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Let
�����������
	

be a finite family of sets. We establish an improved inclusion-exclusion identity for each closure
operator on the power set of � having the unique base property. The result generalizes three improvements of the
inclusion-exclusion principle as well as Whitney’s broken circuit theorem on the chromatic polynomial of a graph.
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1 Introduction
One of the most important tools in enumerative combinatorics and combinatorial probability theory is
the principle of inclusion-exclusion, which is also known as the sieve formula or the formula of Poincaré
or Sylvester. A detailed account of the principle of inclusion-exclusion (and the associated Bonferroni
inequalities) is given in the textbook of Galambos and Simonelli [9].

For any finite family ������������ of sets the principle of inclusion-exclusion states that

� �������� ��
��� � "!�# %$&(' �*),+
�.- /0- 132 �546879 � /  9�:;=< (1)

where for any set  , � �>�� denotes the indicator function of  , that is,� �>��.��?@���BA + if ?DCE <F
otherwise G (2)

There is no real restriction in using indicator functions rather than measures, since Eq. (1) can be integrated
with respect to any measure (e.g., the counting measure) on the algebra generated by the family �> � � ����� .

Since the sum on the right-hand side of Eq. (1) ranges over H - � - )I+ terms, it is natural to ask whether
fewer terms would give the same result. Partial answers to this question are given by several authors,
e.g., McKee [10, 11], Naiman and Wynn [12, 13], Narushima [14, 15] and the present author [1–5]. The
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problem naturally arises in several situations, e.g., when assessing the reliability of a network [4, 17] or
when computing the volume of a union of balls or other geometric objects in Euclidean space [7,8,12,13].

In the proof of his famous inclusion-exclusion variant for semilattices, Narushima [15] uses a prominent
result of Rota [16] on closure operators and Möbius functions. Although the significance of closure
operators becomes obvious by Narushima’s proof and Rota’s work, no inclusion-exclusion variant has
been established that contains a closure operator in its premises or hypothesis. In this paper, we establish
such a variant and deduce three results from it, which for the first time appear in a common context.

2 Improved inclusion-exclusion identities
For any set

�
, let � � � � denote the set of non-empty subsets of

�
. A closure operator on � � � � is a

mapping �������� from � � � � into itself satisfying

(i) ��	
� � <
(ii) ��	����� � 	�� � <

(iii) � ��� ��� �
for any � < � C�� � � � . A set � C�� � � � is closed if ��� ��� . � is perfectly closed if all non-empty
subsets of � are closed. A base of � is a minimal non-empty subset � of � such that ������� . Evidently,
if the underlying set is finite, then each closed set has a base. A closure operator is said to have the unique
base property if none of its closed sets has more than one base.

Closure operators having the unique base property may be viewed as natural generalizations of the
convex hull operator. Thus, there is a strong connection between our work and that of Edelman and
Jamison [6] on convex geometries.

Proposition 1 Let
�

be a finite set, ������ � a closure operator on � � � � and �IC�� � � � . Then, � is a
base of itself if and only if � is perfectly closed.

Proof. If � is perfectly closed then ��� ��� and if ����� is non-empty then ��� � �!��� , so � is a
base of itself. On the other hand, assume that � is closed, but not perfectly closed, that is, �"� ��� and
�#��� for some non-empty and non-closed set � . Then, pick $ C%�&�(')� . So $ C%���*	 �+�,'.-/$10%�2� and
�3')-/$(0,	 �+�3')-4$10
�5� . Taking the union of these last two containments, ��	 �+�3')-4$10
�6� , so �7�3')-4$10
�5� �8�
where $ C�� , whence � is not a base of itself. 9

Proposition 2 Let �� � � ����� be a family of sets and �������� be a closure operator on � � � � such that
for any non-empty and non-closed subset � of

�
,7

: �<;  : 	
�
�>=�<;  � G (3)

Then, for any non-empty subset � of
�

, 79 � /  9 � 79 � />?  9 G (4)
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Proof. Fix some � 	 � , � ���� . There is nothing to prove if � 9 � /  9 ��� . Otherwise choose?IC � 9 � /  9 and show that ?IC � 9 � />?  9 . By the choice of ? , ��	 ��� where
����� �8-
	 C ��� ? C �� 0 .

By the definition of
���

and (3),
���

is closed and hence, ���
	 ��� . Hence, ? C � 9 � / ?  9 and the
proposition is proved. 9

The following proposition from [6] generalizes and simplifies a Proposition of Narushima [15, p. 198].

Proposition 3 Let
�

be a finite set and � ������ be a closure operator on � � � � having the unique base
property. Then, for each closed set � C � � � � ,

���
���  �� ? &  �*),+
�.- �
- � A �*),+
� - /0- if � is perfectly closed <F
otherwise G (5)

Proof. Let ��� be the unique base of � . Then, � � �8� if and only if ��� 	�� 	 � . Hence,

�������  �� ? &  ��),+��.- �
- � A ��),+�� - /0- if ��� � � <F
otherwise G (6)

By Proposition 1, ��� � � if and only if � is perfectly closed, whence the result. 9

Theorem 1 Let �� � � ����� be a finite family of sets and � ������ be a closure operator on � � � � satisfying
the unique base property and 7

: �<;  : 	
�
�>=�<;  � (7)

for any non-empty and non-closed subset � of
�

. Then,

� � ������ �� � � � ������ #�� 
perf. closed

�*),+
�.- / - 1 2 � 46 79 � /  9 :; G (8)

Proof. By the classical inclusion-exclusion principle,� � ������  �
� � � ������ #�� ? &  ���
���  �� ? &  �*),+
�.- �
- 132 �
� 7
� � �  � � G (9)

From this, the requirements of the theorem and Proposition 2 we conclude that

� � ������  ��� � � ������ #�� ? &  �������  �� ? &  �*),+
�.- �
- 132 � 46 79 � /  9":; G (10)

Now, by applying Proposition 3, the result follows. 9
Note that by setting ��� � � � for any non-empty subset � of

�
, Theorem 1 specializes to the classical

inclusion-exclusion principle.
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As a first corollary we now deduce the semilattice sieve of Narushima [15]. Recall that a join-semilattice
is a partially ordered set

�
such that every two elements � <�� C � have a least common upper bound,

which we denote by ��� � . A chain in
�

is a subset � of
�

such that any two elements of � are
comparable.

Corollary 1 (Narushima) Let �� ���*����� be a finite family of sets, where
�

is a join-semilattice such that :�� �� 	D :
	 � for any � <�� C � . Then,

� � ������  � � � � ������ #�� 
is a chain

�*),+���- / - 1 2 � 46 79 � /  9 :; G (11)

Proof. As in [6], let ��� be the join-subsemilattice generated by � . Then, each closed set � has a unique
base, consisting of its join-irreducibles. (Recall that � is join-irreducible if � �� ��� implies � ��� or� � � .) Clearly, � is perfectly closed if and only if � is a chain. Condition (7) holds since any non-closed
set � �� � contains � and � such that  :�� �� 	  :�	 � and ��� ���C%� . Theorem 1 now gives the result.
9

As a second corollary we deduce the tree sieve of Naiman and Wynn [13].

Corollary 2 (Naiman-Wynn) Let �� � � ����� be a finite family of sets, where the indices form the vertices
of a tree � � � � <�� � such that  : �  � 	I�� for any � <�� C � and any � on the path from � to � . Then,� ��������  �
��� �� ��� � �� � � ) �� ��� 9�� �! � �> � �  9 � G (12)

Proof. Again, we apply Theorem 1. As in [6] we define for any non-empty subset � of
�

,

� � � � �
: � �
�<; -�� C � � � is on the path from � to � 0 G (13)

Then, each closed subset � of
�

has a unique base, namely the set of its leaves if � is not a singleton,
otherwise � is a base of itself. It is easy to see that � is perfectly closed if and only if � is an edge
or a singleton. Condition (7) is satisfied since any non-closed set � �� � contains � and � such that : �  � 	D�� for some � �C � which lies on the path between � and � . Thus, the corollary follows from
Theorem 1. 9

The dual version of the following corollary has been published in [5] together with a generalization to
Möbius inversion over power set lattices. Note that the dual version is obtained by replacing 	#"%$'&)(*�
with 	,+-$/.10�� . As noted in [5], the result generalizes Whitney’s famous broken circuit theorem [18].

Corollary 3 (Dohmen) Let -� � 0������ be a finite family of sets, where
�

is endowed with a linear ordering
relation, and let 2 be a set of non-empty subsets of

�
such that for any � C�2 ,7

3 �!4  3 	  � for some 	,"-$'&)(5� G (14)
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Then, � � ������  � � � � ������ # � �$��� ��� � ����� ��),+���- / - 132 � 46 79 � /  9 :; G (15)

Proof. For any non-empty subset � of
�

define

� � � � ��� 	 	 C ��

 � 3 �!4  3 	D�� and 	," $'& (5� for some � C�2 , � 	 ��0G (16)

Then, each closed set � has a unique base, namely

��� 	 	 C � 

 � 3 �!4  3 	  � and 	 " $'&)( � for some � C�2 , � 	�� � G (17)

Clearly, � is perfectly closed if and only if � �� � for any � C%2 . To verify (7) observe that for any
non-closed � �� � there is some � 	�� and 	 �C � such that ��3 �!4  3 	 �� and 	 " $'&)(*� ; in
particular, � : �<;  : 	 �� for some 	 �C � . Thus, the requirements of Theorem 1 hold and the result
follows. 9
Remark. Based on the recent theory of abstract tubes due to Naiman and Wynn [12, 13], the author [3]
proved that truncating the identity in Theorem 1 at some level $ gives a lower resp. upper bound for����� �����  ��� depending on whether $ is even or odd. These new truncation bounds are provably at least
as sharp as the classical Bonferroni bounds although less computational effort is required to compute
them.
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