Covering codes in Sierpiński graphs

Laurent Beaudou ${ }^{1} \quad$ Sylvain Gravier ${ }^{2}$ Matjaž Kovše ${ }^{2,5} \quad$ Michel Mollard ${ }^{2}$
${ }^{1}$ LaBRI - Université Bordeaux 1-CNRS, 351 cours de la Libération, 33405 Talence cedex, France.
${ }^{2}$ Institut Fourier, UJF - CNRS, 100, rue des Maths, BP 74, 38402 St Martin d'Hères Cedex, France.
${ }^{3}$ Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia.
${ }^{4}$ Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška 160, 2000 Maribor, Slovenia.
${ }^{5}$ Institute of Mathematics, Physics and Mechanics, Jadranska 19, Ljubljana, Slovenia.

received $4^{\text {th }}$ February 2009, accepted $14^{\text {th }}$ May 2010.

For a graph G and integers a and b, an (a, b)-code of G is a set C of vertices such that any vertex from C has exactly a neighbors in C and any vertex not in C has exactly b neighbors in C. In this paper we classify integers a and b for which there exist (a, b)-codes in Sierpiński graphs.

Keywords: codes in graphs, perfect codes, Sierpiński graphs

1 Introduction

In coding theory, a binary code is defined as a subset of $\{0,1\}^{n}$. Since a code should at least correct one error, the Hamming distance between any pair of code vertices must be at least 3 . In terms of graph theory, we seek for a vertex subset C of the n-cube Q_{n}, such that $d(u, v) \geq 3$ for any $u, v \in V\left(Q_{n}\right), u \neq v$. (As usual, $d(u, v)$, is the shortest-path distance between u and v.)
The above concepts can be extended from hypercubes to arbitrary graphs. Let G be an arbitrary (connected) graph. Then a subset C of vertices of G is called a 1-code (or simply a code) if $d(u, v) \geq 3$ holds for any $u, v \in C, u \neq v$. Moreover, C is a perfect code provided that the closed neighborhoods of elements of C form a partition of V. It was Biggs [2] who initiated the study of perfect codes in distance regular graphs. Kratochvíl with his co-workers follows with the study of codes in general graphs, see the monograph [16], references therein, and [9] for result on the related complexity issues.
Tower of Hanoi graphs model the classical Tower of Hanoi puzzle with 3 pegs and n discs. Their nice fractal structure enables to observe many nice properties. In particular, Cull and Nelson [5] proved that they contain (essentially) unique perfect codes, see also [17]. The Tower of Hanoi graphs extend naturally to graphs $S(n, k), n, k \geq 1$, where $S(n, 3)$ are isomorphic to the graphs of the puzzle with 3 pegs and n discs. The theorem of Cull and Nelson was extended to $S(n, k)$ in [14], see also [8] where in particular shorter arguments are provided.

In [4], Cohen, Honkala, Lytsin and Mattson introduced a generalization of covering codes using weights and named them weighted codes. For a study of small radius weighted coverings see [3]. Independently, Axenovich [1] studied some special cases of perfect weighted codes calling them (t, i, j)-coverings.

In order to have a more convenient definition of perfect weighted coverings of radius one, (a, b)-codes were introduced in the following way [6]. Let G be a graph and a, b nonnegative integers. Then a set C of vertices of G is an (a, b)-code of G if any vertex from C has exactly a neighbors in C and any vertex from $G \backslash C$ has exactly b neighbors in C. Defined in this way, an (a, b)-code is exactly a perfect $\left(\frac{b-a}{b}, \frac{1}{b}\right)$-covering as defined in [4]. Moreover, $(1, i, j)$-coverings from [1] are exactly $(i-1, j)$-codes. Finally, Telle defines $[i, j]$-dominating sets in [21] which are exactly (i, j)-codes, see also [7]. We will simply speak about (a, b)-codes when referring to such sets.

Graphs $S(n, k), n, k \geq 1$, form a two-parametric family of graphs of fractal type and have been wellstudied by now. (See the next section for their definition and basic properties.) In this paper we give a characterization of the parameters n and k for which $S(n, k)$ admits an (a, b)-code. Since $S(n, 1), n \geq 1$, and $S(1, k), k \geq 1$, are of no special interest, let us assume in the rest that $n \geq 2$ and $k \geq 2$. Then our main result is the following.

Theorem 1.1 Let $n, k \geq 2$. Then $S(n, k)$ contains an (a, b)-code if and only if $a<k$ and one of the following cases holds:
(i) $a \geq 1, b=a$, k even;
(ii) $a \geq 2$ even, $b=a$, k odd;
(iii) $a=0, b=1$;
(iv) $a \geq 1, b=a+1$, n odd;
(v) $a \geq 1, b=a+2, n=2, k=2 a+1$.

Note that $(0,1)$-codes coincide with perfect codes. Indeed, if two vertices from a $(0,1)$-code would be at distance 2 , then their common neighbor would have two neighbors in the code. Hence Theorem 1.1 (iii) covers the before mentioned result on perfect codes in graphs $S(n, k)$.

We proceed as follow. In the next section we introduce and describe graphs $S(n, k)$. Then, in Section 3 , we give necessary conditions on a and b for the existence of (a, b)-codes in graphs $S(n, k)$. In the subsequent sections we construct the claimed $(a, a),(a, a+2)$, and $(a, a+1)$-codes, therefore completing the proof of the Theorem 1.1 We conclude with some ideas for further research.

2 Graphs $S(n, k)$

Graphs $S(n, k)$ were introduced in [13] and later named after Sierpiński in [14]. The motivation for their introduction were topological studies from [19, 20]. For this aspect of the graphs $S(n, k)$ see the recent Lipscomb's book [18], where these graphs are addressed as Klavžar-Milutinović graphs.

Graphs $S(n, k)$ were studied from many different points of view, we have already mentioned perfect codes. Other aspects include $L(2,1)$-labelings [8], crossing numbers [15], and different colorings [12, 11].

The graph $S(n, k)(n, k \geq 1)$ is defined on the vertex set $\{0,1,2, \ldots, k-1\}^{n}$, two different vertices $u=\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ and $v=\left(j_{1}, j_{2}, \ldots, j_{n}\right)$ being adjacent if and only if there exists an index h in $\{1,2, \ldots, n\}$ such that
(i) $i_{t}=j_{t}$, for $t=1, \ldots, h-1$;
(ii) $i_{h} \neq j_{h}$; and
(iii) $i_{t}=j_{h}$ and $j_{t}=i_{h}$ for $t=h+1, \ldots, n$.

In the rest of the paper we will write $\left\langle i_{1} i_{2} \ldots i_{n}\right\rangle$ as short for $\left(i_{1}, i_{2}, \ldots, i_{n}\right)$. The graphs $S(2,3), S(3,3)$, and $S(2,4)$ are shown in Fig. 1 .

Fig. 1: $S(2,3), S(2,4)$, and $S(3,3)$

Note that the graph $S(n, 1), n \geq 1$, has only one vertex, that is, $S(n, 1)=K_{1}$. On the other hand, if $n=1$, then $S(1, k)=K_{k}$.

A vertex of the form $\langle i i \ldots i\rangle$ of $S(n, k)$ is called extreme, other vertices are inner. The set of extreme vertices of $S(n, k)$ will be denoted $X(S(n, k))$. Note that the extreme vertices of $S(n, k)$ are of degree $k-1$ and the degree of the inner vertices is k. Note also that $|X(S(n, k))|=k$ and that $|S(n, k)|=k^{n}$.

Finally, for a vertex $u=\left\langle i_{1} i_{2} \ldots i_{n}\right\rangle$ of $S(n, k)$ let $K(u)$ denote the k-clique induced by vertices $\left\langle i_{1} i_{2} \ldots i_{n-1} j\right\rangle, 1 \leq j \leq k$.

3 Necessary conditions

In this section we restrict the possible couples (a, b) for which (a, b)-codes in graphs $S(n, k)$ are possible.
Note that $S(n, 2)$ is isomorphic to the path on 2^{n} vertices. The only possible (a, b) codes for them are $(0,1),(1,1)$ and $(1,2)$. More precisely, $P_{2^{n}}$ has a $(0,1)$-code and a $(1,1)$-code for any $n \geq 1$, while it contains a $(1,2)$-code if and only if n is odd. In the latter case, such a code is $1101101 \cdots 1011$, where

1 denotes code vertices. Hence Theorem 1.1 holds for $k=2$, in particular, item (iv) is covered with the $(1,2)$-codes for odd n. We will therefore assume in the rest that $k \geq 3$.

Lemma 3.1 Let $C \neq \emptyset$ be an (a, b)-code in $S(n, k)$. Then $a<k$ and $b>0$.
Proof: Suppose $b=0$. Then it follows that $C=V(S(n, k))$, which is neither a $(k, 0)$-code nor a ($k-1,0$)-code. Therefore $b>0$.

Clearly $a \leq k$. Suppose $a=k$ and let $x \in X(S(n, k))$. Since x has degree $k-1$, it is not in the code. Consider y a neighbor of x. Since $n \geq 2, y$ has degree k, and at least one of them is not in the code (namely x). Therefore, y cannot have a neighbors in the code and y is not in the code. Thus, none of the neighbors of x is in the code and $b=0$, which is not possible, as shown at the beginning of the proof.

Lemma 3.2 Let C be an (a, b)-code in $S(n, k)$ and K_{k} any of its k-cliques. Then

$$
b-1 \leq\left|C \cap K_{k}\right| \leq a+1
$$

Proof: If there is a clique K_{k} with $\left|C \cap K_{k}\right|>a+1$, then any vertex $v \in C \cap K_{k}$ satisfies $|N(v) \cap C|>a$, which yields a contradiction.
Since $n \geq 2, S(n, k)$ is not regular and thus, the code cannot be the whole graph. There exists a vertex u which is not in C. Consider the clique $K(u)$. Then u has at most one neighbor not in $K(u)$ and $|C \cap K(u)| \geq b-1$ so that $b \leq k$.

Consider a clique K_{k}. Either there is a vertex v in $K_{k} \backslash C$ and the preceding study yields $\left|C \cap K_{k}\right| \geq$ $b-1$, or $K_{k} \subset C$ and $\left|C \cap K_{k}\right|=k>b-1$.

Lemma 3.3 Let C be an (a, b)-code of $S(n, k)$ with d extreme vertices in C. Then

$$
|C| \cdot(k-a+b)=b k^{n}+d
$$

Proof: Consider the bipartite subgraph B of $S(n, k)$ with bipartition $V_{1}=C$ and $V_{2}=V(S(n, k)) \backslash C$, keeping only the edges between V_{1} and V_{2}. Every vertex in V_{2} has degree b in B. Let v be a vertex in $X(S(n, k)) \cap V_{1}$. Then its degree in B is $k-a-1$. Other vertices of V_{1} have degree $k-a$. Then counting the number of edges in B in two ways we have

$$
|C| \cdot(k-a)-d=\left(k^{n}-|C|\right) \cdot b,
$$

from which the lemma follows.
Corollary 3.4 Let C be an (a, b)-code of $S(n, k)$ without extreme vertices. Then $(k-a+b) \mid b k^{n}$.
Lemma 3.5 Let C be an (a, b)-code of $S(n, k)$. Then $a \leq b$.
Proof: If $a=0$, the statement holds trivially. We now assume $a>0$.
Suppose first that there exists $u \in X(S(n, k)) \backslash C$. Then u is adjacent to b vertices in $K(u)$. An arbitrary code vertex from $K(u)$ has $b-1$ neighbors in $K(u) \cap C$ and, maybe, one more in C. Thus $a \leq b$.

Now, suppose $X(S(n, k)) \subset C$. Let u be an extreme vertex of $S(n, k)$. Let $w \neq u$ be a vertex in $C \cap K(u)$, such a vertex exists since $a>0$. Then the neighbor x of $w, x \notin K(u)$, does not belong to C, for otherwise w would be adjacent to more code vertices than u. Hence x is adjacent precisely to $b-1$ code vertices in $K(x)$.

If $b>1$, each code vertex of $K(x)$ has at most one other neighbor in $C \backslash K(x)$. Thus $a \leq(b-2)+1=$ $b-1$.

Else, $b=1$. Therefore any clique K_{k} contains either 0,1 or k vertices of the code. Since $K(u)$ contains u and w, it means that $K(u) \subset C$. Let v be another neighbor of u (we recall that $k \geq 3$), it is in the code and its neighbor y not in $K(u)$ is not for the same reason as x. Since y and x have already one neighbor in the code, we may state that $K(x)$ and $K(y)$ contain no vertex of the code. Consider vertices x^{\prime} and y^{\prime} linking these two cliques. They have no neighbor in the code which is impossible. Thus we may conclude that $b>1$.

Note that in the proof of Lemma 3.5 we need $k>2$ when we study the case $b=1$. However, we have assumed in the beginning of the section that this is indeed the case.

From Lemmas 3.2 and 3.5 we deduce that the only possible (a, b)-codes are $(a, a),(a, a+1)$, and $(a, a+2)$. Next we will obtain some additional necessary conditions for the existence of such codes.

Lemma 3.6 If a and k are odd then there is no (a, a)-code in $S(n, k)$.
Proof: Let C be an (a, a)-code in $S(n, k)$ with a odd, and k odd.
Suppose first that there is some $x \in X(S(n, k)) \cap C$. Since a is odd, $a \geq 1$, there exists a vertex $y \in K(x) \cap C, y \neq x$. Since $k \geq 3$, there exists another vertex v in $K(x)$. Either it is in C and $a>1$ or it is not in C and has at least two neighbors in the code so that $a \geq 2$. Let z be the neighbor of y that is not in $K(x)$. Then $z \notin C$, for otherwise y would be adjacent to more code vertices than x. Now, in $K(z)$, z has $a-1$ neighbors from C. Since $a-1>0$ we can consider such a vertex. It can have at most $a-1$ adjacent code vertices. It follows that there is no extreme vertex in C.

We next claim that for any vertex $u,|K(u) \cap C|=a$. By way of contradiction, suppose that there is a vertex u such that $|K(u) \cap C|<a$. Then, by Lemma3.2, we get $|K(u) \cap C|=a-1$. Then $x \in K(u) \cap C$ is adjacent to at most $a-1$ code vertices, a contradiction.

We have thus shown that for every vertex $u,|K(u) \cap C|=a$. Since we have assumed that $k \geq 3$, the number of k-cliques in $S(n, k)$ is k^{n-1}. Thus the above implies that $|C|=a \cdot k^{n-1}$. Because the subgraph induced by C is a-regular with a odd, it means that $|C|$ must be even. But $a \cdot k^{n-1}$ is odd.

Note that it follows from the above proof that no extreme vertex can belong to an (a, a)-code for any $a \geq 1$.

Lemma 3.7 If an $(a, a+2)$-code exists in $S(n, k)$, then $n=2$ and $k=2 a+1$.
Proof: By Lemma 3.2. $\left|C \cap K_{k}\right|=a+1$ for any k-clique K_{k}. Thus

$$
|C|=k^{n-1} \cdot(a+1)
$$

On the other hand, Lemma 3.3 implies that

$$
|C| \cdot(k-a+(a+2))=k^{n-1} \cdot(a+1) \cdot(k+2)=k^{n} \cdot(a+2)+d
$$

where $0 \leq d \leq k$. Dividing both sides of the equality by k^{n-1} we arrive at

$$
2 a+2-k=\frac{d}{k} \cdot \frac{1}{k^{n-2}} .
$$

By the right-hand side of the last equality we infer that this number is between 0 and 1 (recall that $n \geq 2$), and by the left side of the equality it is an integer, thus it can only be 1 or 0 .
The first case implies $n=2, d=k$ and $k=2 a+1$. The second case is impossible, because it implies $d=0$, thus extreme vertices would have in this case exactly $a+1$ neighbors in the code.

4 Existence results for (a, a) and ($a, a+2$)

In this section we construct (a, a) - and $(a, a+2)$-codes. We first observe the following useful fact.
Lemma 4.1 Suppose there exists an (a, b)-code in $S(2, k)$ that does not include any of the extreme vertices. Then there exists (a, b)-codes in $S(n, k)$ for all $n \geq 3$.

Proof: Suppose $S(2, k)$ contains an (a, b)-code that includes none of the extreme vertices. We extend this code inductively to $S(n, k)$ for all $n \geq 3$ as follows. Let $n \geq 3$ and suppose that $S(n-1, k)$ contains an (a, b)-code C that does not include any of its extreme vertices. We extend C to C^{\prime} by setting $\left\langle i_{1} i_{2} \ldots i_{n}\right\rangle \in C^{\prime}$ if and only if $\left\langle i_{2} \ldots i_{n}\right\rangle \in C$. It is now straightforward to see that C^{\prime} is an (a, b)-code in $S(n, k)$ that does not include any of the extreme vertices.

Lemma 4.2 Let $n \geq 2$ and $a<k$. Then an (a, a)-code of $S(n, k)$ exists if and only if
(i) a is even or
(ii) a is odd and k is even.

Proof: By Lemma3.6, a and k cannot both be odd if an (a, a)-code exists. Moreover, we have observed that no extreme vertex belongs to such a code. Hence by Lemma 4.1 it suffices to prove the existence of codes for the graphs $S(2, k)$ when at least one of a and k is even. We distinguish two cases.

Case 1. $a=2 p$.
We claim that

$$
C=\{i j \mid j=i \pm \varepsilon(\bmod k), 0 \leq i \leq k-1,1 \leq \varepsilon \leq p\}
$$

is an (a, a)-code in $S(2, k)$.
Let $\langle i j\rangle \in C$. Then there exists $\varepsilon, 1 \leq \varepsilon \leq p$, such that $j=i \pm \varepsilon(\bmod k)$. Without loss of generality let $j=i+\varepsilon(\bmod k)$ (the proof follows similar lines if $j=i-\varepsilon(\bmod k)$). Neighbors of $i j$ in $K(\langle i j\rangle) \cap C$ are of the form $\langle i l\rangle$ with $l \equiv i \pm \varepsilon^{\prime}(\bmod k)$, where $\varepsilon^{\prime} \neq \varepsilon, 1 \leq \varepsilon^{\prime} \leq p$, and one more additional neighbor $\langle i i-\varepsilon\rangle$. Since by Lemma 3.1, $a<k$, it follows that $p<k$ and vertex $i j$ has precisely $2 p-1$ neighbors in $K(\langle i j\rangle) \cap C$. Moreover $\langle i j\rangle$ is also adjacent to $\langle j i\rangle \in C$. Therefore $\langle i j\rangle$ has exactly $2 p=a$ neighbors in C.

Let $\langle i j\rangle \notin C$. First we observe that the vertex $\langle i i\rangle$ has $2 p$ neighbors in C. Second, if $i \neq j$ it follows that $(j-i)(\bmod k)>p$, since $\langle i j\rangle \notin C$. Then $\langle i j\rangle$ has $2 p$ neighbors in $K(\langle i j\rangle) \cap C$ and vertex $\langle j i\rangle$
which is the neighbor of $\langle i j\rangle$ not belonging to the clique $K(\langle i j\rangle)$ also does not belong to C. Therefore C is an (a, a)-code in $S(2, k)$.

Case 2. $a=2 p+1$ and $k=2 q$.
We claim that $C=\{\langle i j\rangle \mid j=i \pm \varepsilon(\bmod k), 0 \leq i \leq k-1,1 \leq \varepsilon \leq p\} \cup\{\langle i l\rangle \mid 0 \leq i \leq k-1, l=$ $i+q(\bmod k)\}$ is an (a, a)-code in $S(n, k)$. By Lemma 3.1, $a<k$ and it follows $2 p+1<2 q$ and therefore $p<q$. Let $i j \in C$. Then $\langle i j\rangle$ has $2 p$ neighbors in $K(\langle i j\rangle) \cap C$. Moreover for vertex $\langle j i\rangle$ it follows that $\langle j i\rangle \in C$, since $i+q \equiv i-q(\bmod k)$. Hence $\langle i j\rangle$ has precisely $2 p+1=a$ neighbors in C. Let $\langle i j\rangle \notin C$. Then $\langle i j\rangle$ has precisely $2 p+1=a$ neighbors in $K(\langle i j\rangle) \cap C$ and its neighbor $\langle j i\rangle$ does not belong to C. Therefore C is an (a, a)-code in $S(2, k)$.

Note finally that in both cases C contains no extreme vertex, hence Lemma 4.1 applies.
Combining Lemma 3.3 with the fact that an (a, a)-code contains no extreme vertices we infer:
Corollary 4.3 Let C be an (a, a)-code in $S(n, k)$. Then $|C|=a \cdot k^{n-1}$.
Lemma 4.4 $S(2,2 a+1)$ contains an ($a, a+2$)-code.
Proof: Let Q be the complete graph on $k=2 a+1$ vertices and let $1,2, \ldots, 2 a+1$ be its vertices. Then Q is an Eulerian graph and let $v_{1}, \ldots, v_{a(2 a+1)}$ be an Eulerian tour T in Q. Using T we describe an ($a, a+2$)-code C in $S(2, k)$ as follows.

First set $\langle i i\rangle \in C$ for all $i=0, \ldots, k-1$. In addition, for $j \neq i$ set $\langle i j\rangle \in C$ if and only if there is some t such that $v_{t}=i$ and $v_{t+1}=j$ (where subscript are modulo $a(2 a+1)$). Note that $\langle j i\rangle \notin C$. (The construction is illustrated in Fig. 2 where a $(2,4)$-code is constructed in $S(2,5)$ using an Eulerian tour in K_{5}.)

Second, let $\langle i j\rangle \notin C$. By definition of an Eulerian tour, the edge $i j$ of Q must belong in one way in T. Since $\langle i j\rangle \notin C$, there must be some t such that $v_{t}=j$ and $v_{t+1}=i$. Then $\langle i j\rangle$ has $a+1$ neighbors in $C \cap K(\langle i j\rangle)$ plus a neighbor $\langle j i\rangle$.

Therefore C is an $(a, a+2)$-code of $S(2, k)$.
One may remark that if there is an $(a, a+2)$-code C in $S(2,2 a+1)$ then all extreme vertices must belong to C moreover from C one may exhibit an Eulerian tour of $K_{2 a+1}$ (contract all vertices of C belonging to the same $(2 a+1)$-clique and consider the orientation of the edges between different cliques of $S(2,2 a+1)$, where an edge is always oriented from a vertex in the code to the vertex not in the code). So all $(a, a+2)$-codes in $S(2,2 a+1)$ are obtained by the construction given in the proof of Lemma 4.4 .
Corollary 4.5 Let C be an $(a, a+2)$-code in $S(2,2 a+1)$. Then $|C|=2 a^{2}+3 a+1$.

5 Case of $(a, a+1)$-code

To settle the case of $(a, a+1)$-codes in Theorem 1.1, we prove a stronger result. Before we need some additional definitions. Given a set C of vertices of a graph G and a vertex x, let

$$
w(x)= \begin{cases}a-|N(x) \cap C| ; & x \in C \\ a+1-|N(x) \cap C| ; & \text { otherwise }\end{cases}
$$

be the weight of x. (The weight of x is also a function of C and a (and of G), but since these will be clear from the context we write simply $w(x)$.) Then we say that a subset C of vertices of $S(n, k)$ is a near code

Fig. 2: A $(2,4)$ code (black vertices) in $S(2,5)$ obtained via an Eulerian tour in K_{5}
if $w(x)=0$ for all $x \in V(S(n, k)) \backslash X(S(n, k))$, and $w(x) \leq 1$ for vertices x in $X(S(n, k))$. Given n and k, we denote $S_{i}(n, k)$ (for short S_{i}) the subgraph of $S(n, k)$ induced by $\left\{\left\langle i i_{2} \ldots i_{n}\right\rangle\right.$ for all $i_{2}, \ldots, i_{n} \in$ $\{0, \ldots k-1\}\}$. The graph S_{i} is isomorphic to $S(n-1, k)$.

From the definition of the near code and since the only edges between S_{i} and $G-S_{i}$ are incident to extreme vertices of S_{i}, we have that $C \cap V\left(S_{i}\right)$ is a near code in S_{i} if C is a near code in $S(n, k)$.

We denote by \bullet extreme vertices that lie in the near code and by o the other extreme vertices. Furthermore, we add the subscript $*$ for a vertex of weight 0 and the subscript + for weight 1 . For example, \circ_{+} is an extreme vertex which is not in the code and which has a neighbors in the code. Let us now define the following special near codes C :

- $S O^{n}$ is a near code where n is odd, $a+1$ many extreme vertices are \bullet_{*}, the other $k-a-1$ extreme vertices are \circ_{*}.
- $W O^{n}$ is a near code where n is odd, a many extreme vertices are \bullet_{+}, the other $k-a$ extreme vertices are \circ_{+}
- $S E^{n}$ is a near code where n is even, a many extreme vertices are \bullet_{+}, the other $k-a$ extreme vertices are \bullet_{*}.
- $W E^{n}$ is a near code where n is even, $a+1$ many extreme vertices are \circ_{+}, the other $k-a-1$ extreme vertices are o_{*}

Note that by definition $S O^{n}$ is an $(a, a+1)$-code. Now we are ready to state:

Theorem 5.1 Let $n \geq 1, a \geq 0$ and $k>a$ be integers. The near codes of $S(n, k)$ are precisely $S O^{n}$ and $W O^{n}$ if n is odd and $S E^{n}$ and $W E^{n}$ if n is even.

Proof: Let C be a near code of $S(n, k)$ with $n \geq 2$. The main argument of the proof is that the only possible matchings between extreme vertices of different subgraphs $S_{i}, 0 \leq i \leq k-1$, are : $\bullet_{+}-\bullet_{+}, \circ_{*}-_{*} \circ_{*}$ and $\bullet_{*}-\circ_{+}$. The proof works by induction on n.

For $n=1$, it is clear that any near code in the clique K_{k} is a set of a or $a+1$ vertices which give respectively a $W O^{1}$ and a $S O^{1}$ code.

Further we divide induction step into two cases, according to the parity of n. Assume first that n is odd. Suppose that there is an extreme vertex x of kind \bullet_{+}. Without loss of generality one may assume that x belongs to S_{1}. By induction hypothesis, $C \cap S_{1}$ is isomorphic to $S E^{n-1}$. Now for each extreme vertex $y \neq x$ of S_{1} of kind $\bullet+$ we need an S_{i} containing a \bullet_{+}as extreme vertex. Therefore, there are $a-1$ graphs S_{i} such that $S_{i} \cap C$ is isomorphic to $S E^{n-1}$. Similarly, for the \bullet_{*} extreme vertices of S_{1}, we need $k-a$ graphs S_{j} having extreme vertex of kind \circ_{+}which implies that $S_{j} \cap C$ is isomorphic to $W E^{n-1}$.

Now to obtain a near code, each remaining $\bullet+$ not in an extreme vertex of $S(n, k)$ must be matched together in an arbitrary way. Since there are a graphs S_{i} containing a extreme vertices \bullet_{+}and only one edge between two distinct S_{i}, it implies that each extreme vertex of $S(n, k)$ belonging to some S_{i} must be \bullet_{+}. Now, the $k-a$ other S_{j} contain $a+1$ extreme vertices \circ_{+}. If such a vertex is not extreme in $S(n, k)$ it must be matched to a $\bullet *$ vertex. Since we have only $(k-a) \cdot a$ vertices of kind \bullet_{*}, it follows that each S_{j} must contain an extreme vertex \circ_{+}of $S(n, k)$. Hence in this case we get $C=W O^{n}$.

If C contains a \circ_{+}the proof goes along similar lines as above.
Suppose next that there is an extreme vertex x of kind \bullet_{*}. Without loss of generality one may assume that x belongs to S_{1}. By induction hypothesis, $C \cap S_{1}$ is isomorphic to $S E^{n-1}$. Now for each extreme vertex of S_{1} of kind \bullet_{+}we need an S_{i} containing a \bullet_{+}as extreme vertex. Therefore, there are a additional graphs S_{i} such that $S_{i} \cap C$ is isomorphic to $S E^{n-1}$ (altogether there $a+1$ such graphs). Similarly, for the \bullet_{*} extreme vertex $y \neq x$ of S_{1}, we need $k-a-1$ graphs S_{j} having extreme vertex of kind \circ_{+}which by induction hypothesis implies that $S_{j} \cap C$ is isomorphic to $W E^{n-1}$.

To obtain a near code, each remaining \bullet_{+}not an extreme vertex of $S(n, k)$ must be matched together. Since there are $a+1$ graphs S_{i} containing a extreme vertices $\bullet+$ and only one edge between two distinct S_{i}, it implies that each extreme vertex of $S(n, k)$ belonging to some S_{i} must be \bullet_{*}. The $k-a-1$ other S_{j} graphs contain $a+1$ extreme vertices \circ_{+}. If such a vertex is not extreme in $S(n, k)$ it must be matched to a $\bullet *$ vertex. We have exactly $(k-a-1) \cdot(a+1)$ vertices of kind $\bullet *$ that are not in $X(S(n, k))$ (and are from $(a+1) S E^{n-1}$ graphs) and the same number of o_{+}vertices $-a+1$ of them in each of $k-a-1$ copies of $W E^{n-1}$, hence they can be matched together. Also the remaining vertices o_{*} can be matched together where $k-a-1$ of such vertices belong to $X(S(n, k))$. Therefore $C=S E^{n}$, in particular C is an $(a, a+1)$-code in $S(n, k)$.

If C contains a \circ_{*} the arguments are similar.
Next let n be even and $n \geq 2$. Suppose that there is an extreme vertex x of the kind \bullet_{*}. Without loss of generality one may assume that x belongs to S_{1}. By induction hypothesis, $C \cap S_{1}$ is isomorphic to $S O^{n-1}$. Now for each extreme vertex $y \neq x$ of S_{1} of kind \bullet_{*} we need an S_{i} containing a \circ_{+}as extreme vertex. Therefore, there are a graphs S_{i} such that $S_{i} \cap C$ is isomorphic to $W O^{n-1}$. Similarly, for the \circ_{*} extreme vertices of S_{1}, we need $k-a-1$ graphs S_{j} having extreme vertex of kind \circ_{*} which implies that $S_{j} \cap C$ is isomorphic to $S O^{n-1}$.

To obtain a near code, each of the remaining \bullet_{+}vertices that are not extreme vertices of $S(n, k)$ must be matched together. Since there are a graphs S_{i} containing a extreme vertices \bullet_{+}and only one edge between two distinct S_{i}. It follows that each extreme vertex of $S(n, k)$ belonging to some S_{i}, that is of type $W O^{n-1}$ must be \bullet_{+}. Altogether there are a extreme vertices \bullet_{+}of $S(n, k)$. The remaining unmatched vertices from $S O^{n-1}$ are all \bullet_{*} and there is precisely one from each component, hence there are $k-a$ such extreme vertices in $S(n, k)$. It follows $C=S E^{n}$.

When C contains a $\bullet+$ the proof works similarly.
Suppose finally that there is an extreme vertex x of kind \circ_{*}. Without loss of generality one may assume that x belongs to S_{1}. By induction hypothesis, $C \cap S_{1}$ is isomorphic to $S O^{n-1}$. Now for each extreme vertex y of S_{1} of kind $\circ_{+}, y \neq x$, we need an S_{i} containing a \circ_{+}as extreme vertex. Therefore, there are $k-a-2$ additional graphs S_{i} such that $S_{i} \cap C$ is isomorphic to $S O^{n-1}$ (altogether there $k-a-1$ such graphs). Similarly, for the \bullet_{*} extreme vertex of S_{1}, we need $a+1$ graphs S_{j} having extreme vertex of kind $\bullet *$ which by induction hypothesis implies that $S_{j} \cap C$ is isomorphic to $W O^{n-1}$. Now to obtain a near code, each remaining \circ_{+}not an extreme vertex of $S(n, k)$ must be matched together. Since we have $k-a-1$ graphs of type $S O^{n-1}$ and in each of those graphs the same number of vertices \circ_{+}, it follows that among extreme vertices of $S(n, k)$ there are $k-a-1$ vertices of type \circ_{+}. Similarly we can conclude that the remaining $a+1$ vertices of $X(S(n, k))$ are \circ_{*}. It follows $C=W E^{n}$.

Again, if C contains a \circ_{+}the proof works similarly. Hence we have completed the induction step and hence the proof.

The recursive construction of an $(1,2)$-code in $S(3,3)$ is illustrated in Fig. 3 .
The next consequences are immediate.
Corollary 5.2 Graphs $S(n, k)$ admits an $(a, a+1)$-code if and only if n is odd and $0 \leq a \leq k-1$.
Corollary 5.3 Let C be an $(a, a+1)$-code in $S(n, k)$, where n is an odd number. Then $|C|=(a+1)$. $\frac{k^{n}+1}{k+1}$.

6 Concluding remarks

We have thus characterized integers a, b for which there exist (a, b)-codes in graphs $S(n, k)$. For the case of $(0,1)$-codes, that is, perfect codes, the uniqueness (modulo obvious symmetries) has been proved in [14]. As exhibited in our paper all existing (a, b)-codes of graphs $S(n, k), n \geq 2$, are constructed in a unique way from $\left(a^{\prime}, b^{\prime}\right)$-codes of graphs $S(n-1, k)$ or their weak codes, where the unique means that there are always the same k building blocks of graphs $S(n-1, k)$ with corresponding (weak) codes. (Graphs $S(n-1, k)$ might have, comparing to each other, different types of weak codes, as in the case of $(a, a+1)$-codes, but altogether the set of all k graphs $S(n-1, k)$ with the corresponding (weak) codes is as a set always the same.) Different types of extreme vertices of graphs $S(n-1, k)$ are matched together in $S(n, k)$ in a unique way. As shown in [15], the automorphism group of a graph $S(n, k)$ is isomorphic to the symmetric group $\operatorname{Sym}(k)$, where any automorphism of $S(n, k)$ permutes extreme vertices and the corresponding subgraphs $S(n-1, k)$. It follows that also all existing (a, b)-codes in graphs $S(n, k)$ are unique up to symmetries. A more precise description (using labels) of the constructed (a,a+1)-codes would be of interest.

Fig. 3: Recursive construction of an $(1,2)$-code in Sierpiński graph $S(3,3)$.

Acknowledgements

This research was supported in part by the Slovene-French project Proteus 17934PB. Sandi Klavžar and Matjaž Kovše were also supported in part by the Ministry of Science of Slovenia under the grant P1-0297.

References

[1] M.A. Axenovich, On multiple coverings of the infinite rectangular grid with balls of constant radius, Discrete Math. 268 (2003) 31-48.
[2] N. Biggs, Perfect codes in graphs, J. Combin. Theory Ser. B 15 (1973) 289-296.
[3] G. Cohen, I. Honkala, S. Lytsin and A. Lobstein Covering Codes, Elsevier, Amsterdam, 1997.
[4] G. Cohen, I. Honkala, S. Lytsin and H.F. Mattson, Jr., Weighted covering and packings, IEEE Trans. Inform. Theory 41 (1995) 1856-1967.
[5] P. Cull and I. Nelson, Error-correcting codes on the Towers of Hanoi graphs, Discrete Math. 208/209 (1999) 157-175.
[6] P. Dorbec, S. Gravier, I. Honkala and M. Mollard, Weighted codes in Lee metrics, Des. Codes Cryptogr. 52 (2009) 209-218.
[7] J. Fiala, P. Heggernes, P. Kristiansen and J.A. Telle, Generalized H-coloring and H-covering of trees, Nordic J. Comput. 10 (2003) 206-224.
[8] S. Gravier, S. Klavžar and M. Mollard, Codes and $L(2,1)$-labelings in Sierpiński graphs, Taiwanese J. Math. 9 (2005) 671-681.
[9] S.T. Hedetniemi, A.A. McRae and D.A. Parks, Complexity results. (In: T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.) Chapter 9, 233-269.
[10] P. Heggernes and J.A. Telle Partitioning graphs into generalized dominating sets, Nordic J. Comput. 5 (1998) 128-142.
[11] M. Jakovac and S. Klavžar, Vertex-, edge-, and total-colorings of Sierpiński-like graphs, Discrete Math. 309 (2009) 1548-1556.
[12] S. Klavžar, Coloring Sierpiński graphs and Sierpiński gasket graphs, Taiwanese J. Math. 12 (2008) 513-522.
[13] S. Klavžar and U. Milutinović, Graphs $S(n, k)$ and a variant of the Tower of Hanoi problem, Czechoslovak Math. J. 47(122) (1997) 95-104.
[14] S. Klavžar, U. Milutinović and C. Petr, 1-perfect codes in Sierpiński graphs, Bull. Austral. Math. Soc. 66 (2002) 369-384.
[15] S. Klavžar and B. Mohar, Crossing numbers of Sierpiński-like graphs, J. Graph Theory 50 (2005) 186-198.
[16] J. Kratochvíl, Perfect Codes in General Graphs, Rozpravy Československé Akad. Věd Řada Mat. Přírod. Věd no. 7, Akademia Praha, 1991.
[17] C.-K. Li and I. Nelson, Perfect codes on the Towers of Hanoi graphs, Bull. Austral. Math. Soc. 57 (1998) 367-376.
[18] S.L. Lipscomb, Fractals and Universal Spaces in Dimension Theory, Springer-Verlag, Berlin, 2009.
[19] S.L. Lipscomb and J.C. Perry, Lipscomb's $L(A)$ space fractalized in Hilbert's $l^{2}(A)$ space, Proc. Amer. Math. Soc. 115 (1992) 1157-1165.
[20] U. Milutinović, Completeness of the Lipscomb space, Glas. Mat. Ser. III 27(47) (1992) 343-364.
[21] J.A. Telle, Complexity of domination-type problems in graphs, Nordic J. Comput. 1 (1994) 157-171.

