The order of a term is the order if its type.

We shall use the following notations: λx1 ����� λxn � s will be written λxn � s, or even λx � s if n is not relevant.
If in a same expression x appears several times it denotes the same sequence of variables. The curly-
bracketed expression � xn � denotes the (multi) set � x1 � ����� � xn � . In addition, we will use the notation
t
�
u1 � ����� � un � or t

�
un � for

�
�����

�
t u1 � ����� un � . The free (resp. bound) variables of a term t are denoted by

F V
�
t � (resp. BV

�
t � ). The positions of a term t are words over � 0 � 1 � , Λ is the empty word (denoting
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the root position) and t
�
p is the subterm of t at position p. The notation t � u � p stands for a term t with a

subterm u at position p, t � u1 � ����� � un � for a term t having subterms u1 � ����� � un.
Unless otherwise stated, we assume that the terms are in η-long β-normal form [9], the β and η rules

being respectively oriented as follows:�
λx �M � N 	 β M � x �	 N � (only the free occurrences of x are replaced by N), F 	 η � λxn � F

�
xn � if the type

of F is α1 	 ����� 	 αn 	 α, and α is a base type. In this case, F is said to have arity n.
The η-long β-normal form of a term t is denoted by t � η

β.
A substitution σ is a mapping from a finite set of variables to terms of the same type, written σ � � x1 �	

t1 � ����� � xn �	 tn � .
Miller [17] has defined the patterns as those terms of the simply-typed lambda-calculus in which

the arguments of a free variables are (η-equivalent to) pairwise distinct bound variables. For instance,
λxyz � f � H �

x � y �
� H �
x � z ��� and λx � F � λz � x � z ��� § are patterns while λxy �G �

x � x � y � , λxy �H �
x � f � y ��� and λxy �H �

F
�
x � � y �

are not patterns. Patterns have useful applications in higher-order logic programming [17], pattern rewrite
systems [18, 16, 4], or definitions of functions by cases in functional programming languages.

It is known that higher-order unification and even second-order unification are undecidable [10, 8]. On
the contrary, patterns have decidable and unitary unification :

Theorem 1 ([17]) Pattern unification is decidable, and there exists an algorithm that computes a most
general unifier of any solvable pattern unification problem.

The equational theories we consider here are the usual first-order equational theories: given a set E of
(unordered) first-order axioms built over a signature F , there is an elementary equational proof s � E t if
there exist an axiom l � r � E, a position p of s and a substitution θ such that s

�
p � lθ and t � s � rθ � p. If

p � Λ, we call this proof a Λ-step. The equational theory � E generated by E is the reflexive transitive
closure �� E of � E .

The following is a key theorem due to Tannen. It allows us to restrict our attention to � E for deciding
η-β-E-equivalence of terms in η-long, β-normal form :

Theorem 2 ([5]) Let E be an equational theory and s and t two terms. Then s � ηβE t �	� s � η
β � E t � η

β.

2.2 Unification problems
Definition 1 Unification problems are inductively defined as follows:


�� (the trivial unification problem) and  (the unsolvable unification problem) are unification prob-
lems.


 An equation s � t where s and t are patterns of the same type is a unification problem.


 If P and Q are unification problems and X is a variable, then P � Q, P � Q and
���

X � P are unification
problems.

Any substitution is a solution of � ,  has no solutions and the σ is a solution of s � t if sσ � ηβE tσ.
The solutions of P � Q (resp. P � Q ) are the intersection (resp. the union) of the solutions of P and Q. A
substitution σ is a solution of

���
X � P if there exists a solution of P identical to σ except maybe on X.

§ We will always write such a pattern in the (η-equivalent) form λx � F � x � , where the argument of the free variable F is indeed a
bound variable.
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As usual, we restrict our attention to the problems of the form

���
X � s1 � t1 � ����� � sn � tn

the only disjunctions being implicitely introduced by the non-deterministic rules.

Terminology In the following, free variable denotes an occurrence of a variable which is not λ-bound and
bound variable an occurrence of a variable which is λ-bound. To specify the status of a free variable with
respect to existential quantifications, we will explicitely write existentially quantified or not existentially
quantified. In the sequel, upper-case F , G, X ,... will denote free variables, a, b, f , g,... constants, and x, y,
z, x1,... bound variables.

Without loss of generality, we assume that the left-hand sides and right-hand sides of the equations have
the same prefix of λ-bindings. This is made possible because the two terms have to be of the same type,
and by using α-conversion if necessary. In other terms, we will assume that the equations are of the form
λx � s � λx � t where s and t do not have an abstraction at the top.

Definition 2 An equation is quasi-solved if it is of the form λxk � F
�
yn � � λxk � s and F V

�
s � � � xk ��� � yn �

and F �� F V
�
s � .

Rather than computing substitutions, we will compute DAG-solved forms, from which it is trivial to
extract solved form which represents its own mgu.

Lemma 1 If the equation λxk � F
�
yn � � λxk � s is quasi-solved, then it is has the same solutions as λyn � F

�
yn � �

λyn � s and (by η-equivalence) as F � λyn � s. A most general unifier of such an equation is � F �	 λyn � s � .

For the sake of readability, we will write a quasi-solved equation in the form F � λyn � s instead of
λxk � F

�
yn � � λxk � s in the following definition and in the rules Merge and Check* of the next section.

Definition 3 A DAG-solved form is a unification problem of the form

���
Y1 ����� Ym � X1 � s1 � ����� � Xn � sn

where for 1 � i � n, Xi and si have the same type, and Xi �� X j for i �� j and Xi �� F V
�
s j � for i � j.

A solved form is a unification problem of the form

���
Y1 ����� Ym � X1 � s1 � ����� � Xn � sn

where for 1 � i � n, Xi and si have the same type, Xi is not existentially quantified, and Xi has exactly one
occurrence.



Unification of Higher-order Patterns modulo Simple Syntactic Equational Theories 15

A solved form is obtained from a DAG-solved form by applying as long as possible the rules

Quasi-solved
λxk � F

�
yn � � λxk � s � P � F � λyn � s � P

Replacement
F � λyn � s � P � F � λyn � s � P � F �	 λyn � s �
if F has a free occurrence in P.

EQE� �
F � F � t � P � P

if F has no free occurrence in P.

2.3 Syntactic equational theories
Claude Kirchner [13] has defined the syntactic theories as those collapse-free equational theories which
admit a finite presentation such that every equational proof can be performed by applying at most once an
axiom at the root. Such a property provides complete top-down strategies for equational proofs or unifica-
tion. At first, the unification community was not aware of the existence of many syntactic theories besides
commutativity and its variants. Kirchner and Klay noticed that it is enough for a theory E to be syntactic
that every equation of the form f

�
x1 � ����� � xn ��� g

�
y1 � ����� � ym � has a finite complete set of E-unifiers Σ f � g

[15]. The permutative theories like commutativity, or more generally the theories presented by axioms of
the form f

�
x1 � ����� � xn � � f

�
xπ

�
1 � � ����� � xπ

�
n � � where π is a permutation of

�
1 � ����� � n � are syntactic, and the al-

goritm of figure 1 terminates for such theories. The theories of associativity, associativity-commutativity
left-distributivity are syntactic, but the algorithm does not terminate in general. Arnborg and Tidén give
a criterion which allows to avoid non-termination in the case of left-distributivity by detecting unsolvable
problems [24]. Boudet and Contejean give a criterion for pruning the search space and discarding some
non-minimal solutions which ensures the termination while preserving the completeness in the case of
associativity-commutativity [2].

Definition 4 An equational theory is syntactic if it possesses a finite resolvent presentation E. A set E of
equations is a resolvent presentation if every E-equality proof can be performed using the axioms of E
with at most one Λ-step. E f � g is the set of the axioms of E of the form f

�
s1 � ����� � sn �� g

�
t1 � ����� � tm � .

In the following, we assume that the set of first-order axioms E is a resolvent presentation. In addition,
we require that E-is a simple theory, that is a theory containing no equalities of the form s � E u where u
is a strict subterm of s.

Figure 1 gives a set of rules for first-order unification modulo simple syntactic theories. The reader is
referred to e.g. [13, 14, 12, 2] for some background on syntactic theories.

3 Free pattern unification revisited
In this section, we propose a modification of Miller’s algorithm [17], refined by Nipkow [18] for pattern
unification. We introduce a preliminary non-deterministic step in which we choose those arguments of
the free variables which will effectively participate in the solution, and those that will be eliminated by a
projection. After this step, we may assume that the value a free variable by a solution σ will effectively
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Trivial
s � s � P � P

Merge
x � s � x � t � x � s � s � t
if x � X and s � t �� X

Var-Rep (Coalesce)� �
z1 � ����� � zn � x � y � P � � �

z1 � ����� � zn � x � y � P � x �	 y �
if x � y � V

�
P �

Mutate
f
�
s1 � ����� � sn � � g

�
t1 � ����� � tm �

� ���
V
�
f
�
l1 � ����� � ln ��� g

�
r1 � ����� � rm ����� �

1 � i � n si � li
�

1 � j � m t j � r j

where f
�
l1 � ����� � ln � � g

�
r1 � ����� � rm � � E f � g

Check �
x1 � t1 � x2 � p1 � x2 � t2 � x3 � p2 � ����� � xn � tn � x1 � pn � 
if some pi �� Λ

Fig. 1: A set of rules for unification modulo simple syntactic theories
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depend on each of its arguments, forbidding any further projection. The price to pay is an exponential
blowup in the complexity, and the loss of minimality of the algorithm. On the other hand, the complexity
of equational unification algorithms is already at least exponential for most of the theories of interest. The
advantage of this approach is that the simplification rules can be modified in order to avoid introducing
new variables which are needed precisely for possible projections. The resulting algorithm, after the
preliminary non-deterministic step mimics closely a first-order unification algorithm. There is no need
then for a new termination proof, and the algorithm will extend as in the first-order case to deal with
syntactic equational theories.

In this section, the terms we consider are built over a set of typed variables and a set F C of typed free
constants, that is constants which are not constrained by any equational theory. We give an example to
show a crucial difference of pattern unification with first-order unification.

Example 1 Consider the equation

λx1x2x3 � F
�
x1 � x2 ��� λx1x2x3 � a

�
G
�
x3 � � b

�
x2 � x3 � � H

�
x1 �
� s � x1 � x2 � x3 � �

Nipkow’s algorithm transforms this equation into

� �
L1 ����� L4 � F � λx1x2 � a

�
L1
�
x1 � x2 �
� ����� � L4

�
x1 � x2 ���

� λx1x2x3 � L1
�
x1 � x2 ��� λx1x2x3 �G

�
x3 �

� λx1x2x3 � L2
�
x1 � x2 ��� λx1x2x3 � b

�
x2 � x3 �

� λx1x2x3 � L3
�
x1 � x2 ��� λx1x2x3 �H

�
x1 �

� λx1x2x3 � L4
�
x1 � x2 ��� λx1x2x3 � s � x1 � x2 � x3 �

The first equation will be propagated in the rest of the problem. The second equation will be solvable
by mapping both L1 and G onto a new 0-ary variable. The third equation is not solvable since L2 does not
have x3 as one of its arguments. The fourth equation has solution � L3 �	 λxy �H �

x �
� , and the last equation
will be solvable or not, depending on the context s.

The above example shows that when the head of the left-hand side of an equation, is a free variable, one
cannot say whether this equation is solvable even if the right-hand side does not contain the left-hand side,
without traversing it all. In first-order unification, an equation of the form x � s is solved if x does not
occur in s. Note that even if the equation is solvable, one may need new variables to express the solution.

Figure 2 gives a non-deterministic algorithm for pattern unification. It is two-fold: in a first step, a
projection is choosen nondeterministically which removes some of the bound variables under each free
variable. In a second step, some rules are applied as long as possible which recall some well-known rules
for first-order unification (see e.g. [12]). It has to be noticed that after the first step, no new variables
are added. Our algorithm will fail when encountering an equation like that of the above example after
the projection step because the sets of bound variables occurring in both sides of the equation are not the
same.

Example 2 Consider the equation

λxyz � F � y � z � � λxyz �G �
x � z � y �
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1. APPLY THE FOLLOWING RULE FOR EVERY FREE VARIABLE F OF P:

Project
P � F � λxnF � � y1 � ����� � yk � � P � F �	 λxnF � � y1 � ����� � yk ���
where F has arity n and F � is a new variable and � y1 � ����� � yk � � � x1 � ����� � xn �

2. APPLY AS LONG AS POSSIBLE THE RULES:

Fail
λxk � s � λxk � t � P � 
if F V

�
s � � xk �� F V

�
t � � xk

FF �
λxk � F

�
yn � � λxk � F

�
zn � � P � 

if yn �� zn.

Trivial
s � s � P � P

Decompose
λxk � a

�
s1 � ����� � sn �� λxk � a

�
t1 � ����� � tn � � P

� λxk � s1 � λxk � t1 � ����� � λxk � sn � λxk � tn � P
if a � F C � � xk �

FF �� (Coalesce)
λxk � F

�
yn � � λxk �G

�
zn � � P � λyn � F

�
yn � � λyn �G

�
zn � � P � F �	 λyn �G

�
zn �
�

if F �� G and F � G � F V
�
P � and yn is a permutation of zn

Merge
F � s � F � t � P � F � s � s � t � P
if
�
s
� � � t �

Clash
λxk � a

�
s1 � ����� � sn �� λxk � b

�
t1 � ����� � tm � � P � 

if a � b � F C � � xk � and a �� b

Check �
F1 � s1 � F2

�
����� � � � F2 � s2 �F3

�
����� � � � ����� � Fn � sn � F1

�
����� � � � P � 

if one si � � � is not the empty context

Fig. 2: Non-deterministic algorithm for pattern unification
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The values of F and G by a solution σ must depend on the same arguments and Nipkow’s algorithm will
return the solution

� F �	 λyz �H �
y � z �
� G �	 λxyz �H �

z � y ���
Our algorithm will make, (among others) the choice to keep all the arguments of F, but only the last

two arguments of G. The problem obtained after the first projection step will be

F � λxy � F � � x � y � � G � λxyzG � � y � z � � λxyz � F � � y � z ��� λxyz �G � � z � y �

The third equation is then transformed into

F � � λyz �G � � z � y �

yielding a DAG solved form. It has to be noticed that no new variable is introduced in this latter transfor-
mation.

If a bad choice is made, the algorithm will fail: assume that both F and G keep all their arguments, the
problem obtained after the projection step will be

F � λxy � F � � x � y � � G � λxyz �G � � x � y � z � � λxyz � F � � y � z � � λxyz �G � � x � z � y �

The above problem is obviously solvable, but we forbid ourselves any further projection after the initial
step, hence no solution is computed here.

Finally, some choices may lead to solutions which are less general than the mgu. In our example this
happens when the preliminary projections make F and G depend only on their last argument. The DAG
solved form computed will be

F � λxy � F � � y � � G � λxyz �G � � z � � F � � λy �G � � y �

which is strictly less general than the mgu.

Definition 5 A constant-preserving substitution is a substitution σ such that for all F � Dom
�
σ � if Fσ � η

β �
λxk � s then every variable of xk has a free occurrence in s. A projection is a substitution of the form

σ � � F �	 λxk � F �
�
ym �

�
F � Dom

�
σ � � � ym � subset of � xk � �

The correctness of the failure rules is given by the following straightforward lemmas:

Lemma 2 For every substitution σ, there exist a projection π and a constant-preserving substitution θ
such that σ � η

β �
�
πθ � � η

β.

Lemma 3 The equation λx � s � λx � t where � x � � F V
�
s � �� � x � � F V

�
t � has no constant-preserving so-

lution. The equation λx � F �
y � � λx � F �

z � , where y and z are not the same sequence, has no constant-
preserving solution.

Proposition 1 The non-deterministic algorithm of figure 2 is sound and complete for pattern unification.
The irreducible problems are DAG-solved forms.
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Proof: The lemma 2 shows that it is correct to first guess a projection and then restrict one’s attention to
constant-preserving substitutions. The lemma 3 shows that the failure rules Fail and FF � are complete
with respect to constant-preserving substitutions. The rules Decompose, Clash and Check � are already
used by Nipkow. The rule FF �� (Coalesce) preserves the sets of solutions: λxk � F

�
yn � � λxk �G

�
zn � , where

zn is a permutation of yn and � yn � � � xk � , has the same solutions as λyn � F
�
yn ��� λyn �G

�
zn � , and by η-

equivalence, as F � λyn �G
�
zn � . Since � ηβ is a congruence, F can be replaced by λyn �G

�
zn � in the rest of

the problem. The rules Trivial and Merge are correct since � ηβ is an equivalence. A case analysis shows
that if a problem is not in a DAG solved form, then some rule must apply.

�

The termination of the algorithm will follow from the termination of the first-order rules. This will be
shown in section 5.

4 Unification modulo syntactic theories
4.1 Mutation
In this section, we give a mutation rule for pattern unification modulo simple equational theories. We first
introduce the notion of xk-variant.

Definition 6 An xk-variant of a first-order axiom l � r is lσ � rσ where σ maps every variable Y of l � r
onto Y � � yn � where

1. yn is a subsequence of xk.

2. Y � has type τ1 	 ����� 	 τn 	 τ if y1 � ����� � yn have types τ1 � ����� � τn and Y has type τ.

Example 3 Consider the first-order axiom X � Y � Y � X (C) (where X and Y have type say Nat). A
z1 � z2 � z3-variant of C, where z1 � z2 � z3 are of type Nat is X � � z1 � z2 ��� Y � � z3 ��� Y � � z3 ��� X � � z1 � z2 � , with X �
of type Nat 	 Nat 	 Nat and Y � of type Nat 	 Nat.

The mutation rule is the following:

Mutate
λxk � f

�
s1 � ����� � sn �� λxk � g

�
t1 � ����� � tm �

� ���
V
�
f
�
ln �� g

�
rm ����� �

1 � i � n λxk � si � λxk � li �
1 � j � m λxk � t j � λxk � r j

where f
�
l1 � ����� � ln � � g

�
r1 � ����� � rm � is an xk-variant of an equation of E f � g

We give an example of the use of the rule Mutate.

Example 4 Let E be the theory of left-distributivity, presented by the axiom
�
V1 � V2 ���

�
V1 � V3 � � V1 ��

V2 � V3 � (LD), and consider the equation

λxyz � F � x � y � z ��� F
�
x � z � y ��� λxyz �G �

x � y � z � � H
�
x � y � z �

to be solved modulo E. Let us choose to apply Project with the projection � G �	 λxyz �G � � x �
� . Now, we
may restrict our attention to the constant-preserving solutions of the problem

λxyz � F � x � y � z ��� F
�
x � z � y � � λxyz �G � � x � � H

�
x � y � z �
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Let us apply Mutate with the xyz-variant
�
V1
�
x � � V2

�
x � y � z ����� �

V1
�
x � � V3

�
x � y � z ����� V1

�
x � �

�
V2
�
x � y � z ��� V3

�
x � y � z ���

of (LD). The resulting problem is
� �

V1V2V3 � λxyz � F � x � y � z ��� λxyz �V1
�
x � � V2

�
x � y � z �

� λxyz � F � x � z � y ��� λxyz �V1
�
x � � V3

�
x � y � z �

� λxyz �G � � x �� λxyz �V1
�
x �

� λxyz �H �
x � y � z ��� λxyz �V2

�
x � y � z � � V3

�
x � y � z �

Merge applies to the first two equations, yielding the problem

� �
V1V2V3 � λxyz � F � x � y � z ��� λxyz �V1

�
x � � V2

�
x � y � z �

� λxyz �V1
�
x � � V2

�
x � y � z ��� λxyz �V1

�
x � � V3

�
x � z � y �

� λxyz �G � � x �� λxyz �V1
�
x �

� λxyz �H �
x � y � z �� λxyz �V2

�
x � y � z � � V3

�
x � y � z �

Decompose applies to the second equation which is equivalent to

λxyz �V1
�
x �� λxyz �V1

�
x � � λxyz �V2

�
x � y � z � � λxyz �V3

�
x � z � y �

The equation λxyz �V1
�
x � � λxyz �V1

�
x � is removed by Trivial, and Coalesce applies to the second. The

problem to be solved is now

���
V1V2V3 � λxyz � F � x � y � z ��� λxyz �V1

�
x � � V3

�
x � z � y �

� λxyz �V2
�
x � y � z ��� λxyz �V3

�
x � z � y �

� λxyz �G � � x �� λxyz �V1
�
x �

� λxyz �H �
x � y � z ��� λxyz �V3

�
x � z � y � � V3

�
x � y � z �

EQE removes the useless existentially quantified variable V2, yielding

���
V1V3 � λxyz � F �

x � y � z ��� λxyz �V1
�
x � � V3

�
x � z � y �

� λxyz �G � � x ��� λxyz �V1
�
x �

� λxyz �H �
x � y � z ��� λxyz �V3

�
x � z � y � � V3

�
x � y � z �

The reader can now check that the substitution

� F �	 λxyz �V1
�
x � � V3

�
x � z � y �
� G � �	 λxyz �V1

�
x �
� H �	 λxyz �V3

�
x � z � y � � V3

�
x � y � z ���

is a constant-preserving solution of

λxyz � F �
x � y � z ��� F

�
x � z � y ��� λx �G � � x � � H

�
x � y � z �

modulo the left-distributivity.
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Lemma 4 Mutate preserves the sets of constant-preserving solutions.

Proof: The soundness is straightforward: a constant-preserving solution of the right-hand side of the rule
is a constant-preserving solution of its left-hand side. We show the completeness: consider the equation

λxk � f
�
s1 � ����� � sn �� λxk � g

�
t1 � ����� � tm �

where f and g are algebraic constants, to be solved in a syntactic theory E. By Tannen’s theorem, a
solution σ in η-long, β-normal form must satisfy

λxk � f
�
s1σ � η

β � ����� � snσ � η
β �� E λxk � g

�
t1σ � η

β � ����� � σ � η
βtm �

Since E is syntactic, there exists f
�
l1 � ����� � ln � � g

�
r1 � ����� � rm �� E f � g¶ and a substitution θ such that siσ � η

β �
liθ for 1 � i � n and tiσ � η

β � riθ for 1 � i � m. In other words, σ is an E-solution of

� �
F V

�
f
�
ln � � g

�
rm �����

�

1 � i � n

si � li
�

1 � i � m

ti � ri

hence of ���
F V

�
f
�
ln � � g

�
rm �����

�

1 � i � n

λxk � si � λxk � li
�

1 � i � m

λxk � ti � λxk � ri

Now, we do not need to guess an xk-variant of f
�
ln � � g

�
rm � for the correctness of the rule, but guessing

which bound variables will occur as arguments of the variables of the axioms will allow the algorithm to
fail when encountering an equation λx � s � λx � t with � x � � F V

�
s � �� � x � � F V

�
t � . �

4.2 The algorithm

The algorithm of figure 2 has to be adapted in presence of an equational theory. First, the rule Clash has
to be modified. Indeed, an equation may be solvable if the heads of its left-hand-side and righ-hand side
are different algebraic constants, by applying Mutate (see figure 3).

The rule Decompose can be removed if one assumes that for every constant f of arity n, f
�
x1 � ����� � xn � �

f
�
x1 � ����� � xn ��� E f � f .
More interesting is the case of the flexible-flexible equations with the same heads. It has been noticed

by Qian and Wang that although such equations are always solvable by a projection, they do not have
finite complete sets of AC-unifiers.

Example 5 ([21]) Consider the equation e � λxy � F �
x � y � � λxy � F �

y � x � in the AC-theory of � . For m � 0,
the substitution

σm � � F �	 λxy �Gm
�
H1

�
x � y ��� H1

�
y � x �
� ����� � Hm

�
x � y ��� Hm

�
y � x �����

is an AC-unifier of e. On the other hand, every solution of e is an instance of some σi. In addition σn � 1 is
strictly more general than σn.

¶ Or possibly f � X1 � � � � � Xn ��� f � X1 � � � � � Xn � if f � g.
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1. APPLY THE FOLLOWING RULE FOR EVERY FREE VARIABLE F OF P:

Project
P � F � λxnF � � y1 � ����� � yk � � P � F �	 λxnF � � y1 � ����� � yk ���
where F has arity n and F � is a new variable and � y1 � ����� � yk � � � x1 � ����� � xn �

2. APPLY AS LONG AS POSSIBLE THE RULES:

Fail
λxk � s � λxk � t � P � 
if F V

�
s � � xk �� F V

�
t � � xk

FF �
λxk � F

�
yn � � λxk � F

�
zn � � P � 

if � yn � �� � zn � .

Freeze
(λxk � F

�
yn �� λxk � F

�
zn � � P � � PF � P � � λxk � F

�
yn �� λxk � F

�
zn � � PF �

if yn is a permutation of zn.

Trivial
s � s � P � P

FF �� (Coalesce)
λxk � F

�
yn � � λxk �G

�
zn � � P � λyn � F

�
yn � � λyn �G

�
zn � � P � F �	 λyn �G

�
zn �
�

if F �� G and F � G � F V
�
P � and yn is a permutation of zn

Mutate
λxk � f

�
s1 � ����� � sn �� λxk � g

�
t1 � ����� � tm �

� ���
V
�
f
�
ln �� g

�
rm ����� �

1 � i � n λxk � si � λxk � li �
1 � j � m λxk � t j � λxk � r j

where f
�
l1 � ����� � ln � � g

�
r1 � ����� � rm � is an xk-variant of an equation of E f � g.

Merge
F � s � F � t � P � F � s � s � t � P
if
�
s
� � � t �

Clash
λxk � a

�
s1 � ����� � sn �� λxk � b

�
t1 � ����� � tm � � P � 

if a � xk or b � xk, a and b are not a variable and a �� b

Check �
F1 � s1 � F2

�
����� � � � F2 � s2 �F3

�
����� � � � ����� � Fn � sn � F1

�
����� � � � P � 

if one si � � � is not the empty context

Fig. 3: Algorithm for pattern unification modulo simple syntactic theories
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Hence, AC-unification of patterns is not only infinitary, but nullary, in the sense that some problems do
not have minimal complete sets of AC-unifiers [23].

As Qian and Wang, and as in [3], we keep these equations unaltered : the syntax of unification problems
is slightly modified by distinguishing the conjunction PF of frozen equations that will never be modified
by the simplification rules. The rule Freeze ignores the flexible-flexible equations with same heads and
freezes them by storing them in PF . This is made necessary by the fact that even if P0 does not contain
such equations at the beginning, some may appear by applying the other rules. There are still no constant-
preserving solutions of λxk � F

�
yn ��� λxk � F

�
zn � if � yn � and � zn � are not the same set, hence the rule FF �

of figure 2 is replaced by the two rules Freeze and FF � of figure 3. We do not go into further detail now
concerning frozen equations because first, we do not know how to handle them in general, and second,
they will just lead to failure when all function symbols are decomposable as, for instance in the case of
one-sided distributivity (see section 6).

Figure 3 presents our algorithm for pattern unification modulo a simple syntactic equational theory E.
The fact that E is a simple theory is needed to preserve the completeness of the rules Clash and Check � ,
which are not correct in general. The rule Check � is correct as a corollary of the following lemma :

Lemma 5 The equation λx � F �
y ��� λx � s �F �

z � � p has no E-solution if E is a simple theory and p �� Λ.

Proof: By contradiction. Assume that σ is a solution in η-long β-normal form, and let Fσ � λv � t � v � . We
have

λx � Fσ
�
y � � λx � λv � t � v � � y �� β λx � t � y �

with λx � t � y � in η-long β-normal form. On the other side, we have

�
λx � s �F �

z � � p � σ � λx � sσ � λv � t � v� � z � � p � β λx � � sσ � � η
β � t � z � � p

There is a proof of λx � t � y � � E λx � � sσ � � η
β � t � z � � p, hence there is a proof of t � y � � E

�
sσ � � η

β � t � z � � p. But a
fortiori, there is a proof of the above identity where all the occurrences of bound variables have been
replaced by a constant a. Let t � (resp. s � ) be t (resp.

�
sσ � � η

β), where all the occurrences of bound variables
have been replaced by a. We have t � � E s � � t � � p with p �� Λ, which is impossible for a simple theory E.

�

The rule Clash is correct as a corollary of the following lemma :

Lemma 6 The equation λx � xi
�
s ��� λx � a � t � has no E-solution if xi � � x � and E is a simple theory and a

is a bound variable different than xi or a constant.

Proof: By contradiction : assume σ is a solution. If a is a bound variable x j (i �� j), then we would have

a proof of λx � xi
�
sσ � η

β � � λx � x j
�
tσ � η

β � , hence of xi
�
sσ � η

β � x j
�
tσ � η

β � , which is impossible since neither
xi nor x j appear in the axioms of E. If a is an algebraic constant f , thet there would be a proof of

xi
�
sσ � η

β � f
�
tσ � η

β � which is again impossible since a simple theory admits no identities with a function
symbol at the top on one side only.

�

It is now easy to show that our rules, after the projection step, mimic exactly those of figure 1, except
for the more numerous failure cases due to the restriction to constant-preserving solutions.
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5 Patterns as first-order terms
We give now an interpretation of pattern unification problems in terms of first-order unification problems.
It just consists of forgetting the arguments of the free variables which are replaced by first-order variables,
and the lambda-bindings, and of replacing the bound variables by new free constants.

Definition 7 For n � N, let f n be a free function symbol of arity n. The interpretation I
�
t � of a pattern t

is the first-order term obtained from t by

1. replacing the flexible subterms of the form X
�
x � by vX , where X is a free variable and vX is a

first-order variable associated with X,

2. replacing the subterms a
�
s � by f n � s � , where a is a bound variable of arity n.

3. replacing the subterms of the form λx � s by s.

The interpretation I
�
P � of a pattern unification problem P is the first-order unification problem obtained

from P by replacing every term t by its interpretation I
�
t � . The frozen part PF is ignored.

We will now take advantage of the fact that the algorithms of figures 2 and 3 are complete (The rules
preserve the solutions and the constant-preserving solutions respectively).

Lemma 7 Assume that a pattern unification problem P is transformed into Q by an application of one of
the non-failure rules of figure 3 (except the rule Project). Then there is a rule R of the algorithm of figure
1 such that I

�
Q � is obtained from I

�
P � by an application of R.

Proof: The rules Merge and Mutate of figure 3 correspond to those of figure 1. The rules Freeze and
Trivial of figure 3 correspond to the rule Trivial of figure 1. The rule FF �� (Coalesce) corresponds to the
rule Var-Rep (Coalesce) of figure 1.

�

Corollary 1 If the algorithm of figure 1 terminates for a given theory E, so does our pattern unification
algorithm.

Corollary 2 If the first-order unification problem I
�
P � has no solution, then P has no solution.

Proof: It is enough to notice that if P is irreducible by the rules of figure 3, then so is I
�
P � by the rules

of figure 1. In both cases the irreducible problems are either  , or a DAG-solved form. The result follows
by contradiction.

�

This last result allows one to use some criteria for the first-order case such as the one given by Arnborg
and Tidén for one-sided distributivity [24]. For this theory the syntactic algorithm does not terminate,
but the authors give a criterion allowing to discard some unsolvable problems, providing a terminating
algorithm.
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6 Frozen equations
The algorithm that we have presented so far transforms a unification problem into a problem of the form
P � PF , where P is a DAG-solved form and PF is a conjunction of frozen equations of the form λx � F �

y � �
λx � F � z � , where z is a permutation of y. There remains to check whether there exists an instance of the
mgu of P that satisfies the equations of PF . The problem arises when the variable F has a “value” in P,
that is, when there is an equation of the form λx � F �

x �� λx � t in P.

Example 6 Assume that � is an associative-commutative function symbol and that P � PF is F � λxy � x �
a � y � λxy � F �

x � y �� λxy � F �
y � x � . Then, the mgu � F �	 λxy � x � a � y � of P satisfies PF , and we are done.

Assume now that P � PF is F � λxy �H �
x � y � � λxy � F �

x � y � � λxy � F �
y � x � , and that � is a commutative

function symbol. Then the substitution � H �	 λxy �H � � x � y � � H � � y � x �
� will map the mgu � F �	 λxy �H �
x � y ���

of P onto � F �	 λxy �H � � x � y ��� H � � y � x ��� which satisfies PF . Finally, if f is a free function symbol and P �
PF is F � λxy � f � x � y � � λxy � F �

x � y � � λxy � F �
y � x � , then there is no instance of the mgu � F �	 λxy � f � x � y ���

of P satisfying PF .

We do not have a general solution to this problem, but we propose a straightforward rule which may
cause non-termination in general, and a method that will work for theories such as left-distributivity where
the function symbols of the theory are decomposable.

The obvious rule for computing the solutions of P that satisfy PF is the following :

F-Merge
F � λx � t � λx � F �

x �� λx � F � xπ � � P
� F � λx � t � λx � t � λxπ � t � P

where xπ is a permutation of x

Of course, we cannot guarantee the termination since the solving of the new equation λx � t � λxπ � t can
yield new flexible flexible equations making it necessary to apply F-Merge again, and so on. Actually,
we do conjecture that it is not decidable in general, given a theory E with decidable first-order unification,
whether an equation of the form λx � F �

x ��� λx � F � xπ � , where xπ is a permutation of x, has a non-trivial
E-solution, that is a solution which is not a solution modulo the empty theory.

Definition 8 A function symbol f is decomposable if

f
�
s1 � ����� � sn �� E f

�
t1 � ����� � tn � �	� s1 � E t1& ����� &sn � E tn

Arnborg and Tidén [24] have shown that the axion of left-distributivity forms a resolvent presentation.
This implies that both � and � are decomposable, since there is no axiom with � (or � ) at the top on both
sides.

Proposition 2 We call trivial an E-solution of an equation which is also a solution modulo the empty
theory. Assume that E is such that all the function symbols are decomposable. Then, the equations of the
form λx � F �

x �� λx � F �
xπ � have no non-trivial E-solutions.

Proof: By contradiction, and induction on the structure of the value Fσ of F by the alledged non-trivial
solution σ in η-long β-normal form. If Fσ is of the form λx � α � t1 � ����� � tn � , where α is a free variable or a
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bound variable, we have λx � α � t1 � ����� � tn �� E λxπ � α � t1 � ����� � tn � , hence λx � ti � λxπ � ti which is impossible by
the induction hypothesis. The same holds if Fσ is of the form λx � f � t1 � ����� � tn � , where f is a decomposable
constant.

�

When all function symbols are decomposable, the only solutions to flexible-flexible equations with
the same head on both sides are projections as in the non-equational case. Since we are interested in
constant-preserving solutions, we can replace the Freeze rule by the following failure rule.

F-Fail
λxk � F

�
yn � � λxk � F

�
zn � � P � 

if yn is a permutation of zn other than the identity.

Theorem 3 Assume E is a simple syntactic equational theory such that every function symbol is decom-
posable. Assume that the algorithm given in figure 2 terminates for E in the first-order case. Then, the
algorithm of figure 3, where the rule Freeze has been replaced by F-Fail terminates and implements a
complete pattern E-unification algorithm.

7 Conclusion
We believe that with the emergence of higher-order rewriting, higher-order logic programming and functional-
algebraic programming languages, equational pattern unification will be useful. It is certainly not a good
idea to perform a non-deterministic projection step for standard pattern unification. We have used this
trick because when one is interested in constant-preserving substitutions, the equations with one free vari-
able on one side behave as in the first order case. Either they have a suitable sequence of arguments and
the equation is quasi-solved, or there is no constant-preserving solution.

Surprisingly, the main difficulty comes from equations like λxy � F � x � y � � λxy � F �
y � x � . In the empty

theory, such equations cause no problem, but in the equational case, it is the only “higher-order” problem
we have encountered. The problem of the existence of non-trivial solutions to such equations could be
rephrased as

Does there exist a first-order term with n variables which is invariant modulo E when some
variables are permuted?

We believe that this problem is undecidable in general for theories with decidable unification, but we will
try and provide ad-hoc solutions for some familiar theories.

The assumption that E is a simple theory is essentially technical, and could be dropped as it has been
done in the first-order case for unification in combinations of equational theories. The mechanisms used
for preventing or solving cycles and clashes[22, 1], should be adaptable to the pattern unification context.
Then, the syntactic approach could apply to larger classes of equational theories such as the shallow
theories [6].
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