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Consider spanning trees on the two-dimensional Sierpinski gasket SG(n) where stage n is a non-negative integer.
For any given vertex x of SG(n), we derive rigorously the probability distribution of the degree 5 € {1, 2, 3,4} at the
vertex and its value in the infinite n limit. Adding up such probabilities of all the vertices divided by the number of ver-
tices, we obtain the average probability distribution of the degree j. The corresponding limiting distribution ¢; gives
the average probability that a vertex is connected by 1, 2, 3 or 4 bond(s) among all the spanning tree configurations.
They are rational numbers given as ¢1 = 10957/40464, ¢ = 6626035/13636368, ¢ = 2943139/13636368,
¢4 = 124895/4545456.
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1 Introduction

The enumeration of the number of spanning trees Ng7(G) on a graph G was first considered by Kirchhoff
in the analysis of electric circuits [Kirchhoff(1847)|. It is a problem of fundamental interest in mathemat-
ics [Biggs(1993), Burton and Pemantle(1993), Lyons(2005), Welsh(1993)]] and physics [Temperley(1972),
Wu(1977). The number of spanning trees corresponds to a special ¢ — 0 limit of the partition func-
tion of the g-state Potts model in statistical mechanics [Fortuin and Kasteleyn(1972), [Wu(1982)|], which
in turn is related to the sandpile model [[Cori and Borgne(2003), [Dhar(2006)|]. Just like other limits of
the g-state Potts model, the spanning tree problem has been investigated intensely for decades, and has
various applications in many areas. See, for example, [Wu and Chao(2004)] and references therein. It
is also well known that there is a bijection between close-packed dimer coverings with spanning tree
configurations on two related lattices [Temperley(1974)]. Some studies on the enumeration of span-
ning trees and the calculation of their asymptotic growth constants on regular lattices were carried out
in Refs. [[Chang and Shrock(2006)|], [Chang and Wang(2006)|], [Chang(2009)|], [Shrock and Wu(2000)],
[Tzeng and Wu(2000)|]. Once the total number of spanning trees and its asymptotic growth constant is ob-
tained, the next step is to understand the geometric structure of spanning trees. One interesting question is
the probability distribution of the degree of a certain vertex among all the spanning trees [[Aldous(1991)].
The geometric properties of spanning trees on Z< lattices, especially the square lattice, had been consid-
ered in [Burton and Pemantle(1993),|[Manna et al.(1992)].
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Fractals are geometric structures of (generally non-integer) Hausdorff dimension realized by repeated
construction of an elementary shape on progressively smaller length scales, see [Falconer(2003)] and
[Mandelbrot(1982)|]. A well-known example of a fractal is the Sierpinski gasket that has been extensively
studied in several contexts: [Alexander(1983)|], [Daerden and Vanderzande(1998)], [Dhar and Dhar(1997)],
[Dhar(2005)], [Domany et al.(1983)], [Gefen et al.(1980)], [Gefen and Aharony(1981)[,

[Gefen et al.(1983,1984)], [Guyer(1984)], [Hattori et al.(1990,1992)], [Kozak and Balakrishnan(2002)(a)],
[Kozak and Balakrishnan(2002)(b)|], [Rammal and Toulouse(1982)], [Chang and Chen (2008)(a)],
[Chang and Chen (2008)(b)||, [[Chang and Chen (2008)(c)], [[Chang and Chen (2009)]]. Recently, the au-
thors derived rigorously the number of spanning trees on the Sierpinski gasket and conjectured the result
for arbitrary dimension [[Chang et al.(2007)]. It is of interest to consider the geometric structure of span-
ning trees on self-similar fractal lattices which have scaling invariance rather than translational invariance.
Different from the lattices that have translational invariance, e.g. the square lattice with periodic boundary
conditions, the probability distribution of the degree on Sierpinski gasket depends on the vertex location.
Thereby, it is natural to investigate the average of the probability distribution of the degree over all the
vertices on SG(n) as n tends to infinite, and compare the values with the corresponding results on the
infinite square lattice which is also 4-regular. In this paper, we shall present the probability distribution
of the degree at any given vertex = on the two-dimensional Sierpinski gasket and the average over all the
vertices on SG(n), and the limiting distribution when the number of vertices goes to infinity.

2 Preliminaries

We first recall some relevant definitions for spanning trees and the Sierpinski gasket in this section. A
connected graph (without loops) G = (V, E) is defined by its vertex (site) and edge (bond) sets V' and
E [Biggs(1993), Harary(1969)]]. Let v(G) = |V| be the number of vertices and e¢(G) = | E| the number
of edges in G. A spanning subgraph G’ is a subgraph of G with the same vertex set V' and an edge set
E’' C E. Asatree is a connected graph with no circuits, a spanning tree on G is a spanning subgraph of
G that is a tree and hence e(G’) = v(G) — 1. The degree or coordination number k; of a vertex v; € V' is
the number of edges attached to it. A k-regular graph is a graph with the property that each of its vertices
has the same degree k. In general, one can associate an edge weight to each edge connecting adjacent
vertices v; and v; (see, for example [Tzeng and Wu(2000)|]). For simplicity, all edge weights are set to
one throughout this paper, so that the weight of each spanning tree is the same.

The construction of the two-dimensional Sierpinski gasket SG(n) at stage n is shown in Fig. [I} At
stage n = 0, it is an equilateral triangle; while stage n + 1 is obtained by the juxtaposition of three n-stage
structures. For the two-dimensional Sierpinski gasket SG(n), the numbers of edges and vertices are given
by

e(SG(n) = 3", o(SG(n)) = 2(3" +1).

Except the three outmost vertices which have degree two, all other vertices of SG(n) have degree four. In
the large n limit, SG is 4-regular.

Let us define the notation for the vertices of SG(n) to be used. An illustration for SG(4) is shown
in Fig. 2] The denotation of the vertices is given progressively with increasing number of digits in the
subscript as follows. First of all, fix o as the leftmost vertex. Consider the SG(m) with 0 < m < n which
has o as its leftmost vertex, and denote a,, and b,, as its rightmost and topmost vertices, respectively. ¢;,
is defined such that the vertices a,,, b, and ¢,,, demarcate the largest lacunary triangle of SG(m+1). We
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then define the vertex in the middle of the line connecting a,, and a,,+1 with m > 1 as a,, ;. Similarly,
am,1 and the associated b, 1 and ¢,,,; demarcate a lacunary triangle with b,,, 1 on the left and ¢,,,; on the
right. Next for m > 2, we append the subscript m, 1, 0 for the vertices of the largest lacunary inside the
triangle with outmost vertices a,, Gm,1, bm,1; the subscript m, 1, 1 for the vertices of the largest lacunary
inside the triangle with outmost vertices G, 1, @m+1, Cm,1; the subscript m, 1,2 for the vertices of the
largest lacunary inside the triangle with outmost vertices by, 1, ¢m,1, Cm, etc. In general for the vertices
of SG(n), we use the notation 5 where z = a, b, ¢ and the subscript ¥ = (71, ...,7s) has s components
withl1 <s<mn,1 <~ <nand~y; € {0,1,2} for k € {2,3, ..., s}. For the vertices above the extended
line connecting o and ¢y, we will also use the notation Z5 such that it is the reflection of the vertex x5
with respect to this line. For example, ass = 1321, boo1 = @912, Co2o = Co11, etc. The advantage of such
a vertex notation is that the quantities to be studied for the vertices z, ... ,, with s > 2 components in
the subscript can be expressed in terms of the quantities for the vertices with s — 1 components in the
subscript as shown in Section 3]

A AN & &
SG(0) SG(1) SG(2) SG(3)

0

Fig. 1: The first four stages n = 0, 1, 2, 3 of the two-dimensional Sierpinski gasket SG(n).

Let us define the following quantities as in [Chang et al.(2007)|].

Definition 2.1 Consider the two-dimensional Sierpinski gasket SG(n) at stage n. (i) Define f(n) =
Nsr(SG(n)) as the number of spanning trees. (ii) Define g(n) as the number of spanning subgraphs
with two trees such that the vertex b, belongs to one tree and the set of vertices {0, a,} belongs to the
other tree. (iii) Define h(n) as the number of spanning subgraphs with three trees such that each of the
outmost vertices o, a,, and b,, belongs to a different tree.

Notice that for the spanning subgraph configurations counted by g(n), it is possible that the vertex b,,
is an isolated vertex with no bonds of trees connecting to it. A similar statement applies to the outmost
vertices o, a,,, b, for the spanning subgraph configurations counted by h(n). For a given vertex, we
would like to investigate the number of bonds of spanning trees connecting to it among all the spanning
tree configurations. We have the following definitions.

Definition 2.2 Consider the two-dimensional Sierpinski gasket SG(n) at stage n. For a certain vertex
x € V(SG(n)), the number of bond(s) connecting to it in a spanning tree configuration is denoted as
j€{1,2,3,4} ori € {0,1,2,3,4}. (i) Define f;(n,z) as the number of spanning trees such that there
is (are) j bond(s) connecting the vertex x. Define the probability F;(n,x) = f;(n,z)/f(n). (ii) Define
gi(n, x) as the number of spanning subgraphs with two trees such that the vertex b,, belongs to one tree
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Fig. 2: The notation for the vertices of the Sierpinski gasket SG(4). The vertices %5 inside the triangle (b3, c3, bs) are reflections
of the vertices 5 inside the triangle (a3, c3, a4) with respect to the line connecting o and c3, and are not shown.
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and the set of vertices {0, a, } belongs to the other tree, and there is (are) i bond(s) connecting the vertex
x. Define the probability G;(n,x) = g;(n,x)/g(n). (iii) Define h;(n,x) as the number of spanning
subgraphs with three trees such that each of the outmost vertices o, a,, by, belongs to a different tree, and
there is (are) i bond(s) connecting the vertex x. Define the probability H;(n,x) = h;(n,x)/h(n).

For any vertex = of SG(n), the following relations for the probabilities should be satisfied,

4 4
ZFJ ZG]nxzz:H]nm—l
=0

Jj=

which serves as a check for the results obtained.

In this paper, we derive rigorously Fj(n,z) or fj(n,z) for an arbitrary vertex € V(SG(n)) with
7 = 1,2,3,4. Such probability on translational invariance lattices in the infinite-vertex limit is inde-
pendent of the vertex location. In contrast, as the Sierpinski gasket is a self-similar fractal lattice which
has scaling invariance rather than translational invariance, our results depend on the location of x. We
shall consider the simplest vertex * = o to obtain F};(n,0) as Theorem and its infinite n limit as
Corollaryin Section then move on to the vertices & € {@,, bin, ¢ } With 0 < m < n to have Theo-
rem[@4.1]and Corollar in Section[d] F}(n, x) for the remaining vertices will be treated in Section [5]as
Propositions and The summation and average of all F;(n, z) for a given stage n will be studied
in Section[6] and the average in the infinite n limit will be obtained as Theorem [6.1}

3 Fj(n,o)with j € {1,2}

Consider the Sierpinski gasket SG(n) at stage n. We will derive F);(n, x) for the vertex z = o in this
section. Since the leftmost vertex o has degree two, f; (n,0) = 0forj = 3,4 and any n > 0. Similarly, we
only need i € {0, 1,2} for g;(n, x) and h;(n, z) with x € {o, a,, b, }. Due to the symmetry of SG(n), we
have f;(n,0) = fi(n,a,) = fi(n,by), g;(n,0) = g;(n,a,) with j = 1,2, and h;(n, 0) = hi(n,a,) =
hi(n,by) with i = 0,1,2. According to the definition, go(n,0) = go(n,a,) = 0, but go(n,b,) # 0
for any n > 0. In fact, go(n, by,) is the only go(n, ) with non-zero value, and ho(n, x) is non-zero only
when z € {0, an,b,}. The initial values for z = o at stage n = 0 are f(0) = 3 with decompositions
f1(0,0) = 2 and f2(0,0) = 1, g(0) = 1 with decompositions g1 (0,0) = 1 and g2(0,0) = 0, h(0) = 1
with decompositions hy(0,0) = 1 and h;(0,0) = 0 for j = 1,2. We also have g¢(0,bp) = 1 and
gj(O,bO) =0 forj = 1,2.
The following recursion relations were derived in [[Chang et al.(2007)] for n > 0,

fin+1) = 6f(n)?g(n),
gn+1) = F(n)°h(n)+7f(n)g(n)? (D
h(n+1) = 12f(n)g(n)h(n) + 14g(n)°

as illustrated in Figs. f(n), g(n), h(n) were solved exactly in [Chang et al.(2007)]] such that they
satisfy the relation 3g(n)? = f(n)h(n). It follows that the second and third lines of (1)) can be simplified
to

(n+1) = 10f(n)g(n)* = 2 f(n)*h(n) @)
(n+1) = 509(n)* = f(n)g(n)h(n).

—
> Q
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Fig. 3: Illustration for the expression of f(n + 1).

Fig. 4: Tllustration for the expression of g(n + 1).

X3+

Fig. 5: Nlustration for the expression of /(n+1). The multiplication for the eight configurations on the right-hand-side corresponds
to three possible orientations.
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Using Figs. B3] for vertex o, we obtain the following recursion relations for j = 1, 2:

{ filn+1,0) = 4fj(n,0)f(n)g(n) +2g;(n,0)f(n)*,
gi(n+1,0) = fi(n,0)f(n)h(n)+3f;(n,0)g(n)*+4g;(n,0)f(n)g(n)
and
gi(n+1,bp11) = hi(n,0)f(n)*+ fi(n,0)g(n)* + 2[gg(n 0) +2g;(n,bn)|f(n)g(n) ,
hj(n+1,0) = 4hj(n,0)f(n)g ( n) + 6g;(n,0,)g(n)* +4f;(n,0)g(n)h(n)
+89;(n,0)g(n)* + 2[g;(n, 0) + g;(n, by)] f(n)(n) .

Setting fo(n,0) = 0 and go(n, 0) = 0, (4) reduces to

{ go(n+ 1, bni1) ho(n,0) f(n)? + 4go(n, bn) f(n)g(n)
ho(n +1,0) 4ho(n, 0) f(n)g(n) + 6go(n, bn)g(n)? + 2g0(n, bn) f(n)h(n) .

The initial values for the probabilities are

F1(0,0) =2/3, F3(0,0) =1/3, G1(0, 0)—1 G2(0,0) =0,
Ho(o, )—1 GQ(O bo)—l G(O bo) (0 0)—0W1th]—1 2.
Divide the quantities in (3)-(5) by f(n + 1),

g(n+ 1) or h(n+ 1) givenin (1) or (), we get

{ Fj(n+170) = §Fj(n’0)+§Gj(nao)7

Gj(n+10) = $5Fj(n,0)+3Gj(n,0),

{ Gin+1,bpy1) = %G (n, by, )+ H (n,0) + 1 F(n o)—i—%Gj( o),
H;(n+1,0) = % Gj(n, n)—i— H(n0)+ F(n0)+7G( o),

for j = 1,2, and

%Go(m bn) + %H@(n, 0) )

{ Go(?’L-ﬁ- 1,bn+1) =
2—65G0(n, bn) + %Ho(n,o) )

Hy(n+1,0) =

157

3)

“4)

&)

(6)

)

®)

(€))

The probabilities F;(n, 0) and G,(n, 0) with j = 1, 2 can be solved exactly by linear algebra with recur-

sion relations (7) and the initial values given in (6).

Theorem 3.1 For the Sierpinski gasket SG(n) with non-negative integer n,

11 5,1 1 3,1

Fi(n,0) = ﬂiﬁ(ﬁ) , Gl(n’o):ﬂ+ﬂ(ﬁ) ,
3 5, 1.n 3 3, 1.\n
FZ(TMO) = ﬂ—'_ﬁ(ﬁ) y GQ(TL,O) ﬁ_ﬁ( 5) .

From Theorem [3.1|and the exact expressions of f(n), g(n),
following corollary.

h(n) in [Chang et al.(2007)|], we have the
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Corollary 3.1 For the Sierpinski gasket SG(n) with non-negative integer n,

fi(n,0) = [% - 4—52(1—15)”} [2a<n>3ﬂ(n>5v<n>] ,
f2(n,0) = [% + 4—52(1—15)"} [Q(X(”)gﬁ(")gﬂ(n)] 7

where a(n) = $(3"—1), B(n) = (3"t +2n+1) and y(n) = (3" —2n—1). The limiting probabilities
for the vertex o are

. 11 .
nh_)rréo Fi(n,0) = e nh_}rrgo Fy(n,0) = 7

In order to derive the probability F;(n, x) for an arbitrary vertex x # o, we need the following lemma:

Lemma 3.1 For the Sierpinski gasket SG(n) with non-negative integer n,

canso = SO S man- B AT
Gt = -3l 76"+ 1)
Galmsbn) = %*%ﬁ“%(g)“%(%)?
N O e
Mmoo = 51" 153"+ 1(5)"

The proof of this lemma can be found in the online version of this paper [[Chang and Chen].

4 Fi(n+m+1,2,) withz € {a,b,c} andn >0, m >0

Consider the Sierpinski gasket SG(n + m + 1) with n > 0, m > 0. We will derive F;(n + 1, z,,) with
j € {1,2,3,4} for the vertex =, € {an, by, c,} first, then F;(n + m + 1, z,,) with arbitrary m > 0 in
this section. The corresponding G;(n+1,z,) and H;(n+ 1, z,) with j € {1,2, 3,4} will be used in the
next section. Notice that Go(n + 1,2,) = Ho(n + 1,2,) = 0 for z,, € {an, by, ¢, } as these vertices are
not outmost vertices of SG(n + 1).

For the Sierpinski gasket SG(n + 1), we know f;(n + 1,a,) = fj(n+ 1,b,) = fj(n + 1,¢,) and
hj(n+1,a,) = hj(n+1,b,) = h;j(n+1,c,) with j € {1,2,3,4} because of rotation symmetry. From
the definition of g;(n, =), we have g;(n+1,b,) = g;(n+1, ¢,) but they are distinct from g;(n + 1, a,,).
The recursion relations for fj(n+1, ay), g;(n+1,a,), g;(n+1,b,), hj(n+1,a,) with j € {1,2,3,4},
and the corresponding F;(n+1,a,), Gj(n+1,a,), Gj(n+1,b,), Hj(n+1, ay) are lengthy and given
in the appendix.

Next consider the Sierpinski gasket SG(n + m + 1) with n > 0 and m > 0. The left-hand-sides of
Figs.now represent SG(n+m-1) with positive integer m, such that x,, € {a,, b,, ¢, } locates within
the lower-left triangle representing SG(n + m) in the right-hand-sides of the figures. As the vertices are
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denoted such that x5 and Z5 are reflection of each other with respect to the extended line connecting

o and ¢y, we have a,, = b,, b, = a, and ¢, = c,. We obtain the following recursion relations for
je{1,2,3,4}:

Fin+m+1,z,) = 4fj(n+m,z,)f(n+m)g(n +m)

6f(n+m)?g(n+m)
Lgs(ntmy@n) +g,(n +m, 20))f (n+ m)?
6f(n+m)2g(n+m) )
2Fj(n+m,xn)+Gj(n+m,9:n)+Gj(n+m,9:n) ’ (10)
3 6
and
Gy(n+m+1,20) = 3F;(n+m,xy) n 3Gj(n+m,x,) n Gij(n+m,Z,) . (11

5) 10 10

By symmetry, we know Fj(n + m, Z,) = Fj(n + m,z,) with z,, € {ay,bpn,cn} and G;(n +m,é,) =
Gj(n + m, c,,) for positive integer m. Let us define the 3 x 3 matrix

Filn+m+1l,a,) Gjin+m+1a,) Gj(n+m+10b,)
Bi(n+m+1,n)=| Fj(n+m+1,b,) Gijn+m+1,b,) Gj(n+m+1,a,) (12)
Fiin+m+1,¢,) Gjin+m+1,c,) Gj(n+m+1,c,)

for non-negative integer n, m and j € {1,2,3,4}. For m = 0, Bj(n + 1,n) has been obtained with
elements given by (36)-(38) in the appendix. By (I0) and (TT), we have

Bj(n+m+1,n) = Bi(n+m,n)L",

for any m > 1, where

2 3 3
i3 1
P=ly 1 3 -
6 10 10
We arrive at
Bi(n+m+1,n)=Bjn+1,n)L'™ forallm>0,n>0. (14)

Solving Bj(n +m + 1,n) as in the proof of Theorem its first column gives

Fj(n+m+1aan) 9 5 1 Fj(n+1aan)
Fi(n+m+1,bn) | =[5+ 77()"] | Fi(n+1,60)
Filn+m+1,¢c,) Fi(n+1,cp)
5 1 _Gj(n+17an)+Gj(n+1abn)
+?8[1 —(B)m} Gj(n+1,bn)+Gj(n+1,an) s
2Gj(n+1,cy)

and we have the following theorem using (36)-(38).
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Theorem 4.1 For the Sierpinski gasket SG(n + m + 1) with non-negative integer n and m,
1815 (3\" _ 99 (1\" 55 1\"
Iy (n+m+ Lan) = 552 (5) — % (*) + Toa61 (3'}5)

{ _1 n 22(1 185(1)”

b

1029 \ 25 +49392 375

= }325 - 5842858 (%)n + %( )n 5488 ( )
1

n 5 -
+<%5>m{5im<%>"f%<fg>"+léim )"+ (3)" -k ()"}
Filn+m+1,a,) = 13 — 3% ()" - 25 ()" — 851 (k)" + 3 ()" + 1 ()"
+(5)" {53 (1) — 55 ()" — 355 (k)" + i35 (35)" + 75 (45)" }
Fi(n+m+1,c,) = 358 (2)" - 2 (%)" + 55 (5)"
(&)@ - &) ()"
FQ(”"*‘m"'l’Cn):%Sé 24794511 (%)n‘F% %)n_27544 (%)n 55858 (%)n
+(f5>’”{£?2(§)”+fﬁ%51§)”—13% )" = 2 (1)" + i )"}

Fs(n+m+1,¢,) = % - ‘2571434 (5
m n 5

+ ()" {85 ()" - 25 (
F4(n+m+170n = % - 2?44(

n
5 7 5
()" ()" — ik (3)" — % (55)" + 12 ()" + 1% ()"}
1)

Corollary 4.1 For the Sierpinski gasket SG(n +m +
probabilities are

with non-negative integer n and m, the limiting

hmn_,ooFl(n—l—m—Fl,%n):O, hmn—>ooF2(n+m+17m7l):ig%7
lim, oo Fs(n+m+1,2,) = % , limy, o0 Fa(n+m+1,2,) = 155

where the vertex x,, can be either a,, b, or c,,.

It is intriguing to notice that in Theorem 4.1} F;(n + m + 1, a,,) are distinct from Fj(n +m + 1, ¢,)
with j € {1,2, 3,4}, while they have the same value in the infinite n limit.

5 Fj(n+m,x) for general z5y € V(SG(n)) withn >0, m > 0

Consider the Sierpinski gasket SG(n+m) withn > 0, m > 0. We will derive in this section F; (n+m, x)
with j € {1,2,3,4} for the general vertex 5 € V(SG(n)) that has not been considered in previous
sections. For the vertices inside the triangle with outmost vertices a,—1, a, and c,_1, let us append
subscripts in the notation such that ¥, s = (y1 =n — 1,792,---,7s) with 1 < s < nand ~; € {0,1,2}
for k € {2,3, ..., s}. The results obtained in section@ correspond to the vertices with s = 1 and n > 1,
and we will tackle the vertices with s > 1 here. Similar to the definition of the vertex T3, _, let us define
the vertex 5, , as the reflection of x5, , with respect to the line connecting a,, and b,,—1. By definition,
we have

x'?n,s = x'?n,s "T'Vn,‘s = x'?n,s ?
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where x can be either a, b or ¢, and

Fj(n,x5,,) = Fj(n,25,.) = Fj(n,25,.),  Hj(n,z5,,) = Hj(n, 25, ) = Hj(n, 25, ) ,
due to the symmetry of SG(n). For m > 0, define the 3 x 5 matrix

Bj(n+m,¥n.s)
Fj(n+m,az,,) Gj(n+m,az, ) Gjn+m,az, ) Gijn+maz, ) Hj(n+mas,,)
= | Fi(n+mbs, ) Gj(n+mbs ) Gjn+tmbs, ) Gjn+tmby, ) Hjn+mbs,,)
Filn+m,cs,,) Gijln+mecs,.) Gjnt+mis, ) Gjln+més, ) Hjnt+m,es, )

This is a generalization of B}(n + m,n) in (12), which corresponds to the case with s = 1. By an
argument similar to that of (I4), we have

Bj(n"_m)’}/n,s) = Bj(narYn,s)Lm (15)

for m > 0, where the 5 X 5 matrix

h

I
O O oo =W
© ol
© ogluig|erw
OBz~ S
BlotioZ|~g|-le

is the generalization of L’ in . It follows that the determination of Bj(n, ¥, s) for s > 1 will be
sufficient.

Let us first consider the vertices with s = 2 and v = 1, namely, ¥, 2 = (n — 1,1) withn = 2,3, ....
We obtain the following equations (cf. Figs. B}f3):

Gj(n— lzn 2)

2F;j(n—1,xp_ 2)+G(n 1,25 2)+

Fj(n, 2-1,1)) 3 6 )
3F;(n— 1117n 2)+3G' j(n—1,2,_ 2)+G(n 1LEn 2)

Gi(n, T(n-1,1))
Gj(n7j(n71,1)) =

10 10
3H,(n— 1xn 2) + Fij(n=1,xn_2) +2G j(n—=1,Z,_ 2)
5

10
+G (n lloz,, 2) + Gj(n 110:v,, z) (16)
3Fj(n—1,xp_ 2) 3G (n—1,8n_2) + Gj(n—1,2,_2)

)

Gj(n’f(n—m))

5 10 10
Hj(n'i‘l,m(n—l,l)) _ 6F;(n—1,xp_ 2) + 7Gj(n—1,2,_2) + 6G; (n—1,Zn_2)

25 25
7Gi(n—1,8n_2) 6H; ETL 1 JTn—2)
+ 5 + ,

where x can be either a, b or c¢. Define the 5 x 5 matrix

a7

=

Il
O olm O ol—wiNy
o5~ o5|wiw
o5k o8|~

Slesg| g |=5=
Slog|~&og|~]e



162 Shu-Chiuan Chang and Lung-Chi Chen

then (T6) is equivalent to
Bj(n,(n—1,1)) = Bj(n—1,n—2)R. (18)

For general m > 0, we have the following formula combining (I3)) and (I8):
Bj(n+m,(n—1,1)) = B (n (n—1, 1))Lm = Bj(n—1,n—2)RL™. (19)

As Fj(n+m,zp-1,1) = Fj(n +m,&,_11) for z = a,b, ¢, the first column of the matrix in gives
all Fj(n +m,xy, ,) in terms of the quantities for ,, _o.

Proposition 5.1 For the Sierpinski gasket SG(n + m) withn > 2, m > 0,

Fi(n+m,an—1,1) Fi(n+m,an—1,)
Fi(n+m,by_11) | = | Fj(n+m,by_11) | = Bj(n— 17n—2)RLmel ,
Fi(n+m,cn_1,1) Fi(n4+m,én_11)

where
€1 = (1a 07 07 07 O)T

and j € {1,2,3,4}.

Move on to the general vertex x3, , , , inside the triangle with outmost vertices a,, a,, 1 and ¢, for the
Sierpinski gasket SG(n + 1), where ¥, 41,5 = (n,1,73,...,7s) with v, € {0,1,2}, k = 3,4,..,s and
3 < s < n+ 1. As 3 can take three possible values, let us discuss them separately.

First consider the case with y3 = 1. The vertex x5, ., . = ®(n,1,1,74,...7,) 1S located inside the triangle

with outmost vertices a1, an+1 and ¢, 1. Associate with this x5, _, , a vertex T where “771;73—1 =

(n—1,1,74,...,7s) has s — 1 components. That is, ’)/'711’5_1 is obtained from 7,41 s by taking out y3 =1
and replacing v; = n by n — 1. It can be seen that this vertex x51 is located inside the triangle with

outmost vertices a,_1, a, and ¢, 1. Moreover, T; | can be reached from x5, , , by a horizontal

translation with the distance from a,, to o. Particularly, if s = 3 such that ¥,41,s = (n,1,1), then
Yhs—1 = (n—1,1). By the method obtaining , we have

By (04 L 3ns) = B (m 7o) @

if Y3 = 1.

Now consider the case with v3 = 2. The vertex T3, ,, . = T(n,1,2,74,...v,) 1 l0cated inside the triangle
with outmost vertices by, 1, ¢n,1 and ¢,. Associate with this 5, .,  a vertex ys2  where *7,2“5_1 =
(n —1,1,7%,...,72)) has s — 1 components. Here y = b when # = a and vice versa, and y = ¢ when
x = c. Namely, y is related to = with three possibilities: (z,y) = (a,b), (b,a) and (c, c). Similarly, 77
is related to ~; with three possibilities: (7%, v2) = (1,2), (2,1) and (0,0), where k = 4,..., s. Again,

Y52 __, canbe reached from x5, ., = by a horizontal translation with the distance from a,, to 0. We have

Bi(n+1,9n11,) = B (n. 72,00 ) R, 1)
where

Bj (717 :/‘721,571>
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Fj(n7b§flysfl) Gj(nvb’y'iwsfl) Gj(n’?ﬂ 71) Gj(n’b"gvsfl) Hj(n’ b;);g,,sfl)
= Fj(n,&.ﬁ . ) Gjn, &’7,% 571) Gj(n, &,73 . ) Gj(n, d’?ﬁ . ) Hj(n, d’?ﬁ ) [ (22)
Fj(n75,73b’571) Gj(n7é,772l’571) Gj(n,é,?721£71) GJ(’I'Z,é,?? 371) Hj(,’%é'??x,s—l)
By symmetry, the columns in (22) can be replaced as
Fj(n’b’ﬁl,sfl) Fj(n’b’?i,s—l) Hj(n’b’ﬁhsfl) Hj(n’ b’?TZL,S—l)
Fj(nag: ) | = | Filnas )|, | Hinag ) | = | Hilnag ),
Fj(n’é’vi,sfl) Fj(n’ c’?i,s—l) Hj(n,éin,s*l) Hj(n’ 0’7721,571)
and
Gj(n,z}ﬁsfl) Gi(nbyz ) Gj(n,l:)ﬁysq) Gj(n.by )
Gi(magz ) | = | Gilmag )| Gi(mag ) | = | Gilmag )|,
Gj(n, 6"73,,,.;—1) Gj(n’c’?i,g,l) Gj(n’éii, L Gj(na é’?i,s—l)
so that )
Bj (nv :);Z,s—l) = Bj (TL, ?Z,S—I)EQ 9
where
100 00
0 01 0O
Exy=|10 1 0 0 0
0 00 10
0 00 01
(21) can be rewritten as
Bj(n+1,9n11,s) = Bj(n, 75 1) B2 R (23)
Finally consider the case with v3 = 0. The vertex xy,,, . = T(n,1,0,y4,...,) 1S located inside the
triangle with outmost vertices a,, a,,1 and b, 1. Associate with this x5, 41,0 @ Vertex Zyo where

70 o =(mn—-1,1,747,..,7%) has s — 1 components. Here z = ¢ when = = b and vice versa, and z = a
when 2 = a. Namely, z is related to 2 with three possibilities: (, z) = (a, a), (b, ¢) and (¢, b). Similarly,
7Y is related to -y, with three possibilities: (vx,7Y) = (1,0), (0,1) and (2,2), where k = 4,...,s. We
use the notation such that the vertex zZyo ~ is the reflection of the vertex x5, ,_, with respect to the
line connecting a,—1 and b,,. It can be seen that Z~

50, can be reached from x5, ., . by a horizontal
translation with the distance from a,, to 0. We have

Bj(n+1,7n41s) = Bj(n, 9, . )R, (24)

where

Bj <TL7 ’727571>
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Fj( ; 'Yn,,s—l) Gj(naa"y‘gﬂsil) Gj(naéi”;y‘gysil) Gj(’/l,(il,—};gy571) Hj(n7a'72ysil)
— Fj(n’éﬁ,sfl) Gj(’n/,é,?%sfl) Gj(?’l,?,vg,57l> Gj(’ﬂ,?v:)hs?l) Hj(n,éﬁ%sfl)
L Filnbye ) Gilnobge ) Gilmbse ) Gi(nibye ) Hj(n,bg ) |
[ Fj(n,a50 ) Gj(n,agp ) Gi(nas ) Gi(n,ay ) Hj(n,agp ) i
= | Filneg ) Gilneye, ) Gi(née ) Gi(niGy ) Hj(neso )
L Fj<n,b,y2 71) G](n,bﬁ 571) Gj(n,b;/%kl) Gj(n,bﬁ?l;il) Hj(n,bﬁ?l;il) i
by symmetry, so that -
BJ (TL7’72 571) = BJ (n>’§7701,571)E0 ’
where
1 0 0 0 0
01 0 0 O
Ee=10 0 0 1 O
001 0O
0 0 0 0 1
(Z4) can be rewritten as
Bj(n+1,9n41,s) = Bj(n, 99 1) EoR (25)
Let Ey = I5x5 be the identity matrix. (20), (Z3) and (23] can be combined to give
Bj(n+1,9n11,s) = Bj (V%1 ) By R, (26)

where y3 € {0,1,2}. As Fj(n+ 1,25, ) = Fj(n+1,%5,,, ) for z = a,b, c, the first column of the
matrix in (26) gives F;(n + 1,25, ., ) for any vertex x5, ,, _ in terms of the quantities for x5,  _,.

Proposition 5.2 For the Sierpinski gasket SG(n + 1) with n > 2, consider the vertex x5, ,, , where
Fnt1,s = (1,93, o, vs) with3 < s <n+ land v, € {0,1,2} for k € {3,4, .., s}.

Fj(n +1, a'771+1,s)
Fj (’I’L +1, b7n+1,s) = Bj (n’ ,?;L/?sfl)E"rs Rey .
Fj(n +1, C’%+1,s)

Using Theorems and Propositions repeatedly, Fj(n + 1,z5,,, ) for all the vertices of
SG(n + 1) can be obtained.
6 Summation and average of Fj(n, z) over all the vertices of SG(n)
It is worthwhile to derive the summation of F};(n, x) over all the vertices = of SG(n), defined as
®j(n)= Y, Fi(na),
zeV(SG(n))

and the average of F};(n, ) over all the vertices, defined as

a2y
¢;(n) v(SG(n)) %(3”—1—1) '
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It is clear that for any non-negative integer n,

Z¢j(n) =1.

For the vertices T, with s = 1, i.e. a,,,, b,, and ¢,,,, define their sum

Xj(nam) = Fj(nvam) +Fj(n7bm) +Fj(nvcm) .
Similarly for the vertices with s = 2, define

Yj(n,m') = Fj(n, am 1) + Fj(n,bmr 1) + Fj(n, ¢m1)

where m > 0, m’ > 1 and n is larger than m and m’. By , we have

X;(n,m)=(1,1,1)B;(n,m)e; = (1,1,1)B;(m + L,m)L" ™ tey 27
Yi(n,m') = (1,1,1)B;(n, (m',1)er = (1,1,1)B;(m’ + 1, (m/, 1)) L™ e,
= (1,1,1)B;(m',m' — 1)RL"™ e, . (28)

The first few ®;(n) are

®;(0) = 3F;(0,0),
®;(1) )+ X;(1,0) = 3F;(1,0) + 2F}(1,a0) + Fj(1,co)

I

w
3
—~
“)—‘

Q

and

®;(2) = 3F;(2,0)+X;(2,0) + X;(2,1) + 2Y;(2,1)
- 3Fj(2,o)+(17171){Bj(1,0)L+Bj(2,1)+23j(170)R}el.

The corresponding values for j € {1,2,3,4} are

2 1
$,(0) = 3 $4(0) = 3 $5(0) = 4(0) =0,

1 19 7 1
@ (1) = Dy(1) = — 1) = — ®,(1) = —
1() 9 2( ) 54a 3( ) 545 4( ) 547

163 5257 2203 289
dy(2) = — 2) = L P3(2) = 2 By(2) = |
12) 450 2(2) 12150 ° 3(2) 12150 ° 4(2) 12150

For n > 3, we need the summation

=3 3 Y )

§=3 vs=07vs-1=0 v3=0
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v3=0

for the vertices x5, , with s > 3. By and , M;(3) = 2 B;(3,93,3) is given by

where

M;(3) = {B (2,792) Eo + B;(2,73.2) E1 + B; (27’73,2)]52}3
= B;(2,(1,1))[Eo+ E1 + E2)R
B;(1,0)R[Ey + Ey + E3)R = B;(1,0)RER,,

E=FEo+FE +Es =

SO oo W
SO R NO
O R~ P~k O
oN OO
w oo oo

The general expression for n > 3 is

Mj(n+1)

n+1 2

Z{Z i i Bj(nJrlv'?n-&-l,s)}

s=3 vs=07vs_1=0 v3=0
{Bs(n. 70 2)E0 + B;(n.7h2) By + By (n,72.0) Ea | R
2

+n§{z > Z[ (m Fna=1) Bo + By (n: G, 01) B 4 By (0,7 o 1)E2}R}

s=4 \vs=0~v5-1=0 v¥4=0

[B5(n, 1,1))+Xn:{22: 22: XZ:Bj(n,%,S)HER

s=3 vs=07vs-1=0 v3=0
Bj(n—1,n—2)R+ M;(n) } ER
BJ n—1 n—Z)RER—I—B (n_z’n_3)R(ER)2+Mj(n—1)(ER)2

Z Bj(m,m —1)R(ER)"~ (29)

For example,

®;(3)

= 3Fj(3, O) + Xj(?), O) + Xj(3, 1) + Xj(?), 2)
+2[Y;(3,1) + Y;(3,2) + (1,1,1) B; (1,0) RERe; |
= 3F;(3,0) + (1,1, D{ B;(1,0)12 + Bj(2, 1)L + B;(3,2)
+2[B;(1,0)RL + B;(2,1)R + B;(1,0)RER] be;
= 3F;(3,0) + (1,1, 1){Bj(1, 0)[L* + 2RL + 2RER] + B;(2,1)[L + 2R] + B;(3, 2)}61

For general n > 3, we have

n—1 n—1

®;(n) = 3F;(n,0) + Y X;(n,m) +2 Y Yj(n,m) +2(1,1,1 {zn: M;(m)L"~ m}el, (30)

m=0 m=1 m=3



Structure of spanning trees on the two-dimensional Sierpinski gasket 167

with X;(n,m) and Y;(n,m) given in (27) and (28), respectively. From (29), the summation in the last

term of (30) is

n n m-—2
S Mjmrr o= Y [Z Bj(s,s — l)R(ER)m‘l‘S}L"‘m
m=3 m=3 s=1

n—1 m-—1

- Z[Z B;(s,s — 1) R(ER)™~ S}L” 1—m

m=2 s=1

= S Bj(s,s— 1) S [R(ER)"™—*L"=1=]
= m=s-+1

= niBj(s,s - 1)%871 [R(ER)™ L")
= m=1

so that ®;(n) can be calculated exactly for any positive integer 7.

Proposition 6.1 For the Sierpinski gasket SG(n) with n > 3, the summation of F;(n,x) over all the
vertex is given by

n—1
®;(n) = (1,1,1) {ZB (m,m—1)L""™+2>" Bj(m,m—1)RL"™"™"
n—2 m=t n—m—1 m=t
+2>  Bj(m,m—1) Y [R(ER)SL"—l‘m‘S] }el + 3Fj(n,0)
m=1 s=1

— (1,1,1){2 Bj(m,m —1)L" ™ +2B;(n—1,n—2)R

m=1

n—2 n—m-—1
+2 3" By(m,m 1) [ 3" RERyL™™ - S}}el—&—BFj(n,o). 31)
m=1 s=0
Let us consider limiting distribution
nlingo ¢J( n) = oy

with j € {1,2,3,4}. It is easy to see that the term 3F;(n,0) in can be neglected in the infinite n
limit for ¢;, namely,
Fj (717 0)
S T
2
as the value Fj(n, o) is between 0 and 1 for the four possible j. Similarly, the values of the quantities
Fi(m,zm-1), Gj(m,zm_1), Hj(m, zm_1) with = a, b, c in the matrix B;(m, m — 1) are between 0
and 1, and all the eigenvalues of R given in (I7) are positive and less than or equal to 1, such that

(1,1 1){Zm 1Bj(m,m—l)Ln_m-i-QBj(n—l,n—Q)R}el 3+ 6
lim <1

im ——=20.
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Therefore, only the double summation term in gives a non-zero contribution to ¢;. Rewrite KR =
Ql[Dl + Dl]Qfl and L = QQDQQEI, where

159 —87 0 -3 -3 18 0 —-27 0 -2
38 14 1 2 1 5 —1 98 -1 1
Q=138 14 0 2 —-4|, Q=5 0 =32 1 1 |,
38 14 -1 2 1 0 1 =52 0 0
15 45 0 -3 5 0O 0 13 0 0
and
00 0 0 0 300 00 1 0 0 0 O
01 0 0 0 ) 00000 0% 0 0 0
Di=[00 2 0 0|, Di={0000O0|, Do=|0 0 £ 0 0 [,
000 & 0 00000 00 0 £ 0
000 0 0 00000 00 0 0
then
n—m-—1 n—m-—1
Z R ER Ln m—1—s — R Z |: DS+DS Ql :||:Q2D£L—m—1—SQ2—1:|
s=0 s=0
n—m-—1
— R |: D5Q1:||:QDnmls 21:|
e
+R Y |@ibir| @Dy e (32)
s=0
The elements of B;(m, m — 1) have been solved in (36)-(39). Define
Zij(m)=(1,1,1)B;(m,m — 1)
1 1 1 .
AP @)™+ )A“( )" +)A“<375> mforj=1, N
_ fgg/\ +A3 (2)m +)\3 (55)™ +A3 (555)™ +A3 (&)™ +/\ (535)™ for j = ,(33)
A0+A”<> A%) + Y <3%> + AP (E)m + <2> forj =3,
196>‘0+)‘( )(3) ( )m+)\4)( m_,’_)\ )( Lym )\(4< )mforj =4,
where Ao = (1,1,1,1,1) and
A _ (@ g g 121 1089) A(1)_(—1375 —55 —55 —55 1221)
! 392" 56’ 56 56 392 2 70196 7 28 7 28 7 28 1 196 7
A(1)_<3125 —375 —375 —375 @) (2)_(—275 —55 —55 —55 —495)
3 743927 56 7 56 7 56 39277 Y T Y3967 567 56 56 392 7
\@ (2375 95 95 95 2109) (2)_(—9375 1125 1125 1125 —1755)
2 196 728728728 196 7 2 ' 392 7 56 56 ' 56 = 392 7’
A(2)_(—1265 —187 —187 —187 @) A(Q)_(Lo —240 —240 —240 %)
TN 196 7 196 7 196 7 196 T 19677 TS T Y497 49 0 49 7 49 4977
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/\(3)7(7285 —57 —57 —57 7513) )\(3)7(7625 —25 —25 —25 555
733927 567 567 567 39277 "2 7 V1967 28 ° 28 ° 28 '196

)

/\53):(—9375 —1125 —1125 —1125 1755) \®) :(@ % % % —162)
3 392 7 56 ° 56 ° 56 39277 4 49749749749’ 49 7’
A _ (300 480 430 480 108, ) _ =45 —9 -9 —9 81

5 ( )7 1 ( )7

3927 567 56 56 392
=375 =15 =15 —15 333 \@ _ —3125 375 375 375 —585

A = ( 5 196/ = (595 56 6 56 302
2 196 ° 28 7 28 7 28 '1967 7 B 392 ' 56 56 56° 392 77
A(4)_(3;45 51 51 51 —243) A(4)_(@ —240 —240 —240 %)
47119671967 1967 1967 196 7 70 49° 49 7 49 7 49 497

Substituting (32) into (3T), we get

n—2 n—m—1

e S aomn{' S foumtar e as |

lim -
n—o0o 3

¢ =

m=1 s=0

S QD501 [@2Dy Q5 Jer
s=0

169

(34)

As the eigenvalues of D1 and Dy are between 0 and 1, the first term in @) makes no contributions since

n—m—1

0 < nizj(m)R > [epiert][@eps 0 e
m=1 s=0

n—m—1

n—2
< 3 z(mR Q1] |@21Q3 er < 307
m=1 s=0
Consider the second term in (34),
n—2 n—m-—1
> ZimR Y |@DiQr| [0y
m=1 s=0

= 75:2 Zj(m)R{lelel} "—i—l 38 {Q2Dg*mflfsQ271}
m=1

s=0

n—2
= " ZmR[Q:D:Qr | @:D(n,m)Q;
m=1

where
1 0 0 00O
00 0 0O
Di=|00 00 0
0 000 O
00 0 0O
and define

n—m—1
D(n,m)= Y 3Dy ™'
s=0
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35(2%)71—m—1—s 0 0 0 0
n—m—1 0 ()0 0 0
= > 0 0 3° 0 0
§=0 0 0 0 35()n—m-t=s , 0 )
0 0 0 0 (g
25[8" " —(z5)" "]
5 o 0 N 0 0 0
0 BTG T g 0 0
= 0 0 3=l 0 0
53" —(5)" "]
0 0 0 e ) 0 .
) 0 0 0 10" ()" ")
= 3D+ Dy(n—m),
with o5
2 0 0 0 O
0 &5 0 0 0
D=|0 0 5 0 0 [,
0 0 0 2 0
10
0 0 0 0 4
=27 0 0 0 0
1 \yn—m—1
0 S L2 0 0
Do(n —m) = 0 0 St 0 0
_(l)"*"kl
0 0 0 —5— . )g_m_l
0 0 0 0 —
Since the absolute values of all the eigenvalues of Da(n — m) are less than one, we have
4 n—2 ~
6 = Jlim 23"+ )7 Y {3772, (m)RQ1D1Q; Q2DQ; !
m=1
Z3(m)RQ1 D1Q7 Q2Da(n — m)Q3  ber
n—2
4 -
= lim o(3"+ 1)~ 3" Zi(m)Rey (35)
m=1

where R = RlelengDQz Substituting the expression of Z;( from into (35), carrying
out the summation and taking the infinite n limit, we arrive at

|:/\(1) /\(1) /\(1) J ~

= 51 Rey for j=1,

2 2 2 ~
A®) /\51> A®)

,\(2 .
2 }Rel for j=2,

363M0 | Az
392 I 7 T T T ar T em
(3 A<3> AP AW A<3>

99)\0 )‘ y
[196 to At tomtar t 674}R61 for j=3,
|: A( ) A(4) A(4) Ai‘l) A\(;l) :| ~

&
I
ol
X

ﬂ"—m Rel for ]:4

392
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Tab. 1: Numerical values of ¢;(n) with j € {1, 2, 3,4}, and the comparison of ¢; with f; for the square lattice (sq).
The last digits given are rounded off.

[ n ] P1(n) \ P2(n) ¢3(n) Pa(n)
0 P I
3 3
=0.6666666667 | =0.3333333333 0 0
1 T 19 e T
2 54 54 54
=0.5 =0.3518518519 =0.1296296296 =0.01851851852
) 163 5257 7203 789
450 12150 12150 12150
=0.3622222222 | =0.4326748971 =0.1813168724 =0.02378600823
3 143357 17871899 7787951 1000733
472500 38272500 38272500 38272500
=0.3034010582 | =0.4669645045 =0.2034868639 =0.02614757332
4 24381607 30227565716 13341669059 1703683097
86484375 63047109375 63047109375 63047109375
=0.2819192137 | =0.4794441175 =0.2116142864 =0.02702238237
5 39739246273 51047283737324 22626394285676 2883432928358
144755859375 105527021484375 105527021484375 105527021484375
=0.2745259946 | =0.4837366110 =0.2144132751 =0.02732411934
s 10957 6626035 7943139 124895
40464 13636368 13636368 4545456
=0.2707839067 | =0.4859090778 =0.2158301243 =0.02747689121
54 f1 fo 13 fa
- S R L R AR R B
=0.2945449182 | =0.4469901311 =0.2223849831 =0.03607996755

The matrix productions can be done to give the following theorem.

Theorem 6.1 Consider all the vertices of the Sierpinski gasket SG(n) in the infinite n limit. The average
probabilities that a vertex is connected by 1, 2, 3 or 4 bond(s) among all the spanning tree configurations

are
10957 6626035
¢1 T0dcq = 0-270783906682- ¢y = g = 0485909077842+
9943139 194205
& 336308~ 0219830124267+, ¢y = e = 0.0274768912073

For the Sierpinski gasket SG(n) in the infinite n limit, the average number of bonds connecting to a
vertex among all the spanning tree configurations is equal to ¢1 + 2¢2 + 3¢3 + 4¢4 = 2 as expected
[Aldous(1990)]. We list the numerical values of ¢;(n) with j € {1,2,3,4} for 0 < n < 5 and infinite
n limit in Table [I} We find that ¢, (n) decreases monotonically as n increases, while ¢2(n), ¢3(n) and
¢4(n) increase monotonically. The values for n = 5 are already very close to ¢; in the infinite n limit
with deviations about 1%.

It is interesting to compare the Sierpinski gasket SG(n) in the infinite n limit with the infinite two-
dimensional square lattice which is also a 4-regular lattice. For the square lattice, all the vertices are
identical due to the translational invariant, and the probabilities that a vertex is connected by 1, 2, 3 or 4
bond(s) among all the spanning tree configurations have been determined exactly in [Manna et al.(1992)].
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They are denoted by f; with j € {1,2,3,4}. As shown in Table f1, fs and fy are slightly larger than
o1, O3, ¢4, respectively, while f5 is smaller than ¢s.
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A Recursion relations for Fj(n+1,a,), Gj(n+1,a,), Gj(n+1,b,),
Hj(n+1,a,) with j € {1,2,3,4}

Using Figs. B3] for the vertex a,, or b,,, we obtain the following recursion relations

filn+1,a,)
faln+1,a,)

fa(n+1,a,)

f4(n + lyan)

g1 (n + 1; an)
g2(n+1,a,)

gB(n + 1; a’n)

ga(n+1,a,)

gl(n + 17bn)

92(71 + 1; bn)

94(71 + 1; bn)

2f1(n,0)go(n,by) f(n),

2f2(n,0)go(n, by) f(n) + 2f1(n, 0)[g1(n, 0) + g1(n, by)] f(n)
+2f1(n,0)?g(n) ,

2f2(n,0)[g1(n, 0) + g1(n, bn)| f(n) + 4f1(n, 0) f2(n, 0)g(n)
+2f1(n,0)[g2(n, 0) + g2(n, by)] f(n) ,
2f2(n,0)[g2(n,0) + g2(n, b)) f (n) + 2f2(n, 0)%g(n) ,

2f1(n70)90(n7bn)g(n) s

fi(n,0)%h(n) + g1(n,0)* f(n) + 4f1(n, 0)g1(n,0)g(n)
+2[f1(n)g1(n,b,) + f2(n)go(n, bn)]g(n) ,

2fa(n, 0) f1(n,0)h(n) + 2g1(n, 0)g2(n, 0) f(n)
+4[f2(n,0)g1(n, 0) + f1(n,0)g2(n,0)]g(n)

+2[f2(n,0)g1(n,by) + f1(n,0)g2(n,by)]g(n) ,

fa(n,0)?h(n) + fa(n,0)[2g2(n, by) + 4g2(n, 0)]g(n) + ga(n, 0)* f(n)

fi(n,0)ho(n,0)f(n) + 2f1(n,0)go(n, by)g(n)

+2g1(n, 0)go(n, b,) f(n) ,

[f2(n, 0)ho(n, 0) + fi(n,0)h1(n, 0)]f(n) +2f1(n,0)g1(n, 0)g(n)
+91(n,0)* f(n) 4 2[fa(n, 0)go(n, bn) + f1(n,0)g1(n, bn)]g(n)
+2[g2(n, 0)go(n, bn) + g1(n,0)g1(n, bn)] f(n) ,

[ 2(n, 0)h1(n,0) + fi(n,0)ha(n, o) f(n)
+2[f2(n,0)g1(n, 0) + fi1(n,0)g2(n, 0)]g(n)
+2[fa2(n, 0)g1(n, by) + f1(n,0)g2(n, bn)]g(n)

+2[g2(n 0) 1(n,bn) + g1(n, 0)g2(n, by)] f(n) + 2g1(n, 0)ga2(n, 0) f(n) |
f2(n, 0 hz( n,0)f(n) +2g2(n,0)ga(n, by) f(n)
+2f2(n,0)[ga(n, 0) + g2(n,b,)]g(n) + g2(n,0)* f(n) ,
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and
hl (n + 17 an)

ha(n+1,a,)

hs(n+1,a,)

ha(n+1,a,)

4f1 (TL, O)hO (TL, 0)9(”) + 2f1 (TL, 0)90 (n, bn)h(n)

+4g1(n, 0)ho(n, 0) f(n) + 8g1(n, 0)go(n, by )g(n) ,

4[f2 (77‘7 O)ho(’m 0) + fl (n, O)hl(nv 0)]g(n)

+2[f1(n,0)g1(n, bn) + f2(n,0)go(n, by)]h(n)

+4[g2(n, 0)ho(n, 0) + g1(n, 0)h1(n,0)] f(n) + 2f1(n, 0)g1(n, 0)h(n)
+691(n, 0)%g(n) + 8[g2(n, 0)go(n, by) + g1(n,0)g1(n, bn)]g(n) ,
4[f2 (n7 O)hl(n7 O) + fl (na O)hQ (’Il, O)]g(n)

+2[f2(n,0)g1(n, bn) + f1(n,0)ga(n, by)]h(n)

+4[g2(n, 0)h1(n,0) + g1(n, 0)ha(n,0)] f(n)

+2[f2(n70) 1(n, 0) + f1(n, 0)g2(n, 0)]h(n)

+8[g2(n, 0)g1(n, bn) + g1(n, 0)g2(n, by)]g(n)

+12gl(n,0)gg(n 0)g(n),

4f5(n,0)ha(n,0)g(n) + 2f2(n,0)[g2(n, by) + g2(n, 0)]h(n)
+4g2(n,0)ha(n, 0) f(n) + 8g2(n, 0)ga2(n, by )g(n) + 6g2(n, 0)>g(n) .

Using the identity 3g(n)? = f(n)h(n), it follows that

F1(n,0)Go(n,by)

(
3 )

Fy (n,o)Go(n by) +

(

(

(n o) + Fy(n,0)[G1(n,0)+G1(n,by)]

(n,0)[Ga(n,0)+Ga(nba)]  (30)

Fy mo)[Gl(n 0)+G1(n, bn)] 2F1(n,o)F2(n,o§ + Fy(n, s ,
3 )

3
F3(n,0)[G2(n,0)+G2(n, bn)] F3(n,0)
3 3

Fi(n, o)Go(n bn)
3F1(n, o) Fy (n 0)[2G1(n,0)+G1(n,bn)] Fg(n o)Go(n bn) G1(n,0)?
+ + =
SFZ%n 0)F1 (n, 0) Fy(n, o)?2G1 (n o)+G1(n by )] Gz(n o)Gl(n 0) (37)

Fi(n, o)[2G2(n o)+G2(n bn)]

+
3F3(n,0)? F. (n 0)[2G2(n, o)+G (n,bn)] G2(n,0)?
210 + B 2 2 2 + 2 ,

3Fi(n,0)Ho(n,0) + [F1(n,0)+G1(n,0)]Go(n,by )
1
3[F2(n,0)Ho(n,0)+F1(n,0)Hi(n,0)] + (n o) + F1(n,0)[G1(n,0)+G1(n,b,)]
1
+F2 (mo)gg(n,b,s Go(n,b,)Ga(n, o);rGl(n ,0)G1(n,by) ’
3[F2(n,0)Hi(n,0)+F1(n,0)Hz(n,0)] (38)
+ [G1(n,by )+G1%9L 0)]G2(7L 0)+G1(n,0)G2(n,by)
+Zr_ Fr(n,0)[G3_ T(n o)+G3 r(1n,b5)]
3F>(n, o)Hg(n 0) + Fs(n, O)[Gz(’ﬂ 0)+G2(n, bn)]-'er(TL 0)G2(n,by,
5

) + Gg(no) :
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and
Hl(n +1 an) _  3F(n, o)[2Ho(271 ,0)+Go(n,bn)] + 6G1 (n,0)Ho(n,0) n 4G4 (n, O%G(J(ﬂ ) ’
Hy(n+1,a,) = Sf2(no)foln, ")QEFl(" 0)Hi(n0)] | 3F1(n.0)[Ch(n, 0)+G1(n )]
4 3F2(n,0)Go(n,bn) 4G (n,0)Go(m,bn) +G1 (1,0)Cr (naba)]
2 25
+3G1(n,o) + 6[Ho(n,0)G2(n,0)+Hi(n,0)G1(n,0)]
2 3 3F(n,0)[G1 (o) G (mib)]
H3(n +1, an) = OF(no)H(n, O)JrFl(" 0)Hz(n,0) + 3F2(n.0)[Gy 72L,50 1(n,by, (39)
+3F1(n o)[Gz(n o)+G2(n b)) G[Gz(n,o)Hl (n,0) 1G4 (n,0) Ha(n,0)]
+j4clolbn)+ﬁclolon02@zo)_+ 401@10)G201ﬁ5
25 )
H4(n +1 an) _  6Fa(n, 02)5Hz(n ,0) + 3F5(n,0)[G2 (272150)+G2(n bn)] 6G2(n702)5H2(n70)
+4G2(n70%§2(nabn) + 3G2(71 0)
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