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Asymptotic results for silent elimination
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Following the model of Bondesson, Nilsson, and Wikstrand, we consider randomly filled urns, where the probability
of falling into urn i is the geometric probability (1 − q)qi−1. Assuming n independent random entries, and a fixed
parameter k, the interest is in the following parameters: Let T be the smallest index, such that urn T is non-empty,
but the following k are empty, then: XT = number of balls in urn T , ST = number of balls in urns with index larger
than T , and finally T itself.

We analyse the recursions (that appeared earlier) precisely, and derive results about the joint distribution of a related
urn model.
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Dedicated to Philippe Flajolet

1 Introduction
In (1) the following situation was discussed, which resembles the following urn model:

Assume that there are urns labelled 1, 2, . . ., and n balls thrown into the urns at random, independently,
according to the geometric distribution: the probability that a ball goes into urn j is pqj−1 with p+ q = 1.

Now let k ≥ 1 be a fixed integer, and we consider the smallest index T such that

• urn T is non-empty,

• urns T + 1, T + 2, . . . , T + k are empty.

Then the idea is that T (or the balls in the urn indexed by T ) can be considered as a pseudo winner,
since it is not very likely that after k empty urns there are still elements in some urns with higher index.

The instance k = ∞ corresponds to the highest index of a non-empty urn. The index T in this case is
very classical, we just cite (15; 8). The distribution of the number of balls in this urn has also been subject
of several papers; we just cite three: (2; 3; 9).

The instance k = 1 refers to the first gap; T is in this case one less than the index of the first unoccupied
urn. This parameter has a rich history and is the driving force behind probabilistic counting (4); our
paper (12) contains also some pointers to more recent papers.
†This material is based upon work supported by the National Research Foundation under grant number 2053748
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The authors of (1) consider 3 parameters (random variables), which depend on n: In the simplified urn
model, which is easier to understand, they correspond to

• XT , the number of balls in urn T ,

• ST , the number of balls in urns with index > T + k,

• T .

For the respective expected values, recursions were derived, but no asymptotic evaluations were given.
We fill in these gaps, and show that En(XT ) ∼ const + δ(log n), En(ST ) ∼ const + δ(log n) and
En(T ) ∼ log n+const+δ(log n), whereQ = q−1, L = lnQ, log ≡ logQ and δ(x) is a periodic function
of period 1 with mean zero and small amplitude. We use the notation in a generic sense: in different
instances it might mean a different function; the Fourier coefficients could be computed in principle, but
we refrain from doing it.

This is only part of a more ambitious project: We want to use our machinery described in (11) and
compute all moments. However, that is not easy, and we did not succeed thus far.

We start with the recursions provided in (1) (exactly as given there, not the urn model) and then use the
following multistep procedure that is described in several textbooks, notably in (14):

• The recursion is translated into a functional equation for the exponential generating function A(z).

• This functional equation is translated in terms of the Poisson generating functionB(z) = e−zA(z),
with the motive that an = n![zn]A(z) ∼ B(n).

• To find B(z) for a large parameter z, we use the Mellin transform, B∗(s) and the inversion formula

B(z) =
1

2πi

∫ − 1
2+i∞

− 1
2−i∞

B∗(s)z−sds.

• This integral will be evaluated via residues. The line of integration will be shifted to the right, and
the residues (with a minus sign) will be collected.

2 Recursions for the expected values
Theorem 1 (Theorem 2 in (1)) The expected values En(XT ) are recursively given by

En(XT ) =
1− qnk

1− qn
np
(
p+ qk−1

)n−1 +
1− qnk

1− qn
n∑
j=1

(
n

j

)
pjqn−jEn−j(XT )

and E0(XT ) = 0.

Theorem 2 (Theorem 3 in (1)) The expected values En(ST ) are recursively given by

En(ST ) = nqnk +
1− qnk

1− qn
n∑
j=1

(
n

j

)
pjqn−jEn−j(ST )

and E0(ST ) = 0.
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Theorem 3 (Theorem 4 in (1)) The expected values En(T ) are recursively given by

En(T ) =
1− qnk

1− qn
− kqnk +

1− qnk

1− qn
n∑
j=1

(
n

j

)
pjqn−jEn−j(T )

and E0(T ) = 0.

3 Asymptotic study of En(ST )

Let us write an = En(ST ), then the recursion is equivalent to

an(1− qn(k+1)) = nqnk(1− qn) + (1− qnk)
n∑
j=0

(
n

j

)
pjqn−jan−j .

Now we set

A(z) :=
∑
n≥0

an
zn

n!

and translate:

A(z)−A(zqk+1) = zqkezq
k

− zqk+1ezq
k+1

+ epzA(zq)− epq
kzA(zqk+1).

Now we introduce the Poisson generating function B(z) = e−zA(z):

B(z)− e−zA(zqk+1) = zqke−z(1−q
k) − zqk+1e−z(1−q

k+1) +B(zq)− e−z(1−pq
k)A(zqk+1).

This is of the form
B(z)−B(zq) = R(z),

where R(z) is a “harmless” function. The idea of our procedure is, as described in the book (14), that
B(n) ∼ an, and the behaviour of B(z) for large z will be determined by the Mellin transform. We find

B∗(s) =
R∗(s)

1− q−s
.

The fundamental strip is 〈−1, 0〉. Furthermore,

R∗(s) =
∫ ∞

0

(
zqke−z(1−q

k) − zqk+1e−z(1−q
k+1) + e−zA(zqk+1)− e−z(1−pq

k)A(zqk+1)
)
zs−1dz

=
qk

(1− qk)s+1
Γ(s+ 1)− qk+1

(1− qk+1)s+1
Γ(s+ 1)

+
∫ ∞

0

(
e−z − e−z(1−pq

k)
)∑
j≥0

aj
zjqj(k+1)

j!
zs−1dz
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=
qk

(1− qk)s+1
Γ(s+ 1)− qk+1

(1− qk+1)s+1
Γ(s+ 1)

+
∑
j≥0

aj
qj(k+1)

j!
Γ(s+ j)

(
1− 1

(1− pqk)s+j
)
.

Therefore

−ress=0

{R∗(s)z−s
1− q−s

}
=

1
L

qk

1− qk
− 1
L

qk+1

1− qk+1
+

1
L

∑
j≥0

aj
qj(k+1)

j

(
1− 1

(1− pqk)j
)
.

Theorem 4 Using the shorthand notation an = En(ST ), we have the asymptotic formula:

En(ST ) ∼ 1
L

qk

1− qk
− 1
L

qk+1

1− qk+1
+

1
L

∑
j≥0

aj
qj(k+1)

j
− 1
L

∑
j≥0

aj
qj(k+1)

(1− pqk)jj
+ δ(log n).

4 Asymptotic study of En(XT )
Let us write an = En(XT ), then the recursion is equivalent to

an(1− qn(k+1)) = (1− qnk)np
(
p+ qk−1

)n−1 + (1− qnk)
n∑
j=0

(
n

j

)
pjqn−jan−j .

It holds for n ≥ 0. Now we set

A(z) :=
∑
n≥0

an
zn

n!

and translate:

A(z)−A(zqk+1) = pzez(p+q
k−1) − pqkzezq

k(p+qk−1) + epzA(zq)− epq
kzA(zqk+1).

In terms of the Poisson transformed function it is

B(z)−B(zq) = pze−z(1−(p+qk−1)) − pqkze−z(1−q
k(p+qk−1)) + e−zA(zqk+1)− e−(1−pqk)zA(zqk+1).

The Mellin transform of the righthand side is

pΓ(s+ 1)
(q − qk−1)s+1

− pqkΓ(s+ 1)
(1− pqk − q2k−1)s+1

+
∑
j≥0

aj
q(k+1)j

j!
Γ(s+ j)−

∑
j≥0

aj
q(k+1)j

j!
Γ(s+ j)

(1− pqk)s+j
,

and thus

B∗(s) =
1

1− q−s

(
pΓ(s+ 1)

(q − qk−1)s+1
− pqkΓ(s+ 1)

(1− pqk − q2k−1)s+1

+
∑
j≥0

aj
q(k+1)j

j!
Γ(s+ j)−

∑
j≥0

aj
q(k+1)j

j!
Γ(s+ j)

(1− pqk)s+j

)
.
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¿From this, we find:

−ress=0{B∗(s)z−s} =
1
L

(
p

q − qk−1
− pqk

1− pqk − q2k−1
+
∑
j≥0

aj
q(k+1)j

j
−
∑
j≥0

aj
q(k+1)j

j

1
(1− pqk)j

)
.

Theorem 5 Using the shorthand notation an = En(XT ), we have the asymptotic formula:

En(XT ) ∼ 1
L

(
p

q − qk−1
− pqk

1− pqk − q2k−1
+
∑
j≥0

aj
q(k+1)j

j
−
∑
j≥0

aj
q(k+1)j

j

1
(1− pqk)j

)
+ δ(log n).

5 Asymptotic study of En(T )
Let us write an = En(T ), then the recursion is equivalent to

an(1− qn(k+1)) = 1− (k + 1)qnk + kqn(k+1) + (1− qnk)
n∑
j=0

(
n

j

)
pjqn−jan−j ;

A(z)−A(zqk+1) = ez − (k + 1)ezq
k

+ kezq
k+1

+ epzA(zq)− epq
kzA(zqk+1);

B(z)−B(zq) = 1− (k + 1)e−z(1−q
k) + ke−z(1−q

k+1) + e−zA(zqk+1)− e−z(1−pq
k)A(zqk+1).

The Mellin transform of

−(k + 1)e−z(1−q
k) + ke−z(1−q

k+1) + e−zA(zqk+1)− e−z(1−pq
k)A(zqk+1)

is

− k + 1
(1− qk)s

Γ(s) +
k

(1− qk+1)s
Γ(s) +

∑
j≥0

aj
q(k+1)j

j!
Γ(j + s)−

∑
j≥0

aj
q(k+1)j

(1− pqk)j+sj!
Γ(j + s).

The fundamental strip is 〈0,∞〉.
This is also the transform of

1− (k + 1)e−z(1−q
k) + ke−z(1−q

k+1) + e−zA(zq)− e−z(1−pq
k)A(zqk+1),

but the fundamental strip is 〈−1, 0〉.
Now, since we have terms Γ(s), we expect a double pole, coming from the first two terms.
We need

− ress=0

{
z−s

1− q−s

(
− k + 1

(1− qk)s
Γ(s) +

k

(1− qk+1)s
Γ(s)

+
∑
j≥0

aj
q(k+1)j

j!
Γ(j + s)−

∑
j≥0

aj
q(k+1)j

(1− pqk)j+sj!
Γ(j + s)

)}

= ress=0

{
z−s

1− q−s

(
k + 1

(1− qk)s
− k

(1− qk+1)s

)
Γ(s)

}
+

1
L

∑
j≥0

aj
q(k+1)j

j
− 1
L

∑
j≥0

aj
q(k+1)j

(1− pqk)jj
.
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The remaining residue is computed as follows:

ress=0

{
z−s

1− q−s

(
k + 1

(1− qk)s
− k

(1− qk+1)s

)
Γ(s)

}
= [s−1]

1− s ln z
−Ls(1 + 1

2Ls)

(
k + 1

1 + s ln(1− qk)
− k

1 + s ln(1− qk+1)

)(1
s
− γ
)

= log z − [s1]
1− 1

2Ls

L

(
1− (k + 1)s ln(1− qk) + ks ln(1− qk+1)

)
(1− sγ)

= log z +
1
2

+
γ

L
+ (k + 1) log(1− qk)− k log(1− qk+1).

Theorem 6 Using the shorthand notation an = En(T ), we have the asymptotic formula:

En(T ) ∼ log n+
1
2

+
γ

L
+ (k + 1) log(1− qk)− k log(1− qk+1)

+
1
L

∑
j≥0

aj
q(k+1)j

j
− 1
L

∑
j≥0

aj
q(k+1)j

(1− pqk)jj
+ δ(log n).

6 The asymptotic joint distributions
In this section, we concentrate on the joint distribution of the 3 parameters, P[T = `,XT = i, ST = j],
which is quite involved, even in the simplified urn model, which we assume now. Next we consider
U := number of gaps in a sequence of n geometric RVs with parameter p (gaps are defined below).
Then we analyze ML:=maximum gaps length. Finally we return to the joint distribution of XT and ST
(independently of T ). All asymptotics in this section are related to n→∞. We obtain explicit expressions
and periodic contributions. Again k is fixed here.

We summarize the notations that we use, although some have already appeared in earlier sections:

Q := 1/q,
L := ln 1/q = lnQ,
n∗ := np/q,

log := logQ,

β := q/p,

χl := 2lπi/L, l ∈ Z \ {0}

Let us consider the model as a sequence of n geometric iid RVs, with distribution pqi−1. We have the
following properties:

• We have asymptotic independence of urns, for all events related to j = O(logm). This is proved,
by Poissonization-DePoissonization, in (12), (13) and (7) (in this paper for p = 1/2, but the proof
is easily adapted). The error term is O(m−C) where C is a positive constant.

• We obtain asymptotic distibutions of the interesting RVs. The number of balls in each urn is now
Poisson-distributed with parameter n∗qj in urn j. The asymptotic distibutions are related to Gumbel
distributions functions or convergent series of such. The error term is O(m−1).
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• We have uniform integrability for the moments of our RVs. To show that the limiting moments
are equivalent to the moments of the limiting distributions, we need a suitable rate of convergence.
This is related to a uniform integrability condition (see Loève (10, Section 11.4)). For the kind of
limiting distributions we consider here, the rate of convergence is analyzed in detail in (11) and
(13). The error term is O(m−C).

• Asymptotic expressions for the moments are obtained by Mellin transforms. The error term is
O(m−C).

We have here the asymptotic expression

Theorem 6.1

P[T = `,XT = i, ST = j] ∼ e−n
∗q` (n∗q`)i

i!
e−n

∗q`+1(1−qk)/pe−n
∗q`+k+1/p

(
n∗q`+k+1/p

)j
j!

×[
k−1∑
v=1

e−n
∗q`−v(1−qv)/pP [n∗, `− v − 1] + P [n∗, `− 1]

]
, (1)

where P (n∗, u) is the probability that urn u is non-empty and below either all urns are non-empty, or
there are r − 1 ≥ 0 non-empty urns and below a gap of length t < k and below no gaps of length ≥ k.
(In the last sum, the extra term is the one for index v = 0.)

Proof:
We use the Poisson property. Urn ` is not empty (with i balls) and above we have k empty urns and

above we have j balls.
Below urn ` we have either v < k empty urns and below one non-empty urn and below no gaps of

length ≥ k, or one non-empty urn and below no gaps of length ≥ k.
P (n∗, u) is the probability that urn u is non-empty and below either all urns are non-empty, or there

are r − 1 ≥ 0 non-empty urns and below a gap of length t < k and below no gaps of length ≥ k.
This means

P [n∗, u] =
−∞∏
v=u

(
1− e−n

∗qv
)

+
∞∑
r=1

u−r+1∏
v=u

(
1− e−n

∗qv
) k−1∑
t=1

e−n
∗qu−r−t(1−qt)/pP [n∗, u− r − t− 1].

Set
n∗qu =

n∗

Qu
= x,

and the recurrence becomes, setting v − u = s,

P [x] =
∞∏
s=0

(
1− exQ

s
)

+
∞∑
r=1

r−1∏
s=0

(
1− e−xQ

s
) k−1∑
t=1

e−xQ
r+t(1−Q−t)/pP [xQr+t+1]. (2)

2

We couldn’t solve recurrence (2) up to now. It does not seem possible to obtain a simpler form for the
correlation between our three variables.
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If we sum on ` in (1) (i.e., we are interested in the joint distribution of XT and ST ), we are now in
the field of gaps analysis, which has attracted some interest recently. A gap is a maximal sequence of
contiguous empty urns, below the last non-empty urn: see Hitczenko and Knopfmacher (6), Goh and
Hitczenko (5), Louchard and Prodinger (12) (in this paper, the weak gaps are analyzed, i.e., the number
of empty urns below the last non-empty urn).

Let us first analyze U := number of gaps in a sequence of n geometric RVs with parameter p. Set
pn(u) := P[U = u] and Fn(u) :=

∑u
i=0 pn(i). We have

Theorem 6.2

pn(u) ∼
∞∑
`=1

[
1− e−n

∗q`
]
e−n

∗q`+1/p
∞∏
v=1

[
1− e−n

∗q`−v
]

∞∑
r1=1

∞∑
d1=1

exp
[
−n∗q`−r1−d1+1

(
1− qd1

)
/p
]∏d1−1

`1=0

[
1− e−n∗q`−r1−`1

]
∞∑

r2=r1+d1+1

∞∑
d2=1

exp
[
−n∗q`−r2−d2+1

(
1− qd2

)
/p
]∏d2−1

`2=0

[
1− e−n∗q`−r2−`2

]
...

∞∑
ru=ru−1+du−1+1

∞∑
du=1

exp
[
−n∗q`−ru−du+1

(
1− qdu

)
/p
]∏du−1

`u=0

[
1− e−n∗q`−ru−`u

] .

Also
1− Fn(u) ∼ pn(u+ 1)

1∏∞
k=1

[
1− e−n∗q`−ru+1−du+1−k

] , (3)

The mean number of gaps E(U) is given by

E(U) =
∞∑
u=0

[1− Fn(u)].

Proof: Again, we use the Poisson property. Urn ` is not empty. Above `, all urns are empty. Below ` all
urns are non-empty, but we have u empty gaps, starting at ` − rk, ending at ` − rk − dk + 1, of size dk
each. The proof of (3) goes as follows: We have u+ 1 gaps, ending at `− ru+1 − du+1 + 1. Below, we
have one non-empty urn, and below, we don’t care, and cancel the corresponding part of the previous

∞∏
v=1

[
1− e−n

∗q`−v
]
.

2

pn(u) is a harmonic sum, that we can analyze as in (11), (13), (12), using Mellin transforms. Set
η := `− log n∗. Then pn(u) ∼

∑∞
`=1 f0(η, u), with

f0(η, u) =
[
1− e−e

−Lη
]
e−βe

−Lη
∞∏
v=1

[
1− e−e

−L(η−v)]
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∞∑
r1=1

∞∑
d1=1

exp
[
−e−L(η−r1−d1+1)

(
1− qd1

)
/p
]∏d1−1

`1=0

[
1− e−e−L(η−r1−`1)]

∞∑
r2=r1+d1+1

∞∑
d2=1

exp
[
−e−L(η−r2−d2+1)

(
1− qd2

)
/p
]∏d2−1

`2=0

[
1− e−e−L(η−r2−`2)]

...
∞∑

ru=ru−1+du−1+1

∞∑
du=1

exp
[
−e−L(η−ru−du+1)

(
1− qdu

)
/p
]∏du−1

`u=0

[
1− e−e−L(η−ru−`u)

] .

Set

φ(α, u) :=
∫ ∞
−∞

eαηf0(η, u)dη,

Υ∗0(s, u) = L φ(α, u)|α=−Ls ,

w0(u) =
1
L

∑
` 6=0

Υ∗0(χ`, u)e−2`πi logn∗ .

Then we obtain the periodic contribution:

Theorem 6.3 pn(u) ∼ φ(0, u) +w0(u) +O(n−C), C > 0; w0(u) is a periodic small function of log n∗.

Similarly, starting from (3), we set

fM (η) :=
∞∑
u=0

f0(η, u+ 1)∏∞
k=1

[
1− e−e−L(η−ru+1−du+1−k)

] ,
φM (α) :=

∫ ∞
−∞

eαηfM (η)dη,

Υ∗0,M (s) = L φM (α)|α=−Ls ,

w0,M =
1
L

∑
` 6=0

Υ∗0,M (χ`)e−2`πi logn∗ .

Then

Theorem 6.4 E(U) ∼ φM (0) + w0,M +O(n−CM ), CM > 0.

Also, we can consider the case where all gaps do have a length ≤ m. Set ML:=maximum gaps length
and Fg(m) := P[ML ≤ m]. This leads to

Fg(m) ∼
∞∑
u=0

∞∑
`=1

[
1− e−n

∗q`
]
e−n

∗q`+1/p
∞∏
v=1

[
1− e−n

∗q`−v
]

∞∑
r1=1

m∑
d1=1

exp
[
−n∗q`−r1−d1+1

(
1− qd1

)
/p
]∏d1−1

`1=0

[
1− e−n∗q`−r1−`1

]
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∞∑
r2=r1+d1+1

m∑
d2=1

exp
[
−n∗q`−r2−d2+1

(
1− qd2

)
/p
]∏d2−1

`2=0

[
1− e−n∗q`−r2−`2

]
...

∞∑
ru=ru−1+du−1+1

m∑
du=1

exp
[
−n∗q`−ru−du+1

(
1− qdu

)
/p
]∏du−1

`u=0

[
1− e−n∗q`−ru−`u

] ,

and setting

f1(η,m) =
∞∑
u=0

[
1− e−e

−Lη
]
e−βe

−Lη
∞∏
v=1

[
1− e−e

−L(η−v)]
∞∑
r1=1

m∑
d1=1

exp
[
−e−L(η−r1−d1+1)

(
1− qd1

)
/p
]∏d1−1

`1=0

[
1− e−e−L(η−r1−`1)]

∞∑
r2=r1+d1+1

m∑
d2=1

exp
[
−e−L(η−r2−d2+1)

(
1− qd2

)
/p
]∏d2−1

`2=0

[
1− e−e−L(η−r2−`2)]

...
∞∑

ru=ru−1+du−1+1

m∑
du=1

exp
[
−e−L(η−ru−du+1)

(
1− qdu

)
/p
]∏du−1

`u=0

[
1− e−e−L(η−ru−`u)

] ,

φ(α,m) :=
∫ ∞
−∞

eαηf1(η,m)dη,

Υ∗0(s,m) = L φ(α,m)|α=−Ls ,

w0(m) =
1
L

∑
` 6=0

Υ∗0(χ`,m)e−2`πi logn∗ .

We have the periodic contibution:

Theorem 6.5 Fg(m) ∼ φ(0,m) + w0(m) +O(n−C1), C1 > 0.

Also E(ML) =
∞∑
m=0

[1− Fg(m)].

Let us now return to our joint distribution of XT and ST (independently of T ). Set

pn(i, j, k) := P[XT = i, ST = j].

Setting again η = `− log n∗, this leads to

f2(η, i, j, k) = e−e
−Lη (e−Lη)i

i!
e−βe

−Lη(1−qk)e−βe
−L(η+k)

(
βe−(η+k)

)j
j!

×
∞∑
u=0

∞∏
v=1

[
1− e−e

−L(η−v)
]
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∞∑
r1=1

k−1∑
d1=1

exp
[
−e−L(η−r1−d1+1)

(
1− qd1

)
/p
]∏d1−1

`1=0

[
1− e−e−L(η−r1−`1)]

∞∑
r2=r1+d1+1

k−1∑
d2=1

exp
[
−e−L(η−r2−d2+1)

(
1− qd2

)
/p
]∏d2−1

`2=0

[
1− e−e−L(η−r2−`2)]

...
∞∑

ru=ru−1+du−1+1

k−1∑
du=1

exp
[
−e−L(η−ru−du+1)

(
1− qdu

)
/p
]∏du−1

`u=0

[
1− e−e−L(η−ru−`u)

] ,

φ(α, i, j, k) :=
∫ ∞
−∞

eαηf2(η, i, j, k)dη,

Υ∗0(s, i, j, k) = L φ(α, i, j, k)|α=−Ls ,

w0(i, j, k) =
1
L

∑
6̀=0

Υ∗0(χ`, i, j, k)e−2`πi logn∗ .

We have the asymptotics:

Theorem 6.6 pn(i, j, k) ∼ φ(0, i, j, k) + w0(i, j, k) +O(n−C2), C2 > 0.

Of course, most of our expressions are rather complicated, but they are explicit, with their periodic
contribution and it doesn’t seem possible to simplify them further on.

7 Conclusion
Taking k → ∞ in our asymptotic results, we find that En(XT ) ∼ p

qL , En(ST ) ∼ 0, and En(T ) ∼
log n + 1

2 + γ
L . (All quantities are given without the tiny fluctuations.) These values are intuitive, as the

first one corresponds to the average number of (tied) winners (see (9)), the second one is clearly 0, and
the third one is the average value of the maximum of n geometrically distributed random variables, which
is a very well studied quantity.

Our asymptotic results contain the numbers of interest on the righthand side. This looks paradoxical
at first glance, but it is very common in combinatorial enumeration. The series involved converge very
quickly, and one only has to compute a few values for an from the recursion to obtain some reasonable
accuracy.

Using some results from our previous papers, we also get asymptotic joint distributions related to
T,XT , ST . This also provides some asymptotics on gaps properties. It remains to solve recurrence (2)
and to simplify some expressions.
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