
Discrete Mathematics and Theoretical Computer Science DMTCS vol. 12:3, 2010, 81–102

A further analysis of Cuckoo Hashing with a
Stash and Random Graphs of Excess r

Reinhard Kutzelnigg†‡

Institute of Discrete Mathematics and Geometry, Vienna University of Technology, Wien, Austria

received 11th August 2009, revised 21st March 2010, accepted 26th July 2010.

Cuckoo hashing is a hash table data structure offering constant access time, even in the worst case. As a drawback,
the construction fails with small, but practically significant probability. However, Kirsch et al. (2008) showed that
a constant-sized additional memory, the so called stash, is sufficient to reduce the failure rate drastically. But so far,
using a modified insertion procedure that demands additional running time to look for an admissible key is required.
As a major contribution of this paper, we show that the same bounds on the failure probability hold even without this
search process and thus, the performance increases. Second, we extend the analysis to simplified cuckoo hashing,
a variant of the original algorithm offering increased performance. Further, we derive some explicit asymptotic
approximations concerning the number of usual resp. bipartite graphs related to the data structures. Using these
results, we obtain much more precise asymptotic expansions of the success rate. These calculations are based on a
generating function approach and applying the saddle point method. Finally, we provide numerical results to support
the theoretical analysis.

Keywords: Hashing, Cuckoo hashing, Algorithms, Generating functions, Random graphs, Saddle point method

1 Introduction
In computer science, hash tables are a frequently used tool to build dictionary-like data structures that
support fast insertion, search and potentially also deletion operations, see, e.g. Cormen et al. (2001). All
these algorithms are based on using hash functions that map data records (keys) to a unique memory cell
of the table. We say that two different keys collide if both try to occupy a single memory slot. The critical
point of each hash algorithm is the handling of colliding keys.

In particular, hash algorithms that offer constant access time even in the worst case are of high interest.
One of these algorithms is cuckoo hashing that was first proposed by Pagh and Rodler (2004). In contrast
to common hash techniques like open addressing and hashing with chaining (see, e.g., Knuth (1998)), col-
lisions are resolved by rearranging keys. This is achieved by using two independent hash functions h1 and

†Email: reinhard.kutzelnigg@gmail.com
‡The author was supported by the EU FP6-NEST-Adventure Programme, Contract number 028875 (NEMO), and by the Austrian

Science Foundation FWF, project S9604.

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/dmtcs-ojs/index.php/volumes/
http://www.dmtcs.org/dmtcs-ojs/index.php/volumes/dm12:3ind.html

82 Reinhard Kutzelnigg

h2, both map a key to a unique position in the data structure. These are the only allowed storage locations
of that key and, hence search operations require at most to access two memory cells. There are several
different variants of cuckoo hashing known in the literature, see Fotakis et al. (2005); Dietzfelbinger and
Weidling (2007) and Kutzelnigg (2010). In this paper we consider the following two: The standard algo-
rithm introduced in Pagh and Rodler (2004) splits the available memory cells in two equal parts and grants
each hash function exclusively access to one of these regions. However, this split-up is not necessary. We
obtain an in some sense simplified algorithm, if both hash functions address the whole table. It is shown
in Kutzelnigg (2009, 2010) that this variation, henceforth referred to as simplified cuckoo hashing, offers
improved search and insertion performance.

Despite this difference, the insertion process works for both algorithms considered here as follows:
To insert a new key x, we put it into the table position indicated by h1(x). Now, if this position was
previously empty, the insertion is complete. Otherwise, we kick-out the key y that previously occupied
h1(x) = h1(y) and move it to its alternative position h2(y). If this position was already in use by a key z,
we continue moving z to its alternative position. We carry on in this way until an empty cell is found or we
detect an endless loop. The latter case can be uncovered by the number of kick-out steps performed. The
standard way to handle this critical situation is to rebuild the complete data structure using two new hash
functions. Fortunately, the occurrence of an endless loop is a rare event. More precisely, both variants of
cuckoo hashing succeed with probability 1−O(1/m), conditioned that the load factor(i) is less than 0.5,
see Devroye and Morin (2003), Drmota and Kutzelnigg (2009), and Pagh and Rodler (2004).

The analysis is hereby usually based on the assumption that the values of the hash functions form a
sequence of independent uniform random numbers. This seems to impose strong conditions on the hash
functions in use. However, numerical results obtained using quite simple hash functions are in good accor-
dance with the results obtained by this model. Thus, we assume the same conditions on the hash functions
to be satisfied in this paper too. A further discussion of this model, hash functions suitable for practical
implementation, and additional references are given in Kutzelnigg (2009), but see also Dietzfelbinger and
Schellbach (2009).

Although the success probability of cuckoo hashing tends to one under the conditions stated above,
there is still a non negligible failure rate, even for large data structures. For instance, consider the out-
come of one of the numerical experiments given in Table 8: There occurred 14355 errors among 107

constructions of data structures, each possessing in total 105 memory cells and a load factor α = 0.45.
Clearly, rebuilding a table requires high additional running time. Hence, cuckoo hashing is not attractive
for applications where this behavior is not acceptable. To overcome this weak point, Kirsch et al. (2008)
suggested to use a small additional memory, the so called stash. This stash is used to store items that
could not be placed in the table itself. Interestingly, this modification drastically reduces the failure rate.
More precisely, the authors showed that an additional memory of s items is sufficient to achieve a success
probability of 1 − O

(
m−s−1

)
for the standard algorithm. However, the analysis is based on the usage

of a modified insertion algorithm that requires additional steps to look for an admissible keys that can
be placed in the stash. Details will be discussed in Section 4. We will show that the same result can be
achieved without this search process, as it was already conjectured in Kirsch et al. (2008). Next, we prove
that the same bound is valid for the simplified version of cuckoo hashing. Further, we demonstrate how
detailed asymptotic expansions of the success rate can be obtained using a generating function approach.

(i) The load factor is defined as the quotient of the number of keys stored in the data structure and the total number of storage
positions.

A further analysis of Cuckoo Hashing with a Stash and Random Graphs of Excess r 83

In particular, this can be used to show that the failure rate is in fact in Θ
(
m−s−1

)
. Finally, we support

our analysis by numerical results.

2 The Cuckoo Graph
Our analysis is based on the cuckoo graph, a concept first developed in Devroye and Morin (2003).
Hereby, standard cuckoo hashing without a stash is modeled using a bipartite multi graph. Each memory
cell corresponds to a labeled node. Further, a node is colored “red” if and only if the according cell
belongs to the first half of the memory slots. All other vertices are colored “blue”. We further assume that
the whole data structure contains 2m storage positions, each part numbered from 1 to m. We label the
nodes accordingly. Next, each key is encoded by an edge that joins the two possible storage locations of
that key. Additionally, the i-th inserted edge is labeled by i to encode the evolution. Note that the obtained
graph is bipartite by construction.

Clearly, it is impossible for the algorithm to succeed if a component exists that has more edges than
vertices. Thus, all components of the cuckoo graph must either be trees or unicyclic, i.e. contain either
none or exactly one cycle. Interestingly, this condition is not only necessary, but also sufficient. More
precisely, the key observation in Devroye and Morin (2003) is that cuckoo hashing succeeds if and only if
all connected components of the cuckoo graph are either trees or unicyclic. Further, it is common to call
the “bad” parts, i.e. connected components possessing more than one cycle, complex.

Concerning simplified cuckoo hashing, a similar modeling is possible, see Kutzelnigg (2010). In con-
trast to the bipartite graph described above, the one-table data structure is represented by a non-bipartite
edge and node labeled directed graph. Edges are again used to represent keys and they still connect the
two possible storage locations. However, it is necessary to use directed edges, to determine the primary
storage position uniquely. This is closely related to the multi graph process described in Janson et al.
(1993). Despite these differences in the definition of the graph model, simplified cuckoo hashing is again
successful if and only if the shadow graph(ii) of its cuckoo graph does not contain a component with more
than one cycle.

Additionally to the obvious implementation of the simplified algorithm that allows both storage posi-
tions of a key to be equal, there is a further method. Assume that the data structure contains 2m storage
positions. For each key x, we assume that the hash value of the second hash function h2(x) is selected
uniformly at random among the set {1, 2, . . . , 2m} \ h1(x). This can be achieved by using a function
k(x) that maps x to a (pseudo) random number from 1 to 2m − 1 and setting h2(x) = h1(x) + k(x)
mod 2m. As a small drawback, the evaluation of h2(x) requires an additional summation. On the other
hand, each key now possesses in any way two different storage positions and the corresponding cuckoo
graph does not contain self-loops. Consequently, we expect increased performance. In fact, this can be
verified by a theoretical analysis, see Kutzelnigg (2010). However, note that the actual behavior is very
similar, especially if tables are getting full.

(ii) Given a directed graph, we obtain its shadow graph by replacing each edge by an undirected one. Note that we consider multi
graphs, thus multiple edges that occur in this process are retained.

84 Reinhard Kutzelnigg

3 Results
Theorem 1 Consider a standard cuckoo hash data structure possessing two subtables of size m and
holding n = b2αmc keys, where α ∈ (0, 0.5) is fixed. Whenever an endless loop is detected, the last
kicked-out element is placed in the stash of size s ≥ 1. Then, the construction succeeds with probability

1− c(α, s)m−s−1 +O
(
m−s−2

)
. (1)

Hereby, c(α, s) 6= 0 depends on α and s, but not onm and it can be calculated explicitly with our method.

An essential difference of this result compared to (Kirsch et al., 2008, Theorem 1) is that we do not
require additional steps to search for admissible keys. Further, our asymptotic result is much more precise.

The proof of Theorem 1 is split up into two parts. First, a proof that the described insertion strategy
succeeds with probability 1−O

(
m−s−1

)
is given in Section 4. These considerations are a refinement of

the original analysis that can be found in Kirsch et al. (2008). The further proof is based on a generating
function approach on the cuckoo graph and can be found in Section 7. In particular, we prove that
c(α, s) 6= 0 holds. Moreover, we present a method to compute this coefficient, and we have implemented
it with Maple. However, note that the calculations are limited by the available memory of the machine
that executed the computer algebra system. Using a workstation equipped with 12GB RAM, we were
successful in solving the problem for s ∈ {0, 1, 2}.

Note that during a successful insertion procedure, each memory slot is visited at most twice. Thus,
an insertion procedure in a table previously holding i keys is clearly unsuccessful if it takes more than
2i + 1 kick-outs. However, we can usually do much better and stop earlier, see Kutzelnigg (2009) for
corresponding numerical data. On the other hand, there is a risk that we stop procedures that would have
been successful. The probability can be bounded as follows: For each k, there exists a sufficiently large
number β = β(k) that does not depend on m, such that the probability that there is an insertion that takes
more than β logm steps is O

(
m−k

)
, see (Kirsch et al., 2008, Lemma 4 and (1)). Hence, (1) still holds if

an insertion procedure is stopped and declared unsuccessful after β logm kick-outs performed, provided
that β is chosen sufficiently large.

Furthermore, we can analyze the simplified version by similar methods, see Sections 5 and 7 for details.
Note that we distinguish between the straightforward implementation, and the version without self-loops
as described in the previous section.

Theorem 2 Consider a simplified cuckoo hash table possessing 2m memory cells and holding n =
b2αmc keys, where α ∈ (0, 0.5) is fixed. Suppose that h2 is implemented such that h2(x) 6= h1(x)
holds for all keys x. Whenever an endless loop is detected, the last kicked-out element is placed in the
stash of size s ≥ 1. Then, the construction succeeds with probability

1− c(α, s)m−s−1 +O
(
m−s−2

)
.

Hereby, c(α, s) 6= 0 depends on α and s, but not onm and it can be calculated explicitly with our method.

Similar to the considerations given above, it is again possible to stop presumably unsuccessful insertion
procedures early.

Until now, we have successfully calculated the numbers c(α, s) for all s ≤ 8. Unfortunately, Theorem 2
does not cover the situation where self-loops are not excluded. However, we can analyze it with our
generating function approach and yield:

A further analysis of Cuckoo Hashing with a Stash and Random Graphs of Excess r 85

Theorem 3 Suppose that the conditions of Theorem 2 are fulfilled, except that the data structure is im-
plemented in the way such that self-loops may occur. Further, let s ∈ {0, 1, . . . , 8}. Then, the probability
that the construction of a simplified cuckoo hash table succeeds equals

1− ĉ(α, s)m−s−1 +O
(
m−s−2

)
.

Hereby, ĉ(α, s) 6= 0 depends on α and s, but not onm and it can be calculated explicitly with our method.

The proof of this result can be found in Section 7.

4 Insertion
The results given in this section hold for both types of cuckoo graphs. However note that the original
paper of Kirsch et al. (2008) considered the bipartite version only.

4.1 The insertion procedure of Kirsch et al. (2008)
Once an endless loop is discovered, it is required to search for an admissible key to be put in the stash,
such that the remaining keys can be placed in the original hash table. Clearly, a key is acceptable if
and only if the cuckoo graph does not possess a complex component after removing the coressponding
edge. We continue with an observation stated in Kirsch et al. (2008), and we are using the same notation
as in that paper: Given the cuckoo graph G, we denote the total number of edges that closed a cycle
when inserted by f(G). Further, the number of the connected components containing at least one cycle
is denoted by T (G). Consequently, the number of elements that could not be stored in the table itself
and have to be placed in the stash, equals f(G)− T (G). Moreover, we continue describing the modified
insertion procedure used in Kirsch et al. (2008): Whenever an endless loop is detected, the last insertion
step created a component possessing two cycles. We proceed searching for an edge of that component
that is contained in one of this two cycles. This is done by counting how often a memory cell is accessed
during an insertion and thus, it is quite computational expensive resp. memory consuming. Next we
delete the selected edge from the graph and put the corresponding key into the stash. Note that an edge
that closes a cycle on insertion in the original graph, still closes a cycle if we have removed some edges
as described above. Hence, we have found a way to remove exactly f(G) − T (G) edges, such that all
conflicts are resolved. Clearly, removing less edges can not repair all problems and hence the solution has
minimal cardinality.

4.2 Insertion without search for an admissible key
However, removing an edge that belongs to a cycle is not the only possible way to decrease f(G) −
T (G). We can alternatively choose the edge such that T (G) increases. This corresponds to breaking up
a component in two parts, but both of that new components must not be trees. We proceed using the
following definition:

Definition 1 Consider a connected graph H . The excess e(H) is given by
e(H) = # edges(H)−# nodes(H).

Furthermore, for a graph G, we define

ẽ(G) =
∑
H

max(e(H), 0) = f(G)− T (G),

where the sum is taken over all components H of G.

86 Reinhard Kutzelnigg

The insertion procedure is modified as follows: As long as no irresolvable conflict occurs in a basic
cuckoo hash data structure, we perform the insertions using the original algorithm of Pagh and Rodler
(2004) that is described in Section 1. However, each time we detect an endless loop, we put the last
kicked-out key in the stash, and delete the corresponding edge. More precisely, we even may select that
key arbitrarily among the set of all keys that have been kicked out in the current insertion procedure, but
it is of course convenient to choose the last evicted key. We then proceed in the usual way to insert further
keys, until the next problem is discovered. Thus, we avoid a complicated cycle detection mechanism.

The remainder of this section is used to proof that this strategy is alway successful. First, we say that
an edge is disturbing, if its insertion increases ẽ(G). Recall that we are considering labeled and thus
ordered edges. Since ẽ(G) cannot decrease by inserting an additional edge(iii), ẽ(G) equals the number of
disturbing edges. However, it is possible to decrease ẽ(G) by removing certain edges:

Lemma 1 Removing an edge g ofG decreases ẽ(G) if and only if the removal of that edge does not create
a new tree.

Proof: Denote the component that contains g byH . First, if g is contained in a cycle, e(H\g) = e(H)−1
holds. Thus ẽ decreases by one, except if the excess of H equals 0. But in the latter case, H \ g is a new
tree. Second, if g is not contained in a cycle, it is a bridge connecting H1 and H2. Hence, the relation
e(H) = e(H1) + e(H2) + 1 is satisfied. If both H1 and H2 are trees, H is also a tree and none of these
components influences the calculation of ẽ. If only one component is a tree, say H2, e(H) = e(H1)
holds and ẽ remains again unchanged. However, if both H1 and H2 posses nonnegative excess, we obtain
ẽ(G \ g) = ẽ(G)− e(H) + e(H1) + e(H2) = ẽ(G)− 1. 2

Next, we consider the influence of removed edges on further disturbing edges:

Lemma 2 Let G′ denote a graph arising from G, where we have already removed ẽ(G) edges such that
ẽ(G′) = 0 holds. Assume that a new edge g is disturbing in G′. Then, it is disturbing in G too.

Proof: We consider two different situations in G′, see Figure 1. First, suppose that g is a bridge in G′ that
connects H ′1 and H ′2. By similar reasoning as in the proof of Lemma 1, both of this components cannot

H ′
1 H ′

2

g

H1 H2

g

H ′

g

H

g

or

or

in G′:

in G:

Fig. 1: A disturbing edge g. We distinguish whether g is a bridge in G or not.

(iii) Note that the number of nodes is fixed, and hence remains unchanged.

A further analysis of Cuckoo Hashing with a Stash and Random Graphs of Excess r 87

b

b b

b

b

b

bb

b b

bb

b

b

b

b b

b

b or
b

b b

b

b

bb

b b

bb

b b

b

Fig. 2: The two possible types of bicyclic components.

be trees, because otherwise g would not be a disturbing edge. Thus, e(H ′1) ≥ 0 and e(H ′2) ≥ 0 hold.
Assume that g is a bridge in G that connects components H1 ⊇ H ′1 and H2 ⊇ H ′2. We conclude that
e(H1) ≥ e(H ′1) ≥ 0 and e(H2) ≥ e(H ′2) ≥ 0 are fulfilled. Hence g is disturbing in G. The proof of the
two further cases follows by a similar argument as above. 2

Lemma 3 Assume that we always perform the following steps whenever the insertion procedure has
entered an endless loop: We stop at an arbitrarily selected moment, put the current homeless key in the
stash of potential unlimited capacity, and delete the corresponding edge. By doing so, the stash holds
ẽ(G) keys finally, where G denotes the original cuckoo graph without deleted edges.

Proof: Consider the graph G′ that encodes the current state of the data structure. The algorithm enters an
endless loop whenever a component containing two cycles is created. This can either happen by closing
a further cycle in an unicyclic component or by connecting two different unicyclic components. Hence,
the new edge is disturbing for G′. There exist two different typical situations, depicted in Figure 2. Each
of the nodes can be considered as root of an additional attached tree, not depicted in the figure. Observe
that the last inserted edge must be contained in the drawn part. None of the keys belonging to one of the
depicted edges has a possible storage position in these potentially attached trees. Hence the presence of
this appendix has no influence on the current insertion. In particular, none of these keys can ever become
kicked-out in the current insertion operation. Note that arbitrarily selection and deletion of one the drawn
edge decreases ẽ, because of Lemma 1.

Note that the frequency of the occurrence of a disturbing edge is bounded by ẽ(G), due to Lemma 2.
Hence, we place at most ẽ(G) keys in the stash. On the other hand, this is the minimum number of
elements that have to be stored outside the table. 2

To prove Theorem 1, it hence remains to show that P(ẽ(G) ≥ s+1) has asymptotic expansion (1). This
is done in Section 7. Due to (Kirsch et al., 2008, (2)), the relation P(ẽ(G) ≥ s+ 1) = P(f(G)−T (G) ≥
s+ 1) = O(m−s−1) is already known. We just want to correct a minor mistake. When an insertion hits a
cyclic component, several (and not only one) vertices might be visited twice. In particular, k + 1 is not a
valid upper bound for the number of steps that an insertion requires in a component of size k, as claimed
in (Kirsch et al., 2008, Lemma 1). However, 2k is sufficient bound, see Devroye and Morin (2003) or
Kutzelnigg (2009) for further details.

5 Simplified Cuckoo Hashing
Instead of segmenting the available memory, this modified version grants both hash functions access to
the whole table. This variant was first mentioned in Pagh and Rodler (2004), a detailed analysis can be
found in Kutzelnigg (2009, 2010). In particular, the simplified algorithm offers improved performance of
search and insertion operations.

88 Reinhard Kutzelnigg

In this section, we prove that the data structure of Theorem 2 succeeds with probability 1−O(m−s−1).
First, recall that all lemmata given in Section 4 did not require a bipartite structure of G. Hence, ẽ(G)
still equals the number of keys that can not be stored in the table itself. Recall that we consider the
implementation without self-loops only. This is based on the fact that it is possible to adopt the analysis of
Kirsch et al. (2008) for this version. Nevertheless, because of the results given in Section 7, we conjecture
that the same bound holds for the other implementation too. Our proof is based on a stochastic dominance
argument, and we repeat resp. adopt the following definitions and results from Kirsch et al. (2008): For
a distribution D, let G(2m,D) denote the distribution over graphs with 2m nodes, obtained by sampling
l ∼ D and inserting l edges independently. Hereby, start point and end point of each edge are selected
uniformly and independently, except that no self loops are allowed. Clearly, the cuckoo graph of the
simplified variant has distribution G(2m,D) when D is concentrated at n.

Given two graphs G and G′ possessing the same set of vertices, we say that G ≥ G′ holds if each edge
of G is also contained in G′. Additionally, we generalize this relation on t-tuples of graphs by applying it
component-by-component, i.e. (G1, . . . , Gt) ≥ (G′1, . . . , G

′
t) holds if Gi ≥ G′i is fulfilled for all i.

Definition 2 Let µ and ν be two probability measures over t-tuples of graphs with common vertex set.
Then, µ stochastically dominates ν, in short notation µ � ν, if Eµ(g(G)) ≥ Eν(g(G)) holds for all
non-decreasing functions g.

Further, let Po(λ) denote the Poisson distribution with parameter λ.

Lemma 4 Assume that λ > 0 is fixed. Then, the conditional distribution of G ∼ G(2m,Po(λ)), condi-
tioned on the property that G has at least n edges stochastically dominates G(2m,n).

Proof: The proof follows the lines of (Kirsch et al., 2008, Lemma 3). Obviously, the conditional dis-
tribution of G under the assumption that there are exactly n edges is G(2m,n). Since k1 > k2 implies
G(2m, k1) � G(2m, k2), the result follows. 2

It is easy to see that the parameter λ can bee chosen such that the probability that G(2m,Po(λ)) has
less than n edges is exponentially small:

Lemma 5 (Kirsch et al. (2008)) Let ε′ > 0 be fixed and define λ = (1 + ε′)n. Then we yield

P(Po(λ) < n) = e−Ω(n).

Thus, it remains to show that for G ∼ G(2m,Po(λ)) the relation

P
(
ẽ(G) ≥ s

)
= O(m−s) (2)

holds. Given a vertex v of G ∼ G(2m,Po(λ)), let Cv denote the connected component that contains v.
Furthermore, let Bv denote the number of edges that belong to Cv that closed a circle on insertion.

Lemma 6 Assume that ε′ < 1/(2α)− 1 and t,k,n ≥ 1 hold. Then, we get

P(Bv ≥ t| |Cv| = k) ≤
(

3e5k3

2m

)t
.

A further analysis of Cuckoo Hashing with a Stash and Random Graphs of Excess r 89

Proof: The condition on ε′ ensures that λ = (1 + ε′)n is selected such that λ/m < 1 holds. As in
the proof of (Kirsch et al., 2008, Lemma 5), we consider a breath first search starting at v. We bound
the number of cycles that are created by visiting a new node by a Poisson random variable in each step.
The only difference is that a single edge now corresponds to a Poisson random variable with parameter
λ/
(

2m
m

)
, instead of λ/m2. Thus, we can apply (Kirsch et al., 2008, Lemma 6) with m replaced by 2m

and yield the claimed result. 2

By the same reasoning as (Devroye and Morin, 2003, Lemma 1), we obtain the following result for the
size of a component:

Lemma 7
P(|Cv| > k) ≤ P(Bin(nk, 1/(2m− 1)) ≥ k)

Lemmata 6 and 7 together with Chernoff’s bound are sufficient to prove (2), see Kirsch et al. (2008).

6 Enumerating complex graphs
In this section, we review resp. establish the generating functions that enable us to count the number of
cuckoo graphs of certain type resp. asymptotic approximations of these numbers. First, let us consider
node and edge labeled usual, but directed graphs. Let F denote a family of such graphs. Then, the
corresponding bivariate generating function is the formal power series

F (x, v) =
∑
G∈F

xm(G)

m(G)!

vn(G)

n(G)!
,

where m(G) denotes the number of nodes and n(G) the number of edges of G. However, it is usually
simpler to consider an univariant generating function first. For instance, node labeled rooted trees are
enumerated by the well known tree function t(x) satisfying t(x) = xet(x), see Flajolet and Sedgewick
(2009). Since a tree possesses exactly one node more than edges, the corresponding bivariate generating
function t(x, v) satisfies

t(x, v) =
t(2xv)

2v
.

We thus slightly abuse notation by denoting univariate and bivariate generating function by the same letter,
however the correct interpretation should be clear from the context.

Similarly, we define trivariate generating functions enumerating bipartite graphs:

F (x, y, v) =
∑
G∈F

xm1(G)

m1(G)!

ym2(G)

m2(G)!

vn(G)

n(G)!
,

Again, we avoid using the edge-counting variable v whenever possible.
Further, we make use of the notation [xm]A(x) to extract the m-th coefficient of a power series A(x)

that means
[xm]A(x) = [xm]

∑
k≥0

amx
m = am.

90 Reinhard Kutzelnigg

6.1 Usual graphs
Additionally to the already mentioned function t(x) counting rooted trees, the function t̃(x) counting
unrooted trees is well-known too. In particular, the relation

t̃(x) = t(x)− 1

2
t(x)2,

holds, see Flajolet and Sedgewick (2009). Using these functions, we describe the generating functions of
graphs with excess r ≥ 0. Since the number of nodes is uniquely determined for all these types of graphs,
we can concentrate on counting nodes. Thus univariate generating functions are sufficient, because we get
the bivariate function afterwards by replacing x with 2xv and multiplying the function by an additional
factor of (2v)r. However, this can only be done if self-loops and multiple edges are compensated in the
original construction. We follow the approach of Janson et al. (1993) and assign a graph with adjacency
matrix A = (aij)ij the compensation factor

κ(A) =

(∏
i

2aii
∑
j≥i

aij !

)−1

.

In particular, the following results hold for the general multi graph model:

Lemma 8 (Janson et al. (1993)) Assume that our graph might contain self-loops. Then, the generating
function C(x) of a connected graph with exactly one cycle is given by

C(x) =
∑
k≥1

1

2k
t(x)k = log

1√
1− t(x)

.

Further, let Er(x) denote the generating function of graphs consisting of complex components only and
having excess r, i.e. exactly r more edges than vertices. Then the relation

Er(x) =

2r∑
d=0

erd t(x)2r−d

(1− t(x))3r−d

holds. Hereby, the constants erd are given as

(6r − 2d)!Pd(r)

25r32r−d(3r − d)!(2r − d)!

where Pd(r) is further defined by Pd(r) = [xd]F (x) and

F (x) =
6

(4x)3

(
e4x − (4x)2

2
− 4x− 1

)
.

Since we also consider the situation where each key possesses two different storage positions, we also
require the generating functions counting graphs without self-loops.

Definition 3 Let ϑx denote the differential operator x ∂
∂x that corresponds to marking a node.

A further analysis of Cuckoo Hashing with a Stash and Random Graphs of Excess r 91

Lemma 9 Assume that we consider a multi graph without self-loops. Then, the generating function C(x)
of a connected graph with exactly one cycle is given by

C(x) =
∑
k≥2

1

2k
t(x)k = log

1√
1− t(x)

− 1

2
t(x).

Further, let Er(x) denote the generating function of graphs consisting of complex components only and
having excess r, i.e. exactly r more edges than vertices. These functions satisfy the differential recurrence

(r + (1− t)ϑx)Er =
1

2
e−C

(
ϑ2
x − ϑx

)
eCEr−1. (3)

Moreover, E0 = 1 holds, since only the empty graph is complex and has excess 0.

Note that the previously mentioned results are not explicitly given in Janson et al. (1993). However, the
case where both, self-loops and multiple edges are forbidden, is considered in that paper. Thus, the proof
of Lemma 9 follows immediately by combining these methods and results. Finally, using the differential
recursion (3) and a computer algebra system, it is easy to obtain all generating functions that are required
in the next section.

6.2 Bipartite graphs
In contrast to usual graphs, only few results concerning bipartite graphs are known in the literature. How-
ever, trees and unicyclic components have been studied recently, see also Gimenez et al. (2005):

Lemma 10 (Drmota and Kutzelnigg (2009)) The generating functions t1(x, y) resp. t2(x, y) of rooted
bipartite trees possessing a root node of first resp. second type and the generating function of unrooted
bipartite trees t̃(x, y) are given by

t1(x, y) = xet2(x,y), t2(x, y) = yet1(x,y)

and
t̃(x, y) = t1(x, y) + t2(x, y)− t1(x, y)t2(x, y).

The partial derivatives of the functions t̃(x, y) and t1(x, y) are given by

∂

∂x
t̃(x, y) =

t1(x, y)

x
,

∂

∂y
t̃(x, y) =

t2(x, y)

y
,

and
∂

∂x
t1(x, y) =

t1(x, y)

x(1− t1(x, y)t2(x, y))
,

∂

∂y
t1(x, y) =

t1(x, y) t2(x, y)

y(1− t1(x, y)t2(x, y))
.

Further, the generating function of a connected bipartite graph with exactly one cycle is given by

C(x, y) =
∑
k≥1

1

2k
t1(x, y)kt2(x, y)k =

1

2
log

1

1− t1(x, y)t2(x, y)
.

Concerning components with positive excess, we proceed as in Janson et al. (1993) and adopt the
calculation to the present situation. Thereby, we make use of the following shortened notation:

92 Reinhard Kutzelnigg

Definition 4 Let ϑx denote the differential operator x ∂
∂x that corresponds to marking a vertex of first

kind. Similarly, we define the operators ϑy and ϑv for marking a node of second kind resp. an edge.

Further, we obtain the following result:

Lemma 11 Let E = E(x, y, v) denote the generating function for the complex part of a bipartite graph
that means all its components have positive excess. Then, the following equation holds:

1

v
ϑvE = (ϑxϑyC)E + (ϑxC)(ϑyC)E

+ (ϑxt̃)(ϑyE) + (ϑxE)(ϑy t̃) + (ϑxC)(ϑyE) + (ϑxE)(ϑyC) + ϑxϑyE (4)

Proof: Obviously, the left hand side of our equation represents all complex bipartite graphs having a
marked edge with the edge count decreased by one. Thus, the right hand side should yield all ways how
the complex part can grow by one edge. In particular, the terms correspond to the following operations
from left to right:

• The new edge connects two edges of an unicyclic component and thus closes a further loop in it.

• It might also join two different unicyclic components, and hence a bicyclic component arises.

• Furthermore, the new edge might attach a tree to an already complex component. There are two
distinct situations, the node of first kind can belong to each of the two involved components.

• Similar to the previous case, but we select an unicyclic component instead of a tree.

• Finally, we may connect two edges belonging to the complex part.

Additionally it is straightforward to verify (4) adopting the calculations of Janson et al. (1993), but we
skip this tedious and technical alternative proof. 2

To solve the differential equation (4), we transform it into a recursion formula:

Lemma 12 Let Er(x, y) denote the generating function of bipartite graphs consisting of complex com-
ponents only and having excess r. These functions satisfy the partial differential recurrence

(r + (1− t2)ϑx + (1− t1)ϑy)Er = e−Cϑxϑye
CEr−1.

Moreover, E0 = 1 holds, since only the empty graph is complex and has excess 0.

Proof: We start rewriting (4). Using Lemma 10, we obtain

ϑxt̃(x, y, v) =
t1(xv, yv)

v
, ϑy t̃(x, y, v) =

t2(xv, yv)

v
.

Furthermore, it is straightforward to verify that

(ϑxϑyC)E + (ϑxC)(ϑyC)E + (ϑxC)(ϑyE) + (ϑxE)(ϑyC) + ϑxϑyE = e−Cϑxϑye
CE

A further analysis of Cuckoo Hashing with a Stash and Random Graphs of Excess r 93

holds. Thus we get

1

v
(ϑv − t1(xv, yv)ϑy − t2(xv, yv)ϑx)E(x, y, v) = e−C(x,y,v)ϑxϑye

C(x,y,v)E(x, y, v). (5)

Next we partition E(x, y, v) into summands of equal excess. Thus we write

E(x, y, v) =
∑
r

Er(x, y, v) =
∑
r

vrEr(xv, yv).

Further, we immediately yield

ϑxE(x, y, v) =
∑
r

vrx
∂

∂x
Er(xv, yv) =

∑
r

vr (ϑxEr) (xv, yv), (6)

and similarly
ϑvE(x, y, v) =

∑
r

(
rvrEr(xv, yv) + vr

(
(ϑx + ϑy)Er

)
(xv, yv)

)
(7)

holds. Hereby (ϑxEr)(xv, yv) means ϑxEr(x, y) with x and y subsequently replaced by xv and yv.
Finally, we plug in (6) and (7) into (5), equate the coefficients of vr−1 on both sides and then set v = 1.
Thus we obtain

(r + (1− t2(x, y))ϑx + (1− t1(x, y))ϑy)Er(x, y) = e−C(x,y)ϑxϑye
C(x,y)Er−1(x, y),

what completes the proof. 2

Solving the recursion of Lemma 12 in general seems to be out of reach, but using a computer algebra
system, it is quite easy to get some results. In particular, the solutions exhibit a certain pattern, hence it is
possible to write down an ansatz and compute the coefficients. Thus, we get for instance

E1 =
t1t2(4 + 3t2 + 3t1 + 6t1t2 + 2t1t

2
2 + 2t21t2)

24(1− t1t2)3
,

and

E2 =
t1t2

1152(1− t1t2)6

(
720t21t2 + 24t21 + 652t31t

2
2 + 72t41t

3
2 + 156t41t

2
2 + 156t42t

2
1

+ 48 + 24t22 + 201t31t2 + 4t52t
3
1 + 688t1t2 + 4t51t

3
2 + 201t1t

3
2 + 8t41t

4
2

+ 348t31t
3
2 + 72t42t

3
1 + 652t21t

3
2 + 1218t21t

2
2 + 720t1t

2
2 + 96t2 + 96t1

)
.

7 Detailed Asymptotic Expansions
In this section, we present a generating function approach that enables us to calculate detailed asymptotic
expansions of the number of cuckoo graphs satisfying ẽ(G) ≤ s. Together with the number of all cuckoo
graphs, we further obtain the percentage of graphs that fulfill the very same property. Hence, the proofs
follow the same idea as the analysis of the success probability given in Drmota and Kutzelnigg (2009) and
Kutzelnigg (2009).

94 Reinhard Kutzelnigg

7.1 Usual graphs

We concentrate on the case where self-loops are allowed. The second case can be treated in the same
way, by just exchanging the generating functions. Thus, we obtain a similar result, however the non-zero
coefficients of the asymptotic expansion are different.

First, it is straightforward to count all directed node and edge labeled multi graphs possessing 2m nodes
an n edges:

#G2m,n =

[
vn

n!

]
(ev)

2m (
e2v
)(2m

2)
= (4m2)n.

Second, we determine #Gr2m,n, the number of all graphs containing a complex part with r more edges
than nodes, using the generating functions given in the previous section. In particular, each of these
graphs contains 2m− n+ r (unrooted) tree components. This is easy to see, because of the fact that the
insertion of an edge reduces the number of tree components by one, except if it increases the excess of the
complex part. Next, the graph contains a (possibly empty) set of unicyclic components. Hence we infer
by elementary combinatorial constructions (see e.g. Flajolet and Sedgewick (2009)):

#Gr2m,n =
(2m)!n!

22m−n [x2m]
t̃(2x)2m−n+r

(2m− n+ r)!
eC(2x)Er(2x) =

2n(2m)!n!
[
x2m

]
t̃(x)2m−n+reC(x)Er(x)

(2m− n+ r)!
.

(8)
We use Cauchy’s Formula to obtain an integral representation of that formula. This integral can be asymp-
totically evaluated using the saddle point method, see Lemma 13 that can be found in the appendix. For
technical reasons, we define the ratio

ε = 1− n

m
= 1− b2αmc

m
= 1− 2α+O(m−1).

Then, it turns out that the saddle point is given by x0 = (1 − ε)eε−1. In particular, the result for the
special case r = 0 that corresponds to an empty stash, is given in Drmota and Kutzelnigg (2009) and
Kutzelnigg (2009). However, in the present situation, it is not sufficient to provide the second order term
of the expansion only, we require several further terms. The calculation of these asymptotic expansions
has been done with Maple in a semi-automatic way. In particular, we obtain

#Gr2m,n = #G2m,n

(
crr(ε)

mr
+
crr+1(ε)

mr+1
+
crr+2(ε)

mr+2
+ . . .

)
, (9)

where the cri (ε) depend on ε, but not on m. The first non-zero coefficient is given by

crr(ε) =
E(x0)t(x0)r

2r
, (10)

and in particular c00(ε) = 1 holds.
We conclude that the fraction of cuckoo graphs that possesses a cyclic part of excess r is given by

#Gr2m,n/#G2m,n. Then, the percentage of graphs possessing a single bicyclic component of excess one

A further analysis of Cuckoo Hashing with a Stash and Random Graphs of Excess r 95

equals

#G1
2m,n

#G2m,n
=
c11(ε)

m
+
c12(ε)

m2
+O

(
1

m3

)
=

(1− ε)2(5− 2ε)

48ε3

1

m
+

(1− ε)(4ε5 − 104ε4 + 481ε3 − 727ε2 + 1127ε− 925)

2304ε6

1

m2
+O

(
1

m3

)
.

Furthermore, the probability that ẽ(G) is less or equal s for a randomly selected graph G is given by

P(ẽ(G) ≤ s) =

s∑
r=0

#Gr2m,n
#G2m,n

= c00(ε) +

1∑
r=0

cr1(ε)

m
+

2∑
r=0

cr2(ε)

m2
+ · · ·

s∑
r=0

crs(ε)

ms
+

s∑
r=0

crs+1(ε)

ms+1
+O

(
1

ms+2

)
.

Moreover, for 0 < i ≤ 8 we verified
i∑

r=0

cri (ε) = 0,

using our Maple worksheets(iv). Thus, we yield for s ≤ 8

P(ẽ(G) ≤ s) = 1 +

s∑
r=0

crs+1(ε)

ms+1
+O

(
1

ms+2

)
= 1−

cs+1
s+1(ε)

ms+1
+O

(
1

ms+2

)
.

In particular,

P(ẽ(G) ≤ 1) = 1 +

2∑
r=0

cr2(ε)

m2

= 1− (1− ε)(4ε5 − 32ε4 + 97ε3 + 149ε2 + 959ε− 1465)

4608ε6

1

m2
+O

(
1

m3

)
holds. Further, we can replace ε by 1− 2α+O(m−1). We obtain similar results for all other s, satisfying
s ≤ 8, what completes the proof of Theorem 3.

Finally, we prove that the failure rate of a data structure possessing a stash of size s is in fact Θ(m−s−1).
That is, we show that c(α, s) as defined in Theorem 2, is not equal to zero. To do so, we consider a
complex component of excess s+ 1, consisting of exactly two nodes connected by s+ 3 edges. Clearly,
the bivariate resp. univariate generating function b of such a component is given by

b(x, v) =
x2vs+3

(s+ 3)!
resp. b(x) =

x2

(s+ 3)!
.

(iv) Note that we conjecture a similar result for all further i. Moreover, for the situation of Theorem 2, this is implied by (2).

96 Reinhard Kutzelnigg

We further consider (8) once more, but we replace E by b and repeat the application of the saddle point
method. Similarly to (10), we obtain that the probability that exactly one such component occurs in the
cuckoo graph, while all other components are either trees or unicyclic, is given by

b(x0)t(x0)s+1

2s+1ms+1
6= 0.

Since the algorithm fails in the current situation, the proof of Theorem 2 is completed.

7.2 Bipartite Graphs
In general, this proof follows the same idea as the previous one. However, things are a bit more compli-
cated because of the bivariate generating functions that capture the bipartite structure of the cuckoo graph.
Again, we start counting all graphs without restrictions to the type of their components. LetGm1,m2,n de-
note the set of all vertex and edge labeled bipartite multi graphs (V1, V2, E) with |V1| = m1, |V2| = m2,
and |E| = n. By definition, it is obvious that the number of all graphs having m nodes of each type and
n edges is given by

#Gm,m,n = m2n.

We proceed counting all bipartite graphs possessing a complex part of excess r. As in the univariate
situation, such a graph further contains 2m−n+ r unrooted tree components, and a (possibly empty) set
of unicyclic components:

#Grm,m,n = (m!)2n![xmym]
t̃(x, y)2m−n+r

(2m+ n− r)!
eC(x,y)Er(x, y).

An asymptotic expansion can be derived applying a double saddle point method, see Lemma 14 and
Drmota and Kutzelnigg (2009). The saddle point is given by x0 = y0 = n

me
−n/m. All calculations have

again been done with Maple and we obtain an expansion as we had in (9), satisfying the same properties
but the non-zero coefficients are different. Finally, the probability that the construction of a data structure
requires a stash of at most s items is given by

P(ẽ(G) ≤ s) =

s∑
r=0

#Grm,m,n
#Gm,m,n

= 1−Θ
(
m−s−1

)
,

and we yield the claimed results. In particular, setting again ε = 1− n/m, we get

P(ẽ(G) ≤ 1) = 1− (ε− 1)4(4ε6 − 52ε5 + 305ε4 − 868ε3 + 1358ε2 − 1120ε+ 385)

288(−2 + ε)4ε6

1

m2
+O

(
1

m3

)
.

Finally, we use the same approach as for the usual graph to construct a cuckoo graph that requires a
stash of size s+ 1 and occurs with probability Θ(m−s−1).

A further analysis of Cuckoo Hashing with a Stash and Random Graphs of Excess r 97

8 Experimental Results
Finally, we provide some numerical results for both variants of cuckoo hashing. Thereby, we use a pseudo
random generator to obtain the hash values. The stash is implemented as a linked list providing potential
unlimited additional memory. Hence, the construction can never fail, but unsuccessful search operations
require the inspection of all elements contained in the stash. For practical implementation on standard
hardware, we suggest to implement the stash as a common hash table.

Tables 8, 8, and 8 depict the required stash sizes for the standard resp. simplified algorithm. Hereby,
the latter algorithm is implemented in both variants, i.e. with and without self-loops. As expected, we
observe that the implementation without self-loops offers better performance, but the difference is small.
Furthermore, the standard data structure exhibits an even better behavior, however there is again no wide

Tab. 1: Stash sizes required for standard cuckoo hashing possessing two tables of size m and holding αm keys. The
results are measured over a sample size of 107.

stash: 0 1 2 3 4 5 6 7 8 9 10 >

m
=

5
0
0 α = 0.40: 9922992 73458 3312 219 18 1

α = 0.45: 9677359 283258 33842 4638 778 108 17
α = 0.47: 9416255 481752 81919 16037 3213 653 138 24 8 1
α = 0.48: 9215990 621670 125597 28221 6565 1510 314 106 20 5 0 2

m
=

5
·1
0
3 α = 0.40: 9987684 12196 119 1

α = 0.45: 9900456 93712 5359 422 48 2 1
α = 0.47: 9711209 253414 29837 4563 780 159 29 7 2
α = 0.48: 9488603 421374 70795 14759 3350 813 237 48 15 3 3

m
=

5
·1
0
4 α = 0.40: 9998713 1286 1

α = 0.45: 9985645 14197 156 2
α = 0.47: 9936045 61276 2507 159 12 1
α = 0.48: 9832037 153484 12716 1491 220 44 6 2

Tab. 2: Stash sizes required for simplified cuckoo hashing possessing a tables of size 2m and holding αm keys. The
data structure is implemented such that both storage locations of a distinct key may be equal (i.e. with self-loops).
The results are measured over a sample size of 107.

stash: 0 1 2 3 4 5 6 7 8 9 10 >

m
=

5
0
0 α = 0.40: 9909243 86462 4001 271 20 3

α = 0.45: 9642907 313309 37468 5407 753 132 24
α = 0.47: 9366101 522531 89481 17484 3482 740 156 22 1 1 0 1
α = 0.48: 9156407 668026 135375 30822 7073 1773 386 110 23 4 1

m
=

5
·1
0
3 α = 0.40: 9985818 14043 138 1

α = 0.45: 9892585 101327 5578 454 47 8 1
α = 0.47: 9696073 266735 31215 4898 869 163 35 10 1 1
α = 0.48: 9466796 439806 73228 15373 3604 891 209 63 24 5 1

m
=

5
·1
0
4 α = 0.40: 9998397 1602 1

α = 0.45: 9984851 14965 182 2
α = 0.47: 9933383 63861 2573 176 7
α = 0.48: 9826754 158141 13246 1601 221 25 10 1 1

98 Reinhard Kutzelnigg

Tab. 3: Stash sizes required for simplified cuckoo hashing possessing a tables of size 2m and holding αm keys. The
data structure is implemented such that both storage locations of a key are surely different (i.e. without self-loops).
The results are measured over a sample size of 107.

stash: 0 1 2 3 4 5 6 7 8 9 10 >

m
=

5
0
0 α = 0.40: 9909928 85673 4124 255 19 1

α = 0.45: 9641228 314948 37399 5408 851 133 27 4 0 2
α = 0.47: 9365150 523756 89367 17283 3550 702 149 33 5 4 1
α = 0.48: 9154452 670044 135219 30953 7184 1655 377 88 20 7 1

m
=

5
·1
0
3 α = 0.40: 9986083 13770 144 3

α = 0.45: 9893396 100366 5675 501 53 8 1
α = 0.47: 9695785 266723 31588 4847 846 174 31 6
α = 0.48: 9467420 439340 73211 15388 3523 838 210 55 10 4 1

m
=

5
·1
0
4 α = 0.40: 9998537 1461 2

α = 0.45: 9984860 14972 167 1
α = 0.47: 9933804 63485 2511 186 12 2
α = 0.48: 9827037 157866 13249 1599 206 34 9

difference. From the data given in all three tables, we additionally observe the following properties: For
fixed s > 0 and m, the percentage of hash tables that demand a stash of size s increases as the load factor
α increases. On the other hand, increasing m while holding α constant, decreases the expected number of
items in the stash. Note that these numerical results are in good accordance with the theoretical analysis.
We conclude that an additional memory of small size is sufficient to reduce the failure rate of cuckoo
hashing drastically. Though, small table sizes and/or load factors close to the limit load of 0.5 demand
special attention.

9 Summary and Conclusion
We showed that it is possible to use a stash without a complicated cycle-detection mechanism to determine
an admissible key that can be placed in the stash. This is because of the fact that we have proved that it
is sufficient to put the last kicked-out key in the stash, whenever an otherwise unresolvable situation
occurs. The new insertion procedure thus offers better performance than the modified version required
in Kirsch et al. (2008). As a further advantage, it is possible to break up large clusters and hence speed
up further insertion procedures. Further, we adopted the analysis to simplified cuckoo hashing, a variant
of the original algorithm that grants both hash functions access to the whole table. Finally, we presented
a method to obtain exact asymptotic expansions of the failure rate. All these results extend the original
analysis given in Kirsch et al. (2008) and verify that this algorithm offers very interesting properties.

As future work, we suggest a detailed analysis of the partial differential recursion of the generating
functions of complex bipartite graphs with positive excess. Using these results, it will be possible to study
the structure of these graphs.

Acknowledgements
The author would like to thank Michael Drmota for helpful suggestions on this paper. Further, I am
grateful for the valueable comments received during the review process.

A further analysis of Cuckoo Hashing with a Stash and Random Graphs of Excess r 99

References
T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press,

Cambridge, Mass., London, England, second edition, 2001.

L. Devroye and P. Morin. Cuckoo hashing: Further analysis. Information Processing Letters, 86(4):
215–219, 2003.

M. Dietzfelbinger and U. Schellbach. On risks of using cuckoo hashing with simple universal hash
classes. In Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
795–804. SIAM, 2009.

M. Dietzfelbinger and C. Weidling. Balanced allocation and dictionaries with tightly packed constant size
bins. Theoretical Computer Science, 380(1-2):47–68, 2007.

M. Drmota. A bivariate asymptotic expansion of coefficients of powers of generating functions. European
Journal of Combinatorics, 15(2):139–152, 1994.

M. Drmota and R. Kutzelnigg. A precise analysis of cuckoo hashing. ACM Transactions on Algorithms,
2009. submitted.

P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press, Cambridge, UK,
2009.

D. Fotakis, R. Pagh, P. Sanders, and P. G. Spirakis. Space efficient hash tables with worst case constant
access time. Theory Comput. Syst., 38(2):229–248, 2005.

D. Gardy. Some results on the asymptotic behaviour of coefficients of large powers of functions. Discrete
Mathematics, 139(1-3):189–217, 1995.

O. Gimenez, A. de Mier, and M. Noy. On the number of bases of bicircular matroids. Annals of Combi-
natorics, 9(1):35–45, 2005.

I. J. Good. Saddle-point methods for the multinomial distribution. Ann. Math. Stat., 28(4):861–881, 1957.

S. Janson, D. E. Knuth, T. Łuczak, and B. Pittel. The birth of the giant component. Random Structures
and Algorithms, 4(3):233–359, 1993.

A. Kirsch, M. Mitzenmacher, and U. Wieder. More robust hashing: Cuckoo hashing with a stash. In
Proceedings of the 16th Annual European Symposium on Algorithms, 2008.

D. E. Knuth. The Art of Computer Programming, Volume III: Sorting and Searching. Addison-Wesley,
Boston, second edition, 1998.

R. Kutzelnigg. Random Graphs and Cuckoo Hashing. Südwestdeutscher Verlag für Hochschulschriften,
Saarbrücken, 2009. ISBN 978-3-8381-0207-8.

R. Kutzelnigg. An improved version of cuckoo hashing: Average case analysis of construction cost and
search operations. Mathematics in Computer Science, 3(1):47–60, 2010.

R. Pagh and F. F. Rodler. Cuckoo hashing. Journal of Algorithms, 51(2):122–144, 2004.

100 Reinhard Kutzelnigg

A Asymptotic Expansions via the Saddle Point Method
This appendix provides results that are required to infer asymptotic expansions of the coefficients of
generating functions counting the number of cuckoo graphs without “bad” components. These results
can be obtained using a saddle point approach, see, e.g., Drmota (1994); Flajolet and Sedgewick (2009);
Gardy (1995); Good (1957) for details concerning this method and Kutzelnigg (2009) for proofs of the
lemmata at full length. Note that further coefficients of the asymptotic expansions can be calculated in
the same way, but the expressions are so complicated that it does not make sense to provide them outside
a computer algebra system. A maple worksheet is available on request from the author.

Lemma 13 Let f(x) and g(x) be analytic functions locally around 0 such that all coefficients [xm]f(x)
and [xm]g(x) are non negative, f(0) 6= 0, and such that the “aperiodicity condition” gcd{m|[xm]f(x) >
0} = 1 holds.

Let R be a compact interval of the positive real line that is contained in the radius of convergence of
f(x) and g(x). Furthermore set

S =

{
x

f(x)

∂

∂x
f(x) : x ∈ R

}
.

Then we have

[xm]g(x)f(x)k =
g(x0)f(x0)k

xm0
√

2πkκ2

(
1 +

H

24κ3
2

1

k
+O

(
1

k2

))
,

uniformly for m/k ∈ S, where x0 is uniquely determined by

m

k
=
x0f

′(x0)

f(x0)
.

and the constants κ2 and H are given in the following way. Let κi and κi be the cummulants

κi =

[
∂i

∂ui
log f(x0e

u)

]
u=0

, κi =

[
∂i

∂ui
log g(x0e

u)

]
u=0

.

Then H is given by
12κ2κ3κ1 + 3κ2κ4 − 12κ2

2κ
2
1 − 12κ2

2κ2 − 5κ2
3.

Lemma 14 Let f(x, y) and g(x, y) be analytic functions locally around (x, y) = (0, 0) such that all
coefficients [xm1ym2]f(x, y) and [xm1ym2]g(x, y) are non negative and that there exists M such that
all indices (m1,m2) with m1,m2 ≥ M can be represented as a finite linear combination of the set
{(m1,m2)|[xm1ym2]f(x, y) > 0} with positive integers as coefficients.

Let R1 and R2 be compact intervals of the positive real line such that R = R1×R2 is contained in the
regions of convergence of f(x, y) and g(x, y). Furthermore set

S =

{(
x

f(x, y)

∂

∂x
f(x, y),

y

f(x, y)

∂

∂y
f(x, y)

)
: (x, y) ∈ R

}
.

Then we have

[xm1ym2]g(x, y)f(x, y)k =
g(x0, y0)f(x0, y0)k

2πxm1
0 ym2

0 k
√

∆

(
1 +

H

24∆3

1

k
+O

(
1

k2

))
,

A further analysis of Cuckoo Hashing with a Stash and Random Graphs of Excess r 101

uniformly for (m1/k,m2/k) ∈ S, where x0 and y0 are uniquely determined by

m1

k
=

x0

f(x0, y0)

[
∂

∂x
f(x, y)

]
(x0,y0)

,
m2

k
=

y0

f(x0, y0)

[
∂

∂y
f(x, y)

]
(x0,y0)

and the constants ∆ and H are given in the following way: Let κij and κij be the cummulants

κij =

[
∂i

∂ui
∂j

∂vj
log f(x0e

u, y0e
v)

]
(0,0)

, κij =

[
∂i

∂ui
∂j

∂vj
log g(x0e

u, y0e
v)

]
(0,0)

.

Then ∆ = κ20κ02 − κ2
11 holds and H is given by

H = α+ β + β̂ + γκ10 + γ̂κ01 + δκ10κ01 + ηκ2
10 + η̂κ2

01 + 4ηκ20 + 4η̂κ02 + 4δκ11,

where

α = 54κ21κ11κ12κ20κ02 + 6κ22κ20κ02κ
2
11 − 12κ22κ

4
11 + 4κ03κ

3
11κ30

+ 36κ21κ
3
11κ12 + 6κ22κ

2
20κ

2
02 + 6κ03κ11κ30κ20κ02,

β = −5κ3
02κ

2
30 + 30κ2

02κ30κ11κ21 − 24κ02κ30κ12κ
2
11 − 6κ2

02κ30κ12κ20

− 12κ11κ
2
02κ31κ20 − 36κ02κ

2
21κ

2
11 − 9κ2

02κ
2
21κ20 + 3κ3

02κ40κ20

− 3κ2
02κ40κ

2
11 + 12κ3

11κ02κ31,

γ = 12∆
(
κ2

02κ30 − κ11κ20κ03 − 3κ21κ11κ02 + κ12κ
2
11 + κ12(κ02κ20 + κ2

11)
)
,

δ = 24∆(κ11κ20κ02 − κ3
11),

η = 12∆(κ02κ
2
11 − κ2

02κ20),

and ˆindicates to replace all functions of type κij by κji.

102 Reinhard Kutzelnigg

	Introduction
	The Cuckoo Graph
	Results
	Insertion
	The insertion procedure of KirschMW08
	Insertion without search for an admissible key

	Simplified Cuckoo Hashing
	Enumerating complex graphs
	Usual graphs
	Bipartite graphs

	Detailed Asymptotic Expansions
	Usual graphs
	Bipartite Graphs

	Experimental Results
	Summary and Conclusion
	Asymptotic Expansions via the Saddle Point Method

