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Motivated by the recent refutation of information loss paradox in black hole by Hawking, we investigate the new
concept of non unitary random walks. In a non unitary random walk, we consider that the state s0, called the black
hole, has a probability weight that decays exponentially in e−λt for some λ > 0. This decaying probabilities affect
the probability weight of the other states, so that the the apparent transition probabilities are affected by a repulsion
factor that depends on the factors λ and black hole lifetime t. If λ is large enough, then the resulting transition
probabilities correspond to a neutral random walk. We generalize to non unitary gravitational walks where the
transition probabilities are function of the distance to the black hole. We show the surprising result that the black hole
remains attractive below a certain distance and becomes repulsive with an exactly reversed random walk beyond this
distance. This effect has interesting analogy with the so-called dark energy effect in astrophysics.

Keywords: random walks, quantum systems, analysis of algorithms, generating function, continuous fractions, sin-
gularity analysis

1 Introduction and motivation
A black hole is a massive stellar object that absorbs everything that get trapped in its gravitational field,
including light. In 1976, the famous astrophysicist Stephen Hawking [2], predicted that the black holes
cannot be absolutely black and eternal. Indeed black holes evaporate via Hawking radiation and even-
tually disappear. A major problem was detected in the fact that Hawking radiation should not carry any
information and therefore the informations contained in the objects absorbed by the black hole during
its lifetime simply disappear. This information loss paradox leads to fundamental question in theoretical
physics since it apparently violates the principle of unitarity in quantum physics (more details are given
in our Section 2). There are many studies related to the question of non unitary quantum gravity. Some of
these studies has given the opportunity of numerical simulations of non trivial complex systems [8].

In 2006 Hawking [11] refuted his original argument about the information loss paradox. His refutation
is still an object of controversy but established the foundation of non unitary Markov systems. Basically
Hawking stated in his 2006 paper that if black holes would host a superposition of unitary and non unitary
metrics, then the the contributions of non unitary metric would vanish exponentially with time, and there-
fore only the effect in unitary metric would remain at infinity. In other words a black hole tends almost
surely to be unitary and thus to release its information without loss during its lifetime.

The motivation of this paper is to help in some of the computational aspects in the analysis of non
unitary Markov systems. We describe a simple model of non unitary effects where some probability
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weights decay exponentially with time. What is interesting is the effect of the unitary loss on a halo of
matter that surrounds a black hole. The matter acts like a gas where particles collide at random times
like in a random walk. In physics, random walk problems are investigated via finite element simulations
where particles travel between finite boxes of space. Each box is a state in the random walk. In a non
unitary random walk, we consider that the state s0, called the black hole state, is an absorbing state and
has a probability weight that decays exponentially in e−λt for some λ > 0.

We will show that such non unitary random walks show a behavior which is very sensitive to their tuning
parameters, and thus the simulation must be done in the most realistic situation. In this case as in most
simulation of large systems in astrophysics we hit some computational boundaries even when using the
most powerful super-computers [10]. Indeed, the number of states in a realistic random walk in a galactic
halo may exceed 1020, even after merging a majority of states due to the spherical symmetry. This makes
the simulation very hard to process. Furthermore, as we will show later, the impact of the unitarity effect
stands in the future of the particle, namely in the quantity of probability weight it will lose after eventually
being ingested by the black hole. Therefore the simulations must compute the probability weight of all
potential trajectories in the future. In a (classic) unitary universe, all these trajectories sums to one. But in
a non unitary universe this is not the case, and computation must involve all possible trajectories, at least
within the whole life time of the black hole. A super-massive black hole, like the black hole which lies in
the center of our galaxy, has a lifetime of order 1090 years. Such simulation is rather impossible to make:
either we have to iterate on a vector of 1020 coefficients over 1090 steps, or we iterate during log2 1090

steps, on the successive squares of the non unitary matrix, which is of size 1020 × 1020.
The object of this paper is to analytically guess the results of such simulations by investigating the

asymptotics of non unitary random walks. We show the surprising result that the black hole remains
attractive below a certain distance and becomes repulsive or at least neutral beyond this distance. This
effect shows an interesting analogy with so-called dark energy effect in astrophysics.

One should not confuse the methodology introduced in this paper with the beautiful analyses in [6, 12]
where the particular nature of the quantum random walk is contained in the state superposition in the
wave function. Here we analysis the random walks in a more classic way without state superposition, the
quantum non unitary effect being contained in the unique black hole absorbing state of the random walk.
We base our analysis on the framework of many previous fundamental works, i.e. the representation of
generating functions of random walks as continuous fractions in [1], the enumeration of paths in random
walks in [7], the singularity analysis in the generating functions in [3]. Our work comes in parallel of
related works on the use of combinatorics and generating functions on random walks [4, 9],

The paper is organized as follow.

• In the two next Sections 2 and 3 we describe non unitary effects and analyse a simple model of non
unitary Markov system, with only two states.

• In Section 3, we extend the analysis over the non unitary Markov systems that contains an infinite
number of states, so-called non unitary random walks. We first investigate the impact of non unitary
effect on uniform random walks.

• In Section 4 we investigate the case of non uniform random walks, so-called concave random walks.
To this end we make use of continued fraction generating function representation and show asymp-
totic results about their behavior around main singularities. We show that under some circonstance,
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the non unitarity effect of the black hole makes the random walk apparently bimodal, being appar-
ently attractive below a certain state and repulsive beyond that state.

• We finish our paper on the special case of gravitational walks (Section 5) and briefly discuss some
physical considerations (Section 6), that is the consequence of the bimodal behavior we have found.

2 Non Unitary effect and the Schrödinger’s rabbit
In a classic unitary universe all probabilities sum to one. If you take a rabbit at time t = 0 then one
month later the rabbit will be either alive with probability α > 0 or dead with probability β > 0 and
α+ β = 1. But in quantum physics the sum of all probabilities is interpreted as being the integral

∫
|Ψ|2

of the wave function Ψ of the universe. Therefore the sum of probabilities being equal to one is no more a
mathematical statement but a physical statement. Unitarity principle states that for all time t:

∫
|Ψ|2 = 1.

But in a non unitary universe we may have
∫
|Ψ|2 6= 1. The loss of information implies a non unitary

universe. Hawking describes metrics pertinent for black holes (so-called anti-de-Sitter metrics) where∫
|Ψ|2 = e−λt for some λ > 0. In other words let assume a rabbit which at time t = 0 is either (with

probability α in state s0 inside a black hole embedded with a non unitary metric, or (with probability
β) in state s1 outside a black hole in an unitary metric. If the black hole lifetime is t then at time t the
probability sum of state s0 will be r0(t) = e−λt while the probability sum of state s1 will remain at
r1(t) = 1. Consequently the sum of probabilities of the rabbit equals αr0(t) + βr1(t) 6= 1 and when t
increases the apparent probability of state s0 defined as αr0(t)

αr0(t)+βr1(t) tends to 0. In other words the rabbit
never falls in the black hole and stays outside.

This is equivalent in finance, to saying that an investor with one euro at time t = 0 puts α cents in a
black hole market, and keeps β cents in his pocket. If the black hole market looses value at rate −λ, then
at the end of day the investor will have most of his remaining fortune in his pocket.

In fact Hawking’s point is not as trivial as exposed above: he does not consider a rabbit, but the whole
black hole and considers that its quantum state is a superposition of unitary and non unitary metrics. He
shows that on the path integral over the black hole lifetime, the contributions of non unitary metric vanish
exponentially, so that only the unitary metric contributions remain.

In the following we are not considering state superposition, we assume that either the rabbit is inside the
black hole (state s0) or far away outside the black hole (state s1). This hypothesis is realistic since the two
possible space locations of the rabbit are so far apart that quantum state overlaps are negligible. Therefore
we treat the problem in a classical way. We can see the rabbit as a classical equivalent of Schrödinger cat
in an non unitary universe. The original Schrödinger cat can be in the superposition of two states s0 and
s1 (for instance dead or alive). We introduce the Schrödinger rabbit which is either in state s0 or in state
s1, but the probability sum of state s0 decays exponentially with time.

3 Modelling non unitary systems
3.1 Non unitary Markov processes
We still consider a two state process with a state s0 and a state s1 (see Figure 1). The state s0 is an
absorbing state that mimics a black hole (BH) and during the black hole lifetime the probability sum
decays with rate −λ. We consider that the time is discretized and during the black hole lifetime, at each
time unit the rabbit has a probability q to fall into the black hole, and therefore a probability p to remain
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Fig. 1: A two state non unitary system.

outside the black hole during this time slot. When the rabbit falls in the black hole, it stays inside the
black hole until the end of the black hole lifetime.

Or in other words, an investor has one euro in its pocket at time t = 0 and he has a contract with its
black hole bank to move every month a fraction q of his pocket money in the black hole market. We call
q the attraction probability, and p the repulsion probability.

This system mimics the effect of a black hole which attracts any object in its vicinity. We will see that
if the black hole exerts an attraction which is less powerful than its probability weight decay rate, then
the black hole is apparently repulsive. Otherwise, if the attraction is more powerful than the probability
decay rate, then the result is reversed.

The probability sum of state s0 for a black hole remaining lifetime t satisfies r0(t) = ρt. But, about
r1(t), the probability sum of state s1, the transition from lifetime t and lifetime t − 1 gives the identity
r1(t) = qr0(t − 1) + pr1(t − 1). This makes also r1(t) < 1. Notice that the previous identity is time
forward, since the black hole lifetime decreases when the time goes forward. We call such system a non
unitary Markov process with transition matrix R:

R =

[
ρ q
0 p

]
. (1)

We call the quantity denoted by ρ the probability decay factor. The matrix R is not unitary in the Marko-
vian sense, since vector [1, 1] is not an eigenvector and 1 is not an eigenvalue as soon as ρ 6= 1:

[1, 1]R 6= [1, 1] . (2)

The eigenvalues of matrix R are ρ and p. We expect to have a different behavior depending on p > ρ or
on ρ > p. The objective is to estimate the apparent attraction of the black hole, or more precisely, the
apparent repulsion defined below.

We call the quantity p̃(t) = p r1(t−1)
r1(t) , the apparent repulsion probability, and q̃(t) = 1 − p̃(t) =

q r0(t−1)
r1(t) , the apparent attraction probability. The apparent attraction is equal to the attraction probability

multiplied by a factor that takes into account the probability decay that the rabbit will experience inside
the black hole until the end of the black hole lifetime t − 1, if it falls inside the black hole during this
time slot. Starting from the final probability weight [r0(0), r1(0)] = [1, 1] (the black hole system returns
to unitarity at the end of black hole lifetie), we have

[r0(t), r1(t)] = [1, 1]Rt . (3)

We prove the following very simple theorem whose main purpose is to introduce our methodology
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Fig. 2: Non unitary uniform random walk.

Theorem 1 We consider a two-state non unitary Markov model of black hole with state s0 and state s1.
The state s0 is the absorbing black hole state and quantity ρ > 0 is the probability decay factor on the
black hole state. The integer t is the remaining black hole lifetime. Quantity p is the repulsion probability
defined as the probability that the rabbit stays on state s1 during an unit step time. When the probability
decay factor is greater than the repulsion probability p, then the black hole is apparently attractive when
t→∞, otherwise when ρ ≤ p, the black hole is apparently repulsive when t→∞.

Proof: We consider the case where ρ 6= p. From the fact that the probability sum of state s1 satisfies the
identity r1(t) = q ρ

t−pt
ρ−p +pt, we get the apparent repulsion probability p̃(t) = p/r−(p/r)t

1−(p/r)t = p
ρ +O((pρ )t)

when ρ > p. In this case the attraction is stronger than the non unitary effect and the rabbit eventually
falls in the black hole which exerts an apparent attraction probability q̃(t) = 1− p

ρ + o(t) which remains
away from zero when t → ∞. In other words the apparent probability that the rabbit will eventually fall
in the black hole which is equal to 1−

∏t
k=0 p̃(k), tends to 1 when t→∞.

In the opposite case, when ρ < p, we have p̃(t) = 1 + O((ρp )t), the non unitary effect is stronger than
the attraction and the black hole is apparently fully repulsive. In other words, the apparent probability
that the rabbit will fall in the black hole during this time slot is zero. Moreover, since

∏t
k=0 p̃(k) remains

away from zero when t → ∞, there will be a non zero asymptotic apparent probability that the rabbit
never falls in the black hole during the black hole lifetime.

When p = ρ, we get r1(t) = tqpt−1 + pt and p̃(t) = 1 + O( 1
t ). Thus the rabbit as an apparent

probability not to fall in the black hole during this time slot when t→∞. But since limt→∞
∏t
k=0 p̃(k) =

0, the rabbit has an asymptotic apparent probability 1 to fall in the black hole during the black hole lifetime.
2

3.2 Non unitary random walks
In this section we investigate non unitary Markov systems with an infinite number of states. There is a
specific state, the absorbing black hole state s0 and there is an infinite sequence of states s1, s2, . . . , sn, . . ..
If the rabbit is in state s0 its stay there for the remaining black hole lifetime, if the rabbit is in any of the
states sn, for n > 0, then at the time unit it has probability q to shift down to state sn−1, and probability
p to shift up to state sn+1 (see Figure 2). This is a nearest neighbor random walk in one dimension.

We denote rn(t) the probability sum when the rabbit is on state sn when the black hole has a remaining
lifetime t. We denote Rn(u) =

∑
t≥0 rn(t)ut the generating function of the probability sum over all

lifetimes t.
Let tn the time to black hole from state sn, i.e. the time at which the rabbit hits the black hole when

starting its journey at state sn at time 0. The quantity tn is a random variable. Assuming the initial black
hole lifetime t, when the rabbit enters the black hole it will experience a probability decay ρt−tn , if tn ≤ t,
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otherwise it has no probability decay since we assume that the black hole loses its non unitarity properties
after its evaporation. Therefore we have rn(t) =

∑
θ≤t P (tn = θ)ρt−θ + P (tn > t), and thus

Rn(u) = Fn(u)
1

1− ρu
+ (1− Fn(u))

1

1− u
, (4)

with Fn(u) the probability generating function of tn. Fn(u) satisfies Fn(u) = quFn−1(u) + puFn+1(u),
and therefore Fn(u) = (F (u))n, with 1 = qu

F (u) + puF (u), which leads to

F (u) =
1−

√
1− 4pqu2

2up
. (5)

This clearly mimics the fact that such walks can be seen as the product of n consecutive Dyck paths,
(reverse the time and cut on the last time the walk reach state sn, for any n > 1). Our aim is to evaluate
the apparent repulsion p̃n(t) = p rn+1(t−1)

rn(t) . Cauchy’s integral formula gives

rn(t) =
1

2iπ

∮
Rn(u)

du

ut+1
, (6)

where i denotes the imaginary number i =
√
−1. The probability sum generating functionRn(u) has two

main set of singularities, one single singularity at u = 1
ρ , the inverse of the probability decay factor, and

another pair of singularities at ±u(p) with u(p) = 1
2
√
pq . We expect a change in behavior when one set

has smaller modulus than the other set. Notice that u = 1 is not a singularity since 1− Fn(1) = 0 and by
Lhospital rule, Rn(u) can be analytically extended beyond u = 1.

We now investigate the cases ρ > 2
√
pq and ρ < 2

√
pq which lead to very different asymptotic

behavior of p̃n(t) when t tends to infinity.

3.2.1 Case ρ > 2
√
pq

Theorem 2 We consider a one dimension, nearest neighbor, non unitary random walk with uniform
switch up probability p and switch down probability q, with a probability decay factor ρ on the absorbing
black hole state s0. Let t be the black hole remaining lifetime. Let n be an integer r a sequence of integer
such that n = o(

√
t). Let rn(t) be the probability sum on state sn, we define the apparent repulsion prob-

ability p̃n(t) as the ratio p̃n(t) = p rn+1(t−1)
rn(t) , and the apparent attraction probabilities q̃n(t) = 1− p̃n(t).

When the probability decay factor ρ is greater than 2
√
pq, then we have q̃n(t) > p̃n(t), i.e. the black hole

is apparently attractive, for all states sn with n > 1, when t→∞.

Proof: In this case u = 1
ρ is the dominant singularity in Rn(u) and we choose an integral contour in

equation (6) as follow. We take a circle centered on the origin with radius greater than 1
ρ and smaller than

u(p), so that the inscribed disk contains 1
ρ and exclude ±u(p) (see Figure 3. We take a radius u(p), for

all u in this disk we have |F (u)| ≤ F (u(p)) = 1
2pu(p) . Using the residue theorem on the simple pole on

1
ρ , we get the estimate

rn(t) = (F (
1

ρ
))nρt +O

(
1

(2p)n(u(p))n+t

)
, (7)
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(a) 1
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Fig. 3:

and

p̃n(t) =
p

ρ
F (

1

ρ
) +O

(
(ρu(p))−t

(2pu(p)F ( 1
ρ ))n

)
. (8)

The error term exponentially tends to zero when t→∞, since ρu(p) > 1 and n = o(
√
t). We notice that

lim supt→∞
p̃n(t)
p > 1 since 1 = q

ρF ( 1
ρ )

+ p
ρF ( 1

ρ ) > p
ρF ( 1

ρ ). 2

3.2.2 Case ρ < 2
√
pq

Theorem 3 We consider a one dimension, nearest neighbor, non unitary walk with uniform move-up
probability p and move-down probability q, with a probability decay factor ρ on the absorbing black hole
state s0. Let t be the black hole remaining lifetime. Let rn(t) be the probability sum on state sn for an
integer n > 0, we define the apparent repulsion probability p̃n(t) as the ratio p̃n(t) = p rn+1(t−1)

rn(t) , and
the apparent attraction probabilities q̃n(t) = 1 − p̃n(t). When the probability decay factor ρ is smaller
than 2

√
pq, then we have q̃n(t) < p̃n(t), i.e. the black hole is apparently repulsive for all state sn with

n > 1, when t→∞ as soon as n = o(
√
t).

Proof: In this case the set {± 1
2
√
pq} contains the dominant singularities of the probability sum generating

function Rn(u). Let u(p) = 1
2
√
pq . When u = ±(u(p) + δu) we have

Fn(u) =
1

(2up)n

(
1− 2n(pq)

1
4

√
δu+O(n2δu)

)
. (9)

We take advantage of the fact that Rn(u) has an explicit form as a polynomial function of
√

1− u2

u2(p) ,
for which there are important established results about the asymptotic analysis of their coefficients due to
Flajolet and Odlyzko. Thus we will use a didactic approach where we first start with the simpler case of a
bounded value of n, (i.e. which does not change with t), and second we terminate the proof with the more
intricate case where n is unbounded (and increases with t such that n = o(

√
t)).
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Bounded values of n Applying the Flajolet Odlyzko [3] asymptotic result, namely

rn(t) = ρn+t

(2p)n +
√
π n

t
3
2

(pq)
1
4

(2p)n(u(p))n+t

×
(

1
1−ρu(p) −

1
1−u(p) + (−1)n+t

1+ρu(p) )− (−1)n+t

1+u(p) +O(nt )
)
.

(10)

The result is based on an Hankel integral contour made of a circle of radius u(p) + ε < 1
ρ indented by

two wedges on ±u(p) (see Figure 3). Notice the oscillations that appear between the odd and even values
of n + t which are due to the model artefact that the random is nearest neighbor only. These oscillations
cancel on the values of the apparent repulsion p̃n(t) for n > 1 which satisfies:

p̃n(t) =
prn+1(t− 1)

prn+1(t− 1) + qrn−1(t− 1)
=

1

2

n+ 1

n

(
1 +O(

1

t
) +O(

n

t
)

)
, (11)

since rn+1(t− 1) = q
prn−1(t− 1)

(
1 +O( 1

t ) +O(nt )
)
. Thus the apparent repulsion p̃n(t) converges to

1
2 as soon as t → ∞ with n

t → 0. In other words the apparent random random walk tends to be neutral
with attraction balancing the repulsion.

For n = 1, since r0(t) = ρt � r1(t) = O( 1
u(p)t

) we have p̃1(t) → 1: the black hole is apparently
100% repulsive on the last state before, and the random walk on the remaining states is apparently neutral.
In other words the random walk is apparently neutral and reflective on the last state before the black hole.

Unbounded values of n Here we consider unbounded values of n, but with the restriction that n =
o(
√
t) when t→∞. We nevertheless need a more involved analysis on the Cauchy identity:

rn(t) =
1

2iπ(2p)n

∮ (
1−

√
1− 4pqu2

)n
gρ(u)

du

un+t+1
, (12)

with gρ(u) =
(

1
1−ρu −

1
1−u

)
. We deform the Hankel integral loop to a circle of radius z > u(p), indented

by two pairs of segments parallel to the real axis that connect the circle to the internal singularities ±u(p)
and encircle them (see Figure 3). We get for any arbitrary z < 1

ρ

rn(t) = In(t, z) + Jn(t, z) +O(
1

(2p)nzn+t
) , (13)

with

In(t, z) =
1

2iπ(2p)n

∫ z

u(p)

((
1 + i

√
4pqu2 − 1

)n
−
(

1− i
√

4pqu2 − 1
)n)

gρ(u)
du

un+t+1
(14)

Jn(t, z) =
−1

2iπ(2p)n

∫ −u(p)

−z

((
1 + i

√
4pqu2 − 1

)n
−
(

1− i
√

4pqu2 − 1
)n)

gρ(u)
du

un+t+1
.(15)
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With change of variable u = (1 + v
n+t )u(p), we get

un+t+1 =

(
1 +O(

v2

n+ t+ 1
)

)
exp(v) (16)(

1 + i
√

4pqu2 − 1
)n

=

(
1 +O(

vn

n+ t
)

)
exp

(
i

n√
n+ t+ 1

√
2v

)
(17)(

1− i
√

4pqu2 − 1
)n

=

(
1 +O(

vn

n+ t
)

)
exp

(
−i n√

n+ t+ 1

√
2v

)
(18)

gρ(u) =

(
1 +O(

v

n+ t
)

)
gρ(u(p)) (19)

and consequently

In(t, z) =
gρ(u(p))

(n+ t)π(2p)nu(p)n+t+1

(∫ (z−u(p))n+t+1
u(p)

0

sin

(
n√
n+ t

√
2v

)
e−vdv +O(

n

n+ t
)

)
gρ(u(p))

(n+ t)π(2p)nu(p)n+t+1

(√
π

2

n√
n+ t

exp

(
−1

2

n2

n+ t

)
+O(

n

n+ t
)

)
(20)

Similarly with the change of variable u = −(1 + v
n+t )u(p) we get

Jn(t, z) =
gρ(−u(p))(−1)n+t+1

(n+ t)π(2p)nu(p)n+t+1

(√
π

2

n√
n+ t

exp

(
−1

2

n2

n+ t

)
+O(

n

n+ t
)

)
, (21)

which validates the previous asymptotic estimates obtained via the Flajolet-Odlyzko method on bounded
values of n, and extend them to the case where n is unbounded but with the restriction n = o(

√
t). 2

3.3 Random walk potential
We call the quantity Vn = n 1

2 log q
p the potential of the random walk at state sn. Clearly the state s0 is the

state with the lowest potential. We notice that Vn+1−Vn is equal to the opposite of the logarithm of
√

p
q .

If p and q were depending on n we should have the random walk locally attractive when Vn+1 − Vn > 0,
or locally repulsive when Vn+1−Vn < 0. Notice that these considerations do not change if we add to the
potential an arbitrary constant.

Noticing that the ratio of apparent attraction probability over the apparent repulsion probability satisfies
q̃n(t)
p̃n(t) = q

p
rn−1(t−1)
rn+1(t−1) , the apparent potential Ṽn(t) =

∑
i≤n

1
2 log q̃i(t)

p̃i(t)
is

Vn −
1

2
log rn+1(t− 1)− 1

2
log rn(t− 1) .

It comes from the above section analysis that when 1
ρ < u(p) (equivalent to the case ρ > 2

√
pq) we

have an apparent potential Ṽn(t) which tends to be equal to n 1
2 log 1−p̃

p̃ , modulo an arbitrary constant
term, with p̃ = p

ρF ( 1
ρ ), and in this case state s0 is the state with the lowest potential. The black hole is
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still attractive. When 1
ρ < u(p) (equivalent to the case ρ > 2

√
pq), the apparent potential tends to be flat,

except for a peak on the black hole state. Figure 4 and 5 show the asymptotic apparent potentials when
ρ is above or below 2

√
pq. Notice that as expected the apparent repulsion does not change very much as

soon as ρ < 2
√
pq.

4 Non unitary concave walk
We call a concave walk a one dimension, nearest neighbor, random walk where the transition pair of
probabilities pn, qn depends on the state and pn increases with n with lim pn ≤ 1

2 when n → ∞ (see
Figure 6). For example pn = 1

2 −
β
n2 if one wants to simulate the random walk of a particle around a

gravitationally heavy object such as a stellar body. Or pn = 1
2 −

β
n if one wants to simulate the random

walk of a particle in a gravitationally heavy medium of density decreasing in the inverse of distance to the
center (state s0). A gravitational walk can be used to simulate the behavior of a particle in a gas where
each collision with another particle give a random momentum.

Our aim is to guess the behavior of the random walk with respect to its tuning parameter. In particular
we will show when the random walk is stable and conjecture in the general case, that the random walk is
apparently repulsive when the probability decay factor ρ is smaller than limn→∞ 2

√
pnqn, and is attractive

when the probability is greater than this threshold. When the probability decay factor is within o( 1√
t
) to

this threshold, quantity t being the black hole lifetime, then the random walk is apparently bimodal: i.e.
it is apparently attractive within a certain state B and is repulsive beyond that state.

Similarly as with uniform walk we define the actual potential of the random walk as

Vn =

j=n∑
j=1

1

2
log

(
qj
pj

)
. (22)

The step down time of state si is the time needed for the rabbit starting on state si to arrive on state si−1

just below. The step down time is a random variable and let Gi(u) be the probability generating function
of the step down time of state si. Since the time tn is equal to the sum of the step down times of respective
states sn, sn−1, etc., and since these step down times are independent, we have

Fn(u) =

i=n∏
i=1

Gi(u) . (23)

Let n be an integer greater than 0. Since from state sn the rabbit during a single time step can only access
its nearest neighbor states, sn−1 and sn+1 with respective probabilities qn and pn, we have the recursion

Fn(u) = qnuFn−1(u) + pnuFn+1(u) , (24)

or
Gn(u) = qnu+ pnuGn+1(u)Gn(u) . (25)

We therefore get the recursion

Gn(u) =
qnu

1− pnuGn+1(u)
, (26)



Non Unitary Random Walks 343

(a) ρ = 0.9 (b) ρ = 0.81

Fig. 4: Actual potential (dashed) and apparent asymptotic potential (plain) for p = 0.2, two values for ρ greater than
2
√
pq = 0.8

(a) ρ = 0.79 (b) ρ = 0.3

Fig. 5: Actual potential (dashed) and apparent asymptotic potential (plain) for p = 0.2, two values for ρ smaller than
2
√
pq = 0.8.
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Fig. 6: Non unitary concave random walk.

which expands into the classic continuous fraction as noticed in [1]:

Gn(u) =
qnu

1− pnqn+1u2

1− pn+1qn+2u
2

1−···

. (27)

We notice that for all n, function Gn(u) is odd: Gn(−u) = −Gn(u). Let us denote F (u, p) =
1−
√

1−4pqu2

2pu . We have for all u > 1 real:

F (u, pn) ≤ Gn(u) ≤ F (u, p∞) . (28)

4.1 Quasi-continuous walk
We consider that we are in quasi-continuity conditions when the values pn does not vary quickly. For
example pn = p(αn) where p(.) is a continuous function and α is a small non negative real number. In
quasi-continuity condition function Gn(.) is close to the fixed point of the functional equation Gn(u) =

qnu
1−pnuGn(u) , or in other words and uniformly in n and u in a compact neighborhood of zero:

lim
α→0

Gn(u) = F (u, pn) =
1−

√
1− 4pnqnu2

2pnu
. (29)

In fact we can prove that the convergence holds for all complex numbers u such that limn→∞ sup 4pnqn|u|2 ≤
1, for which values the function Gn(u) are all analytical.

4.2 Stable walks
We will assume that there exists an integer N such that the random walk probabilities take a fixed value

p∞ beyond state sN : ∀n ≥ N , pn = p∞. Therefore for all n ≥ N : Gn =
1−
√

1−4p∞q∞u2

2p∞u
.

Let un = 2
√
pnqn and ū = uN . The main singularity of GN (u) is ū since ∀n ≥ N : Gn(u) =

GN (u) = 1
2p∞u

(
1−DN

√
1− u2

ū2

)
for some DN , for instance DN = 1. Using recursion (26), we see

that {±ū} is also the main singularity set of Gn(u) for n < N as we see below.

4.2.1 Properties of Gn(u)

Let s(u) = 1 − u2

ū2 . Let Kn(u) denotes 2pnuGn(u), the reduced step down generating function of state
sn. Notice that Kn(u) is an even function: Kn(−u) = Kn(u) for all complex numbers u. We have the
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recursion

Kn(u) =
2pnqnu

2

1− pn
2 pn+1Kn+1(u)

(30)

We notice that Kn(u) is an algebraic function, this can be proven by descending recursion from n = N
and we can split

Kn(u) = Hn(u)−
√
s(u)Qn(u)

with Hn(u) and Qn(u) analytical fractions defined and bounded for |u| < |ū|+ ε for some ε > 0. Notice
that there is only one possible decomposition of Kn(u), and we call Hn(u) the rational part of function
Kn(u), and Qn(u) the algebraic part of function Kn(u). When n ≥ N , we have Kn(u) = 1 −

√
s(u):

Hn(u) = Qn(u) = 1. From recursion (30) we get

Hn(u) = 2pnqnu
2 1

1− pn
2pn+1

Hn+1(u)− pn
2pn+1

√
s(u)Qn+1(u)

= 2pnqnu
2

1− pn
2pn+1

Hn+1(u) + pn
2pn+1

√
s(u)Qn+1(u)(

1− pn
2pn+1

Hn+1(u)
)2

+ (u
2

ū2 − 1)
(

pn
2pn+1

Qn+1(u)
)2 (31)

Theorem 4 We consider a stable concave walk such that for all n ≥ N , (pn, qn) = (p∞, q∞). Let
ū = 1

2
√
p∞q∞

. For n > 0 letGn(u) be the probability generating function of the step down time from state

sn to state sn−1. LetKn(u) = 2pnuGn(u) the reduced step down generating function. Let s(u) = 1− u2

ū2 ,
and the unique decomposition

Kn(u) = Hn(u)−
√
s(u)Qn(u)

the rational functions Hn(u) and Qn(u) being respectively the rational and algebraic parts of Kn(u).
There exists ε > 0 such that for all integers n, both the rational and algebraic parts of the generating

function Kn(u) are uniformly bounded for all complex number u such that |u| < ū+ ε.

Basically we need to prove the theorem for n ≤ N . We formally identify KN (u) with the variable w
and define the bivariate step down generating function Kn(u,w) via the recursion

Kn(u,w) =
2pnqnu

2

1− pn
2qn+1

Kn+1(u,w)
(32)

The function Kn(u,w) is analytical and has positive Taylor coefficients. We keep in mind the identity

Kn(u) = Kn(u, 1−
√
s(u)) . (33)

Lemma 1 There exists ε > 0 such that for all complex numbers u such that |u| ≤ ū+ ε, for all complex
numbers w such that |w| ≤ 1 + ε and for all integer n, the bivariate reduced step down generating
function satisfies |Kn(u,w)| ≤ 1 + ε.
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Proof: We notice that 2pnqn =
u2
n

2 is an increasing function of n. We also have pn
pn+1

≤ 1. Let n < N ,
there exist ε > 0 such that if |u| ≤ ū + ε and |Kn+1(u,w)| ≤ 1 + ε, then |Kn(u,w)| ≤ 1 + ε. Indeed
from recursion (32):

|Kn(u,w)| ≤ |4pnqnu2| 1

2− |Kn+1(u,w)|
≤ |4pnqnu2| 1

1− ε
, (34)

and this we set |u| < uN−1 thus, |4pnqnu2| ≤ |u|2
u2
N−1
≤ 1− ε2, for some ε such that |u| ≤ ū+ ε. 2

Proof of Theorem 4: Now, we have to express the rational and algebraic parts, Hn(u) and Qn(u), with
the help of the bivariate function Kn(u,w). Let consider Kn(u, 1 − x), we denote Hn(u, y) the x-even
part of Kn(u, 1−x), namely Hn(u, x2) = 1

2 (Kn(u, 1−x) +Kn(u, 1 +x)) and Qn(u, y) the x-odd part
of Kn(u, 1− x), namely −1

2x (Kn(u, 1− x)−Kn(u, 1 + x)). Both are analytical in u and y and we have
the relation {

Hn(u) = Hn(u, 1− u2

ū2 )

Qn(u) = Qn(u, 1− u2

ū2 ) .
(35)

It remains to prove that Hn(u, x2) and Qn(u, x2) are bounded. This is provided by the integral represen-
tation {

Hn(u, y) = 1
2iπ

∮
zHn(u, 1− z) dz

z2−y
Qn(u, y) = 1

2iπ

∮
Hn(u, 1− z) dz

z2−y ,
(36)

with appropriate integral loops around the complex number y such that |1−z| < 1+ε. These last identities
give the formal proof that the Hn(u) and Qn(u) are analytical and uniformly bounded for |u| ≤ ū+ ε for
some ε > 0. This terminates the proof of Theorem 4. 2

Theorem 5 We consider a stable concave walk such that for all n ≥ N , (pn, qn) = (p∞, q∞). Let
ū = 1

2
√
p∞q∞

. For n > 0 let Gn(u) be the probability generating function of the step down time from

state sn to state sn−1. Let s(u) = 1− u2

ū2 . There exists a complex neighborhood of {±ū} such that for all
complex numbers u in this complex neighborhood, the three following points hold for all integers n ≤ N :

(i) the logarithm of the step down time generating function Gn(u)) exists and is well defined,

(ii) in the unique algebraic decomposition

logGn(u) = hn(u)−
√
s(u)qn(u) ,

where hn(u) and qn(u) are analytical functions defined in the complex neighborhood of {±ū},
both functions are uniformly bounded,

(iii) the function qn(u) uniformly decays exponentially when n decreases.

The proof will need the following lemmas with their corollaries.

Lemma 2 For all complex numbers u such that |u| ≤ ū + ε and for all complex numbers w such that
|w| ≤ 1+ε, and for all integers n < N the bivariate step down generating function satisfies |Kn(u,w)| ≤
min{4pnū2, 1}(1 + ε)
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Proof: We just reuse recursion (32) and notice that, when n < N ,

|Kn(u,w)| ≤ pnqn
pN−1qN−1

4pN−1qN−1|u|
1

2− |Kn+1(u,w)|

≤ pnqn
pN−1qN−1

(1 + ε) . (37)

We end the proof of the lemma with the fact that pnqn
pN−1qN−1

≤ pnqn
p∞q∞

= 4pnqnū
2 ≤ 4pnū

2. 2

Corollary 1 We consider a stable concave walk such that for all n ≥ N , (pn, qn) = (p∞, q∞). Let
ū = 1

2
√
p∞q∞

. For n > 0 letGn(u) be the probability generating function of the step down time from state

sn to state sn−1. LetKn(u) = 2pnuGn(u) the reduced step down generating function. Let s(u) = 1− u2

ū2 ,
and the unique decomposition

Kn(u) = Hn(u)−
√
s(u)Qn(u)

the rational functions Hn(u) and Qn(u) being respectively the rational and algebraic parts of Kn(u).
For all complex numbers u such that |u| ≤ ū+ε and for all n ≤ N the functions 1

pn
Hn(u) and 1

pn
Qn(u),

are uniformly bounded.

Lemma 3 For all complex numbers u such that |u| ≤ ū and for all integers n < N , the reduced step
down generating functions satisfy |Kn(u)| ≤ pn

p∞
≤ 1.

Proof: When |u| ≤ ū we have |Gn(u)| ≤ Gn(ū) ≤ 1
2p∞ū

. 2

Lemma 4 For all ε > 0, there exists a neighborhood of ū such that for all complex numbers u in this
neighborhood, and for all integers n < N , the algebraic part of the reduced step down generating
function, Qn(u), exponentially decays when n decreases and satisfies |Qn(u)| ≤ Q1−ε

n (ū).

Proof: We rewrite recursion (30) with

Hn(u) =
1

2pnqnu2
Kn(u)K̄n(u)

(
1− pn

2pn+1
Hn+1(u)

)
(38)

Qn(u) =
1

4pn+1qnu2
Kn(u)K̄n(u)Qn+1(u) (39)

with K̄n(u) = Hn(u) +
√
s(u)Qn(u).

Furthermore, since 1
pn
Kn(u) = 1

pn
Hn(u)−

√
s(u) 1

pn
Qn(u), 1

pn
Hn(u) and 1

pn
Qn(u), are uniformly

bounded for all n ≤ N , thanks to Cauchy theorem, they are also uniformly continuous. Since s(ū) = 0,
for any ε > 0 there exists a neighborhood of ū such that |Kn(u)| < pn

p∞
(1 + ε), uniformly for all

n ≤ N . Similarly, since K̄n(u) = Kn(u) + 2
√
s(u)Qn(u) we also have a neighborhood of ū where
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|K̄n(u)| ≤ pn
p∞

(1 + ε). Consequently for u in this neighborhood (assuming |u− ū| < εū), we have

|Qn(u)| = 1
4pn+1pn|u|2

∣∣Kn(u)K̄n(u)
∣∣ |Qn+1(u)|

≤ 1
4pn+1pn|u|2

p2n
p2∞

(1 + ε)2|Qn+1(u)|
≤ 1

4pn+1pnū2

p2n
p2∞

(1 + ε)2 ū2

|u|2 |Qn+1(u)|
≤ 4p∞q∞

4pn+1qn

p2n
p2∞

(1 + ε)4|Qn+1(u)|
= pn

pn+1

q∞
qn

pn
p∞

(1 + ε)4|Qn+1(u)| ≤ q∞
qn

pn
p∞

(1 + ε)4|Qn+1(u)| .

(40)

Therefore Qn(u) decays exponentially like
∏j=N−1
j=n

q∞
qj

pj
p∞

(1 + ε)4 as soon as q∞
qn

pn
p∞

(1 + ε)4 < 1. 2

Lemma 5 For all integers n, we have the inequality Hn(ū) = Kn(ū) > 2pnū.

Proof: we have Kn(ū) = 2pnūGn(ū) and also the fact that Gn(ū) ≥ 1. 2

Proof of Theorem 5: We prove the theorem for the neighborhood of ū. The proof for the neighborhood
of−ū comes by symmetry. Since 1

pn
Kn(ū) is uniformly bounded from below and 1

pn
Hn(u) is uniformly

bounded from above and is continuous around ū, and since Kn(ū) = Hn(ū), there exists a neighborhood
of ū where 1

pn
Kn(u) and 1

pn
Hn(u) are non zero and uniformly bounded from above and from below. If

this neighborhood is a simple disk, then log 1
pn
Kn(u) and log 1

pn
Hn(u) exist. We also have the identity

log

(
1

pn
Kn(u)

)
= hn(u)−

√
s(u)qn(u) . (41)

Since
1
pn
Hn(u)−

√
s(u) 1

pn
Qn(u) = ehn(u)e−

√
s(u)qn(u)

1
pn
Hn(u) +

√
s(u) 1

pn
Qn(u) = ehn(u)e

√
s(u)qn(u) ,

(42)

we have
hn(u) = log( 1

pn
Hn(u)) + 1

2 log(1− s(u)
Q2
n(u)

H2
n(u) )

qn(u) = 1

2
√
s(u)

log
Hn(u)−

√
s(u)Qn(u)

Hn(u)+
√
s(u)Qn(u)

.
(43)

Notice that qn(u) is of order Qn(u)
Hn(u) and decays exponentially asQn(u) when n decreases. This terminates

the proof of Theorem 5. 2

The following theorem will be used in order to get an acurate estimate of the remaining terms in the
evaluation of the probability sums in the non unitary concave walks.

Theorem 6 We consider a stable concave walk such that for all n ≥ N , (pn, qn) = (p∞, q∞). Let
ū = 1

2
√
p∞q∞

. For n > 0 let Gn(u) be the step down time generating function from state sn to state
sn−1. Let Kn(u) = 2pnuGn(u) the reduced step down generating function. There exists ε > 0 and a
real number β > 0 such that for all n ≤ N and for all complex numbers u such |u− ū| ≤ ε, the logarithm
of the algebraic part Qn(u) of the generating function Kn(u) exists and the following inequality holds:∣∣∣log Qn(u)

Qn(ū)

∣∣∣ ≤ (N − n)|u− ū|β
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Proof: We rewrite again the recursion

Qn(u)

Qn+1(u)
=

1

4pn+1qnu2
Kn(u)K̄n(u) .

Since for all n < N , logKn(u) and log K̄n(u) exists, thus log Qn(u)
Qn+1(u) exists. Since logKn(u) and

log K̄n(u) are unformly bounded on a complex neighborhood of ū, we have the existence of β > 0 such
that for all complex numbers u in this neighborhood:∣∣∣∣log

Kn(u)K̄n(u)

u2
− log

(Kn(ū))2

ū2

∣∣∣∣ ≤ β|u− ū| .
Remember in passing that Kn(ū) = K̄n(ū). Therefore it comes that∣∣∣∣log

Qn(u)

Qn+1(u)
− log

Qn(ū)

Qn+1(ū)

∣∣∣∣ ≤ β|u− ū| .
The logarithm of Qn(u) exists since it is equal to the sum

∑N
i=n log Qi(u)

Qi+1(u) (since QN (u) = 1) and the
following inequality holds:

|logQn(u)− logQn(ū)| ≤ (N − n)|u− ū|β .

2

We denote Dn = qn(ū), the value of the algebraic part of the logarithm of the step down generating
function at ū. We have

Dn =
pn
qn
Gn(ū)Gn+1(ū)Dn+1 . (44)

Quasi-continuous concave walk In this subsection we export the above results in the case of quasi-
continuous random walk as defined in Subsection 4.1. We have the asymptotic estimate.

logFn(u) =

n∑
j=1

logGj(u) =
1

α

∫ αn

0

logF (u, p(x))dx+O(1) , (45)

and

logDn =

n∑
j=1

log
pj
qj
Gj(ū)Gj+1(ū) =

1

α

∫ ∞
αn

log

(
p(x)

q(x)
F 2(ū, p(x))

)
dx+O(1) . (46)

4.3 Behavior of non unitary concave stable walks

4.3.1 Case where ρ > 2
√
p∞q∞

This is the simplest of the three cases. The inverse of the probability decay factor 1
ρ is the main singularity

and leads to a simple pole. Quantities ±ū are the secondary singularities whose contribution will be
detailed in the next section. If we assume that 1

ρ < z < ū we get

rn(t) = Fn(
1

ρ
)ρ−t +O

(
Fn(z)

z−t

1− ρz

)
. (47)
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Fig. 7: Actual potential (dashed) and apparent asymptotic potential (plain) for a concave walk with pn =
0.48 exp(− 100

n2 ), N = 100, t = 10, 000, ρ = exp(0.0005)ū−1.

With Fn(u) =
∏j=n
j=1 Gj(u) we get

p̃n(t) = pn
1

ρ
Gn+1(

1

ρ
) +O((ρz)−t) . (48)

In quasi-continuity condition we have or all u < un: Gn(u) = F (u, p(αn)) +O(α) and therefore we get
the result we had for uniform random walk that is

p̃n(t) = p(αn)
1

ρ
F (

1

ρ
, p(αn)) +O(α) +O((ρz)−t) . (49)

Figure 7 shows the apparent potential when ρū > 1.

4.3.2 Case where ρ < 2
√
p∞q∞

Theorem 7 We consider a stable non unitary concave walk such that for all n ≥ N (pn, qn) = (p∞, q∞),
with a probability decay factor ρ on the absorbing black hole state s0. Let t be the black hole remaining
lifetime. Let ū = 1

2
√
p∞q∞

. When the probability decay factor satisfies the condition ρū < 1, we have the
asymptotic estimate of the probability sum at state sn for black hole lifetime t, when t → ∞ as soon as
n,N = o(

√
t) :

rn(t) =
√
π Fn(ū)

(n+t)
3
2

(p∞q∞)
1
4

(ū)t

(∑j=n
j=1 Dj

)
(gρ(ū) + (−1)n+tgρ(−ū)) (1 +O( N

n+t )) +O((1 + ε)nz−t) ,
(50)

with Fn(u) being the generating function of the time to black hole from state sn, tn, and is equal to the
product of the step down generating functions up to integer n: Fn(u) =

∏j=n
j=1 Gj(u).
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Proof: We define z = (1 + ε)ū which is the upper-limit of the radius where |u| ≤ z implies |Kn(u)| <
1 + ε. In this section we assume that 1

ρ > z, i.e. the disk |u| ≤ z does not contain any other singularities
than ±ū for Fn(u)gρ(u).

We have

Fn(u) =

j=n∏
j=1

Gj(u) =
1

un
exp

j=n∑
j=1

hj(u)−
√
s(u)qj(u)

 . (51)

We have hn(ū) = log(ūGn(ū)). Let Dn = qn(ū) = Qn(ū)
Hn(ū) . We have the expression

Dn =
pn
qn
Gn(ū)Gn+1(ū)Dn+1 (52)

which gives Dn =
∏j=N
j=n

pj
qj
Gj(ū)Gj+1(ū). Notice that pnqnGn(ū)Gn+1(ū) ≤ 1 since pn

qn
≤ p∞

q∞

pn
qn
Gn(ū)Gn+1(ū) ≤ p∞

q∞
F 2(ū, p∞) =

p∞
q∞

1

4(p∞)2ū2
= 1 . (53)

Our aim is to find an accurate estimate of rn(t) via the Cauchy formula

rn(t) =
1

2iπ

∮ ∏ Kj(u)

pj

du

un+t
gρ(u) . (54)

As in the previous section we have the estimate

rn(t) = In(t, z) + Jn(t, z) +O((1 + ε)nz−t) . (55)

The key of our analysis is the estimate of In(z, t) and Jn(z, t). This is an integration with the factor
unFn(u) = exp(

∑j=n
j=1 hj(u)−

√
s(u)qj(u)). By doing the change of variable u = (1 + v

n+t )ū we get

1
utFn(u) = 1

ūn+t exp
(∑j=n

j=1 hj(ū) + 1
n+tO1(v)−

√
−2v

Dj√
n+t

+
√
−2v 1

(n+t)
1
2
O2

(
(e(N−j)|u−ū|β − 1)Dj

))
e−v

= 1
ūt

∏j=n
j=1 Gj(ū)

(
1−
√
−2v

∑j=n
j=1 Dj√
n+t

+ n
n+tO

′
1(v)

+
√
−2v 1

(n+t)
3
2

∑j=n
j=1 O

′
2(vDj(N − j))

)
e−v .

(56)
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Quantity β is given by Theorem 6. Notice that O1(v) and O′1(v) are both analytic in v with the domain
of definition including the integration paths. Therefore about the expression of In(t, z) we have

In(t, z) =
1

2iπ

∫ z

ū

exp

j=n∑
j=1

hj(u) + iqj(u)

√
u2

ū

2

− 1

 (57)

− exp

j=n∑
j=1

hj(u)− iqj(u)

√
u2

ū

2

− 1

 gρ(u)
du

un+t+1

=
ū−t

π

j=n∏
j=1

Gj(ū)

j=n∑
j=1

Dj

√
2ve−v +

j=n∑
j=1

O′2(Dj)
N

(n+ t)
3
2

+O((1 + ε)nz−t) .

Notice that the term in O′1(v) n
n+t disappears when we substract the term in −i

√
u2

ū2 − 1:

rn(t) =
√
π
Fn(ū)

(n+ t)
3
2

(p∞q∞)
1
4

(ū)t

j=n∑
j=1

Dj


(
gρ(ū) + (−1)n+tgρ(−ū)

)(
1 +O(

N

n+ t
)

)
+O((1 + ε)nz−t) . (58)

2

With Fn(u) =
∏j=n
j=1 Gj(u), we get the following evaluation of the apparent repulsion:

p̃n(t) = pnGn+1(ū)uN

∑j=n+1
j=1 Dj∑j=n
j=1 Dj

(
1 +O(

N

n+ t
)

)
. (59)

In quasi-continuity conditions we can identifyGn(u) withF (u, pn) andDn+1−k = (pnqnF
2(u, pn))kDn+1.

This leads to
∑j=n+1
j=1 Dj = 1

1− pnqn F
2(u,pn)

Dn+1 and
∑j=n
j=1 Dj =

pn
qn
F 2(u,pn)

1− pnqn F
2(u,pn)

Dn+1

lim
α→0,t→∞

p̃n(t) =
ū

F (ū, pn)
qn . (60)

It turns out that the black hole is simply repulsive since p̃n(t) ≥ (uN )22pnqn = 1
2

(
1 +

√
1− ( ū

un
)2
)
≥

1
2 , and the closer we are to the black hole, the stronger is the repulsion. When n > N we get naturally
p̃n(t) ≈ 1

2 : the random walk is apparently neutral beyond the state sN where the coefficients are stable.
In the limit case where uN ≈ 1, we would have p̃n(t) ≈ qn: the random walk is apparently strictly

reversed.

Corollary 2 We consider a stable non unitary concave walk such that for all n ≥ N , (pn, qn) =
(p∞, q∞), with a probability decay factor ρ on the absorbing black hole state s0. Let t be the black
hole remaining lifetime. Let ū = 1

2
√
p∞q∞

. We have the asymptotic relation between the probability sum
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rn(t) at state sn, the probability decay factor ρ and the probability distribution of the time tn to black
hole from state sn: rn(t) = P (tn = t)( 1

1−ρū + (−1)n+t

1+ρū )(1 + O( N
n+t )) + P (tn > t), when t → ∞ as

soon as n,N = o(
√
t).

4.3.3 Case where ρ ≈ 2
√
p∞q∞

Case 1
ρ < ū

Theorem 8 We consider a stable non unitary concave walk such that for all n ≥ N , (pn, qn) = (p∞, q∞)
with a probability decay factor ρ on the absorbing black hole state s0. Let t be the black hole remaining
lifetime. Let ū = 1

2
√
p∞q∞

. Let z be an arbitrary real number such z > ū. There exists ε > 0 such that

when t→∞ ans as soon as n,N = o(
√
t), we have the asymptotic relation between the probability sum

rn(t) at state sn, the probability decay factor ρ and the probability generating function Fn(u) of the time
to black hole from state sn:

rn(t) = ρtFn( 1
ρ ) + ū−t

√
πFn(ū)

∑j=n
j=1 Dj

(n+t)
3
2

(p∞q∞)
1
4 (gρ(ū) + (−1)n+tgρ(−ū))

(
1 +O( N

n+t )
)

+O((1 + ε)nz−t) ,
(61)

where Dn is the value of the algebraic part of the step down generating function at ū.

Proof: We assume that 1
ρ − ū = 1

o(t) = o( 1√
t
). We use an integral contour like in Figure 8. It suffices to

add the contribution of both 1
ρ and ū:

rn(t) = ρtFn( 1
ρ ) + ū−t

√
πFn(ū)

∑j=n
j=1 Dj

(n+t)
3
2

(p∞q∞)
1
4 (gρ(ū) + (−1)n+tgρ(−ū)) (1 +O( N

n+t ))

+O((1 + ε)nz−t) .
(62)

Notice that the term in ū−t is always smaller than the term in ρt. 2

Case 1
ρ > ū and ρū ∈]1− o( 1√

t
), 1− 1

o(t) [

Theorem 9 We consider a stable non unitary concave walk such that for all n ≥ N , (pn, qn) = (p∞, q∞)
with a probability decay factor ρ on the absorbing black hole state s0. Let ū = 1

2
√
p∞q∞

. When the

probability decay factor ρ is such that the product ρū belongs to an interval of the kind ]1−o( 1√
t
), 1− 1

o(t) [,

we have the estimate, when t→∞ as soon as n,N = o(
√
t) :

rn(t)
Fn(ū) = ρt + ū−t

√
π

∑j=n
j=1 Dj

(n+t)
3
2

(p∞q∞)
1
4 (gρ(ū) + (−1)n+tgρ(−ū))

+O( 1√
1
ρ−ū

)ρt
∑j=n
j=1 Dj .

(63)

where Fn(u) is the probability generating function of the time to black hole from state sn, and Dn is the
value of the algebraic part of the step down generating function at ū.

Proof: This case is interesting because the second main singularity 1
ρ stands right in the integration

path of In(t, z), and gρ(u) becomes singular at u = 1
ρ . To remove this annoying conjunction we bend



354 Philippe Jacquet

(a) 1
ρ
> u(p), integral contour (b) 1

ρ
< u(p), detail of the integral contour

Fig. 8: Case ρū ≈ 1.

the integration path of In(t, z) so that it avoids the point 1
ρ and therefore the singularity at u = 1

ρ
becomes a simple pole (see Figure 8). Anyhow the detour will introduce a correction term of order
Fn(ū)gρ(ū)

∑n
j=1Dj

√
1− 1

(ρū)2 ρ
t. That is an error term in Fn(ū)ρtO( 1√

1
ρ−ū

)
∑n
j=1Dj .

We assume that 1
ρ − ū is both o( 1√

t
) and 1

o(t) . We have Fn( 1
ρ ) = Fn(ū)

(
1 +O( n√

t
)
∑j=n
j=1 Dj

)
.

Therefore we get

rn(t)
Fn(ū) = ρt + ū−t

√
π

∑j=n
j=1 Dj

(n+t)
3
2

(p∞q∞)
1
4 (gρ(ū) + (−1)n+tgρ(−ū))

+O( 1√
1
ρ−ū

)ρt
∑j=n
j=1 Dj .

(64)

2

Notice that gρ(ū) = O( 1
1
ρ−ū

) = o(t) and the error term is negligible in front of the term in ū−t. Since

Fn( 1
ρ ) = Fn(ū)(1 +O( n√

t
)) and

∑j=n+1
j=1 Dj = 1

1− pnqn F
2(ū,pn)

Dn+1 in quasi continuous conditions, we
get (removing the error term)

p̃n(t) ≈ pn
1

ρ
F (

1

ρ
, pn+1)

ρt + ū−t
√
π(p∞q∞)

1
4 (n+ t)−

3
2

1
1− pnqn F

2(ū,pn)
Dn+1(gρ(ū) + (−1)n+tgρ(−ū))

ρt + ū−t
√
π(p∞q∞)

1
4 (n+ t)−

3
2

pn
qn
F 2(ū,pn)

1− pnqn F
2(ū,pn)

Dn+1(gρ(ū) + (−1)n+tgρ(−ū))
.

(65)
We cannot say that any of the two terms in ρt and in ū−t is negligible in front of the other one.

Corollary 3 In quasi continuous conditions we have pn = p(αn) where p(x) is a fixed continuous func-
tion. Let q(x) = 1 − p(x). We assume that α → 0. When t → ∞ there is a state sB such that the black
hole is attractive before this state and attractive beyond, and we have the estimate B = z

α with z a real
number such that ∫ ∞

z

log

(
p(x)

q(x)
F 2(ū, p(x))

)
dx = α log

(
ρtūtt

3
2 (1− ρū)

)
. (66)
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Proof: We observe that if we define integer B such that

ρt ≈ ū−t
√
π(p∞q∞)

1
4

1

1− pB
qB
F 2(ū, pB)

DB+1(gρ(ū) + (−1)n+tgρ(−ū)) . (67)

When n < B then the term in ρt will be preponderant and in this case

p̃n(t) ≈ pn
1

ρ
F (

1

ρ
, pn) , (68)

which means that the black hole is attractive. When n > B, then

p̃n(t) ≈ qn
1

ρF ( 1
ρ , pn)

, (69)

in other words, the black hole is repulsive beyond state sB . Notice that the change of mode is sharp:
there is a briskly change of the value of p̃n(t) in a small set of contiguous states, leading to an edge in the
apparent random walk potential (see Figure 9 and following).

Notice that p̃n(t)→ 1
2 when n increases: the random walk is asymptotically neutral.

Ignoring O(α) terms, the change of mode occurs on state sB with B = b zαc such that∫ ∞
z

log

(
p(x)

q(x)
F 2(ū, p(x))

)
dx = α log

(
ρtūtt

3
2 (1− ρū)

)
. (70)

2

Figures 9 and 10 shows the apparent potential of a concave stable walk with different ρ < ū−1.

4.4 Generalized concave walks
In this subsection we don’t consider anymore that the random walk coefficient are stable beyond a fixed
step N . In this case we simply assume that lim pn = p∞ and we denote ū = u(p∞).

The main difficulty is in the convergence of the decomposition functionsKn(u) = Hn(u)−
√
s(u)Qn(u).

In passing we notice that the decomposition functions are no longer rational, but only analytical defined in
a complex neighborhood of both ±ū. Therefore we call Hn(u) and Qn(u) respectively the analytical and
algebraic part of generating function Kn(u). Therefore we assume that the series

√
p∞ − pn converge.

We can prove that there exists ε > 0 and N such for all u with |u| < ū(1 + ε) and for all n > N :

Kn(u, v) = v +O(
∑
j≥n

p∞ − pj) . (71)

A more thorough analysis shows that Lemma 1 can be extended to the statement that when |u| < uN

the following bounding condition holds: |KN (u, v)| ≤ 1 +
√

1− |u|
2

u2
N

. To this end we assume that

1− |u|
2

u2
N
≤ (1− ε)

√
1− ū2

u2
N
≤ (1− ε)

√
2(p∞ − pN )). But

∑
j≥n p∞ − pj = o(

√
p∞ − pn. Therefore

by letting N large enough such that |KN (u, v)| ≤ 1 +
√

1− |u|
2

u2
N

, we can export the results of stable
random concave walks to general concave walk.
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(a) ρ = exp(−0.002)ū−1 (b) ρ = exp(−0.001)ū−1

Fig. 9: Actual potential (dashed) and apparent asymptotic potential (plain) for a concave walk with pn =
0.48 exp(− 100

n2 ), N = 100 and t = 10, 000.

(a) ρ = exp(−0.004)ū−1 (b) ρ = exp(−0.006)ū−1

Fig. 10: Actual potential (dashed) and apparent asymptotic potential (plain) for a concave walk with pn =
0.48 exp(− 100

n2 ), N = 100 and t = 10, 000.
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5 Non unitary Gravitational walks
We call gravitational walk a concave walk where p∞ = 1

2 . Or, in other words ū = 1. For example
pn = 1

2 −
α2

n2 . In this case we have 4pnqn which converges to one as (p∞ − pn)2.

Theorem 10 We consider a stable non unitary gravitational walk such that for all n ≥ N : pn = 1
2 with a

probability decay factor ρ on the absorbing black hole state s0. Let t be the remaining black hole lifetime.
Let n ≤ N , when the probability decay factor ρ is smaller than 1− 1

o(t) , the probability sum rn(t) at state
sn satisfies the estimate, for t→∞ as soon as n,N = o(

√
n).

rn(t) = ρtFn(
1

ρ
) + P (tn > t) + P (tn = t)

(
1

1− ρ
+

(−1)n+t

1 + ρ

)(
1 +O(

N√
n+ t

)

)
, (72)

with
P (tn = t) =

√
π/2

(∑j=n
j=1 Dj

)
t−

3
2

(
1 +O( N

n+t )
)

P (tn > t) =
√

2π
(∑j=n

j=1 Dj

)
t−

1
2

(
1 +O( N

n+t )
)
.

(73)

Proof: The analysis of the stable gravitational walk and the decomposition Fn(u) =
∏j=n
j=1 Gj(u) and

Kn(u) = 2pnuGn(u) = Hn(u) −
√
s(u)Qn(u) remains with the asymptotic estimates. Nevertheless

the contribution of gρ(ū) becomes singular when ū = 1. In this case we have to develop the asymptotics
of P (tn > t) separately and this become the preponderant term. It comes that rn(t) = ρt + P (tn >

t) + P (tn = t)( 1
1−ρ + (−1)n+t

1+ρ )(1 +O( N√
n+t

)) with

P (tn = t) =
√
π/2

(∑j=n
j=1 Dj

)
t−

3
2

(
1 +O( N

n+t )
)

P (tn > t) =
√

2π
(∑j=n

j=1 Dj

)
t−

1
2

(
1 +O( N

n+t )
)
.

(74)

And we have

Dn =
pn
qn
Dn+1 =

j=∞∏
j=n

pj
qj
. (75)

2

Notice that:
Dn = exp (2(Vn − V∞)) . (76)

The transition to generalized gravitational walks is somewhat different because 4pnqn converges to one
like (p∞ − pn)2 since p∞ = 1

2 instead of converging to 4p∞q∞ like p∞ − pn when p∞ < 1
2 . Therefore

the condition of the transition to the asymptotics of the previous section is now that the series in p∞ − pn
converges (instead of the series in

√
p∞ − pn).

We now consider the case where ρ is very close to 1.

Corollary 4 We consider a stable non unitary gravitational walk such that for all n ≥ N : pn = 1
2 with a

probability decay factor ρ on the absorbing black hole state s0. Let t be the remaining black hole lifetime.
Let n ≤ N , when the probability decay factor ρ belongs to an interval of the kind ]1 − o( 1√

t
), 1 − 1

o(t) [
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(a) ρ = exp(−50.10−8) (b) ρ = exp(−200.10−8)

Fig. 11: Actual potential (dashed) and apparent asymptotic potential (plain) for a gravitational walk with pn =
1
2

exp(− 1000
n2 ) and t = 108. In green we display the average value between actual and apparent potential.

the probability sum rn(t) at state sn for the black hole lifetime t satisfies the estimate, for t→∞ as soon
as n,N = o(

√
n):

rn(t) = ρt + P (tn > t)(1 + o(1)) . (77)

Proof: For this model we get 1
1−ρP (tn = t) = o(P (tn > t)) and since Fn(1) = 1 we get the required

estimate. 2

In other words when ρt = o(1), the non unitary effect is equivalent to end pay back model: if the rabbit
reaches the black hole at any time before time t, the unitary effect is ρt, otherwise it is 1. Indeed we
should have rn(t) = ρt + P (tn > t)(1− ρt) = ρt + P (tn > t)(1 + o(t)).

The quasi continuous condition brings a similar conclusion as in the previous section. Defining∫ ∞
z

log

(
p(x)

q(x)

)
dx = α log

(
ρtt

1
2

)
. (78)

The black hole is attractive until state sB such thatB = b zαcwith p̃n(t) ≈ pn: the attraction is unchanged.
Beyond state sB the random walk is repulsive with p̃n ≈ qn:. the attraction is completely reversed beyond
that state. See Figure 11

In quasi continuous situation, we denote V (y) =
∫ y

0
1
2 log( q(x)

p(x) )dx and ∆V (y) = V (∞) − V (y).
For x = αn it turns out that Vn = 1

αV (x) + O(1) and Dn = exp(− 2
α (V (x) − V (∞)). Similarly∑j=n

j=1 Dj =
exp( 2

α (V (x)−V (∞))

1− p(x)
q(x)

. Denoting ρ = exp(−βt ), we have

rn = e−β +

√
2π√
t

exp(− 2
α∆V (x))

1− p(x)
q(x)

(
1 +

1

2β
+O(

1

t
)

)
. (79)
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Fig. 12: Actual potential V (x) (dashed) and apparent asymptotic potential Ṽ (x) (plain) for a gravitational walk with
pn = 1− 1

1+exp(− 1
1+x2

)
, t = 1090, β = 1020, α = 1

2
.10−20, in green we display the average value between actual

and apparent potential.

Assuming t and 1
α large, the change of mode occurs for z such that

β =
1

2
log t+

2

α
∆V (z) + log(1− p(z)

q(z)
) . (80)

We can investigate a special case where the computations are tractable. For example when log( q(x)
p(x) ) =

1
1+x2 , namely pn = 1− 1

1+exp(− 1
1+x2

)
. In this case we have V (x) = 1

2 arctan(x). Denoting Ṽ (x) = αṼn,

Figure 12 displays the actual and apparent potential for this case with parameters tuned to galactic orders
of magnitudes: t = 1090, α = 1

2 .10−20, β = 1020. We get z ≈ 1.7.

6 Physical considerations
We can apply this result to physically realistic models. Let consider a gas of particles of mass m and at
temperature k. The probability density P (v) that (the radial component of) the speed is equal to v follows
Boltzmann density:

P (v) =

√
m

2kTπ
exp

(
−mv

2

2kT

)
(81)

where k is the Boltzmann constant: k ≈ 1.3806503 × 10−23m2kg s−2K−1. The attraction of a body of
mass MS at distance r is given by the gravitational acceleration g(r) = MSG

r2 , where G ≈ 6.67300 ×
10−11m3kg−1s−2 is the gravitational constant.

Assume that the particle has a collision every θ seconds, and at each collision it takes a new speed v
according to Boltzmann density without memory, like a pure quantum event. Simplifying our model to
assume the particle switch to state sn to state sn+1 when −g(r) θ

2

2 + vθ > 0 we get

p(r) =
1

2

(
1− erf

(√
m

2kT

θg

2

))
, (82)
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with erf(x) the error function: erf(x) =
∫ x

0
2√
π

exp(−y2)dy. When r is large we have

p(r) ≈ 1

2

(
1−

√
m

2kTπ

MSGθ

r2

)
, (83)

and

∆V (r) ≈
√

m

2kTπ

MSG

r
θ =

√
m

2kTπ
∆V G(r)θ (84)

where ∆V G(r) is the gravitational potential of bodyMS at distance r. Remains to express α as a function
of θ and m and T . In our model α is the average free (radial) distance travelled by a particle between two
collisions. If the average time is θ then α = E(|v|)θ.

Since E(|v|) =
√

2kT
mπ we get

rn = e−β +

√
2π√
t

exp(− m
kT ∆V G(x))

1− p(x)
q(x)

(
1 +

1

2β
+O(

1

t
)

)
. (85)

The change of mode occurs around z such that (neglecting 1
t , 1

β and log terms)

β =
m

kT
∆V G(z) =

mGMS

kTz
. (86)

It is worthy to notice that critical z does not depend on inter-collision average period. In other words, it is
independent of particle density and particle critical section, it only depends on temperature and individual
mass. For an evaluation of the order of magnitude we have MS ≈ 1042 (including dark matter). Taking
m = 10−27kg, T = 10, 000K we get with rule of the thumb estimate z ≈ 1021: β ≈ 103.

If we denote vL(r) the liberation speed that is needed to leave the galaxy from distance r we have

v2
L

2
= ∆VG(r) , (87)

and therefore e−β = exp(−mv
2
L

2kT ), in other words the apparent mode transition occurs when the quantity
ρt = e−β is of the order of the probability of liberation speed.

The bimodal aspect of the apparent gravitational walk, and in particular the exact reversion of the ran-
dom walk beyond critical distance z give some reminiscence about the mysterious dark energy effect.
Since 1998, it has been noted that the expansion of the universe is in acceleration, fact that contradicts the
usual decelerated expansion scheme predicted by general relativity. In order to explain this discrepancy,
astrophysicists have imagined the introduction of a so-called dark energy that contributes to the accel-
eration of the expansion. The reversion of gravitational potential, in the gravitational walk could be a
candidate effect that contributes to dark energy, assuming that galactic black holes are non unitary. The
impact on Friedmann-Lemaitre equations must be investigated.

It should be noted that in the model presented in Figure 13 we would have a non unitary effect of less
than 10−70 per time unit, inside a black hole. It means that the impact of the non unitary effect within the
critical distance is not measurable, and that only the extremely large black hole lifetimes would make it
apparent beyond the critical distance. It should also be noted that the repulsion is not due to a force in the
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Fig. 13: Actual potential −∆VG(x) (dashed) and apparent asymptotic potential ∆ṼG(x) (plain) for a gravitational
walk with realistic setting MS = 2× 1042kg (1 trillion solar masses), critical z = 3× 1021m (300,000 light-years),
in green we display the average value between actual and apparent potential.

physical sense, but would be due to a weird effect in future trajectory weight summation in the random
walk.

The identity β = mGMS

kTz reminds the formula for the incremental entropy carried by a mass m in a
black hole of mass MB : SB = 8πmGMB

c~ . This suggests that the ratio β
SB

somewhat measures the ratio
of information lost by the black hole during its evaporation. Assuming MB = MS , it is interesting to
notice that this ratio, equal to ~c

8πkTz , does not depend on the gravitational constant G and on the mass of
the black hole, it turns out that it would be of the order 10−29.

7 Conclusion and perspective
We have analyzed the effect of a non unitary black hole state in a discrete random walk model. Even
simplistic this model would be very difficult to simulate since it would require of the order of 1090 steps
over 1020 states. We have proven that in the most simplistic scenarios the non unitary effect is very
sensitive to the tuning of the parameters, but in most case lead to a reversion of the random walk potential
beyond a certain range. This effect has interesting interpretation in physics that would probably need to
be investigated in a separate track.

The analysis tools are continued fractions, complex analysis and singularity analysis. In passing we
get interesting insights about the time distribution of return times in concave random walks. There are of
course many technical points that need further investigation. What is the correct singularity analysis when
the series

√
p∞ − pn diverges (or p∞ − pn diverges in case of gravitational walk)? It seems that in this

case we have Kn(u) = Hn(u)− (ū− u)anQn(u) where an → 1
2 when n→∞.

An extension to continuous time and state space would be interesting to analyze, very likely via partial
derived equations. The result of the reversion of the potential would be interesting to investigate in multi-
dimensional non unitary random walks (see Figure 14).
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Fig. 14: Two dimensional random walk.
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