
Discrete Mathematics and Theoretical Computer Science DMTCS vol. 12:2, 2010, 295–306

On certain non-unique solutions of the
Stieltjes moment problem

Karol A. Penson1† Pawel Blasiak2 Gérard H. E. Duchamp3

Andrzej Horzela2 Allan I. Solomon1,4
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We construct explicit solutions of a number of Stieltjes moment problems based on moments of the form ρ
(r)
1 (n) =

(2rn)! and ρ(r)
2 (n) = [(rn)!]2, r = 1, 2, . . . , n = 0, 1, 2, . . . , i.e. we find functions W (r)

1,2 (x) > 0 satisfyingR ∞
0
xnW

(r)
1,2 (x)dx = ρ

(r)
1,2(n). It is shown using criteria for uniqueness and non-uniqueness (Carleman, Krein, Berg,

Gut, Pakes, Stoyanov) that for r > 1 both ρ(r)
1,2(n) give rise to non-unique solutions. Examples of such solutions are

constructed using the technique of the inverse Mellin transform supplemented by a Mellin convolution. We outline a
general method of generating non-unique solutions for moment problems generalizing ρ(r)

1,2(n), such as the product
ρ
(r)
1 (n) · ρ(r)

2 (n) and [(rn)!]p, p = 3, 4, . . . .

Keywords: Classical moment problem, Stieltjes moment problem, Mellin transform

1 Introduction
This paper concerns solutions of the Stieltjes moment problem [1, 2], i.e. positive functions W (x) which
satisfy the infinite set of equations

∞∫
0

xnW (x)dx = ρ(n), n = 0, 1, 2, . . . . (1)
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We previously met this problem when considering the properties of the so-called (generalized) coherent
states (CS) of Quantum Mechanics (i)

defined, for complex z ∈ D ⊂ C and positive numbers ρ(n), n = 0, 1, 2, . . . , as

|z〉 = N−1/2(|z|2)
∞∑
n=0

zn√
ρ(n)

|n〉 (2)

where |n〉’s, n = 0, 1, 2, . . . , form an orthonormal complete basis in the Hilbert space H, 〈m|n〉 = δmn,∑∞
n=0 |n〉〈n| = 1 (ii). These CS are required to be normalizable, i.e.

∑∞
n=0 |z|2n/ρ(n) = N (|z|2) has

a non-zero radius of convergence R, continuous in the label z, i.e., z′ → z implies |z′〉 → |z〉, and to
satisfy the property of Resolution of Unity with a measure µ(|z|2) > 0 for z ∈ D ⊂ C, where D is a disc
of radius R centered in z = 0,

1
π

∫
D⊂C

d Re(z) d Im(z) µ(|z|2) |z〉〈z| = 1 =
∞∑
n=0

|n〉〈n| , (3)

which is essentially equivalent to Eq. (1) for W (x) = µ(|z|2)/N (|z|2)||z|2=x [3, 4]. The property of
Resolution of Unity plays an important role in various applications of CS, in particular in the construction
of the so-called Bargmann representation in quantum mechanics within which quantum states |f〉 =∑∞
n=0 fn|n〉,

∑∞
n=0 |fn|2 = 1 are represented as entire functions [5, 6]

|f〉 → fB(z) = N 1/2(|z|2)〈z∗|f〉 =
∞∑
n=0

fnz
n√

ρ(n)
(4)

and the scalar product of two states 〈g|f〉 =
∑∞
n=0 g

∗
nfn is given in terms of so defined Bargmann

functions by

〈g|f〉 =
1
π

∫
D⊂C

d Re(z) d Im(z) g∗B(z)fB(z)
µ(|z|2)
N (|z|2)

. (5)

Taking |g〉 = |m〉 and |f〉 = |n〉 we see that solutions to the moment problem Eq. (1) provide us with
explicit forms of the scalar product in the Bargmann representation generated by the CS of Eq. (2).
Standard CS, usually called Glauber or harmonic oscillator CS, for which ρ(n) = n!, lead to µ(|z|2) = 1,
N (|z|2) = e−|z|

2
and, consequently, W (x) = e−x. Generalized CS lead to ρ(n)’s other than n! [7] and

the solutions of Eq.(1), if any, must be studied in each individual case separately [8, 9, 10, 11]. An efficient

(i) Coherent states were originally proposed by Erwin Schrödinger in the early days of Quantum Mechanics to describe wave
packets obeying the time evolution close to the classical motion (E. Schrödinger, “Der Stetige Übergang von der Mikro- zur
Makromechanik”, Naturwissenschaften 14 (1926) 664–666). They were reintroduced more than half a century ago in seminal
papers by R. J. Glauber and others: R. J. Glauber, “The quantum theory of optical coherence”, Phys. Rev. 130 (1963) 2529–
2539, E. C. G. Sudarshan, “Equivalence of semiclassical and quantum mechanical description of statistical light beams”, Phys.
Rev. Lett. 10 (1963) 277–279, and J. R. Klauder, “Continuous-representation theory. I. Postulates of continuous-representation
theory”, J. Math. Phys. 4 (1963) 1055–1058; “Continuous-representation theory. II. Generalized relation between quantum and
classical dynamics”, J. Math. Phys. 4 (1963) 1058–1073. Such states are nowadays an important tool widely used in quantum
optics and in general investigations of quantization.

(ii) Here we follow Dirac’s notation universally used in quantum physics: elements of a Hilbert space are denoted by kets |·〉, their
Hermitean conjugates by bras 〈·|, projection operators as |·〉〈·| and the scalar product as 〈·|·〉.



On certain non-unique solutions of the Stieltjes moment problem 297

way to tackle the problem is to use the inverse Mellin transform method which allows one to establish
many solutions of Eq. (1), either by analytic methods [12] or by extensive use of available tables [13, 14].
As a byproduct of this method we have established that, for a large number of combinatorial sequences
such as Bell and Catalan numbers, etc., the corresponding sequences ρ(n) are solutions of the moment
problem Eq. (1) [15, 16]. Likewise, sequences arising in theory of ordering of differential operators [17]
solve appropriate moment problems too [18].

We want also to emphasize that any investigation of the moment problem is deeply rooted in a classical
problem of statistics, namely that of the unique or non-unique determination of a probability distribution
from its moments. We will link to it in Section 4; here we only remark that this problem was fully treated
more than one hundred years ago by T. J. Stieltjes [19], recalled by M. G. Krein in the middle of the
XXth century [20] and is still the subject of extensive research which in recent years has led to significant
progress in its understanding [21, 22, 23, 24, 25, 26, 27, 28, 30, 29, 31, 32, 33, 34]. Statistical aspects of
the moment problem have an analogue in quantum physics: according to its standard interpretation the
probability that the state |n〉 appears in the coherent state |z〉 of Eq.(2) is

Pn(z) = |〈n|z〉|2 =
|z|2n

N (|z|2)ρ(n)
(6)

and, if ρ(n) satisfy Eq. (1) with W (x) = µ(|z|2)/N (|z|2)||z|2=x. Then for all n = 0, 1, 2, ... we have∫
D⊂C

d Re(z) d Im(z) µ(|z|2)Pn(z) = 1, (7)

which is equivalent to the Resolution of Unity of Eq.(3), asserting the completeness of so defined CS.
The physical interpretation and consequences of uniqueness or non-uniqueness of the measure µ(|z|2)
satisfying Eq.(7) is however beyond the scope of the current paper and will be treated elsewhere [35].

This admixture of quantum-mechanical, analytical, combinatorial and statistical features deserves a
deeper study which we intend to pursue. Our paper is partly expository in character, and has the fol-
lowing structure: first we establish a link between the Mellin transform and the moment problem; next,
in Section 3, we provide principal solutions to two moment problems, termed toy models. In Section 4
we discuss criteria for the uniqueness of solutions of the moment problem. Section 5 is devoted to the
explicit construction of non-unique solutions of the toy-models. In Section 5, some generalizations of
model sequences, together with their solutions, are reviewed. Section 6 is devoted to a discussion and
conclusions.

We dedicate this paper to Philippe Flajolet on the occasion of his 60th birthday. His pioneering ap-
plications of Mellin transform asymptotics to the analysis of combinatorial structures [36, 37, 38] have
been a source of inspiration for us.
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2 The Mellin transform versus moment problem
The Mellin transform of a function f(x) of the real variable x is defined for complex s by the following
relation

M[f(x); s] =

∞∫
0

xs−1f(x)dx ≡ f∗(s) (8)

( in this definition f∗(s) is not the complex conjugate of f(s) ! ), and its inverseM−1 is defined by

M−1[f∗(s);x] =
1

2πi

c+i∞∫
c−i∞

f∗(s)x−sds. (9)

See Ref. [39] for a discussion of the dependence of f(x) on the real constant c. Among the many relations
satisfied by the Mellin transform we shall mainly use the following

M[xbf(axh); s] =
1
h
a−

s+b
h f∗

(
s+ b

h

)
, a, h > 0. (10)

IfM[f(x); s] = f∗(s) andM[g(x); s] = g∗(s), then

M−1[f∗(s)g∗(s);x] =

∞∫
0

f
(x
t

)
g(t)

dt

t
=

∞∫
0

g
(x
t

)
f(t)

dt

t
(11)

which is called the Mellin convolution property. Note that if in Eq. (11) both f(x) and g(x) are positive

for x > 0 then
∞∫
0

f(xt )g(t)dtt is also positive for x > 0. This means that the Mellin convolution preserves

positivity, an essential property when considering the moment problem.
Eq.(1), if rewritten for n = s− 1 as

W (x) =M−1[ρ(s− 1);x], (12)

is, if W (x) > 0, a solution of a Stieltjes moment problem. Thus according to Eq. (12) one can solve
the Stieltjes moment problem by performing the inverse Mellin transform on the moment sequence and
checking if the resulting function is positive. All the solutions in the sequel have been obtained using Eqs.
(12), (10) and (11). Note that W (x) obtained via Eq. (12) may not be the only solution of Eq.(1). We call
W (x) > 0 obtained via Eq. (12) from Eq. (1) the principal solution (iii).

(iii) Sets of positive functions consisting of ’center of the class’ modulated by an oscillatory function orthogonal to all polynomials,
i.e., sets of positive functions sharing the same (Stieltjes) moments, called a ’Stieltjes class’, were first discussed in [31] and then,
in various aspects, constructed and analysed in [28, 32, 33].
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3 Principal solutions of the moment problems
Let us consider two sequences of integers given by

ρ
(r)
1 (n) = (2rn)!, n = 0, 1, 2, . . . , r = 1, 2, . . . . (13)

ρ
(r)
2 (n) = [(rn)!]2, n = 0, 1, 2, . . . , r = 1, 2, . . . . (14)

In the following we shall obtain the solutions of the Stieltjes moment problem for the moment sequences
given by Eqs. (13) and (14), i.e. the functions W (r)

1,2 (x) > 0 satisfying
∞∫
0

xnW
(r)
1,2 (x)dx = ρ

(r)
1,2(n). (15)

From now on we shall refer to the model problems ρ(r)
1,2(n) as toy models TM1 and TM2, respectively.

a) TM1: we begin by obtaining W (1)
1 (x). Note that (2n)! = Γ(2n+ 1) = Γ(2(s− 1

2 )). We now apply
Eq.(10) with a = 1, b = − 1

2 and h = 1
2 . We subsequently useM−1[Γ(s);x] = e−x which gives

∞∫
0

xnW
(1)
1 (x)dx =

∞∫
0

xn

[
e−
√
x

2
√
x

]
dx = (2n)!, n = 0, 1, 2, . . . . (16)

In the same spirit we observe that (2rn)! = Γ
(
2r
(
n+ 1

2r

))
= Γ

(
2r
(
s− 2r−1

2r

))
. Upon using Eq. (10)

but now with a = 1, b = − 2r−1
2r and h = 1

2r one obtains
∞∫
0

xnW
(r)
1 (x)dx =

∞∫
0

xn
[

1

2rx
2r−1
2r

e−x
1
2r

]
dx = (2rn)!, n = 0, 1, 2, . . . . (17)

This means that W (r)
1 (x) > 0 is the principal solution of the moment problem Eq. (17).

b) TM2: we begin by deriving W (1)
2 (x) = M−1[Γ2(s);x] and employ the Mellin convolution Eq.

(11). By using the Sommerfeld representation of the modified Bessel function of second kind K0(x) [40]
one obtains

∞∫
0

xnW
(1)
2 (x)dx =

∞∫
0

xn
[
2K0(2x

1
2 )
]
dx = (n!)2, n = 0, 1, 2, . . . . (18)

Subsequently note that [(rn)!]2 = [Γ
(
r
(
n+ 1

r

))
]2 = [Γ

(
r
(
s− r−1

r

))
]2 and again apply Eq.(10) with

a = 1, b = − r−1
r and h = 1

r . The result is
∞∫
0

xnW
(r)
2 (x)dx =

∞∫
0

xn
[

2

rx
r−1

r

K0(2x
1
2r )
]
dx = [(rn)!]2, n = 0, 1, 2, . . . . (19)

Since K0(t) > 0 for t > 0, W (r)
2 (x) > 0 is the principal solution of the moment problem Eq. (19).

We emphasize that although the inverse Mellin transform technique deserves to be better known to
broader physics community, it is standard in probability [23, 41, 42].
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4 Criteria of uniqueness and non-uniqueness of the Stieltjes mo-
ment problem

As we remarked in the Introduction it was realized from the very beginning of the history of the moment
problem that its solutions may not be unique; i.e. for a given moment sequence there may exist more than
one solution. Stieltjes himself gave an example of a non-unique solution of a problem leading to what
turned out to be the lognormal distribution [19]. This example, being about the only one available, was
quoted repeatedly in the literature. As recently as twenty years ago new non-unique solutions of other
types of problems have been constructed. Of special interest were Stieltjes moment problems arising in
probability theory, related to investigation of probability distributions not determined by their moments.
Consequently, the subject was further developed and systematized, largely due to the comprehensive
work of Berg [21, 23], Berg and Pedersen [22], Gut [24], Lin [25], Pakes with coworkers [26, 27, 28],
Stoyanov [29, 30, 31], Stoyanov and Tolmatz [32, 33] and others. For recent extension of Ref. [21] see
Ostrovska and Stoyanov [34].

From the practical point of view one needs criteria to decide whether the pursuit of non-unique solutions
is reasonable. Such criteria are either based on the ρ(n)’s alone or on the solution W (x) alone, or on both
ρ(n) and W (x), see below. From now on we assume that all the ρ(n)’s are finite and that W (x) is
continuous. We now give , in a somewhat condensed form, a list of such criteria.

C1 Carleman uniqueness criterion (T. Carleman, 1922, [1]) This is based on the properties of the ρ(n)’s
alone and is:

If S =
∑∞
n=1[ρ(n)]−

1
2n =∞, then the solution is unique.

This criterion does not imply that if S <∞ then the solution is non-unique. In fact it is possible to
construct models for which S <∞ and solutions are still unique [29, 43].

C2 Krein’s non-uniqueness criterion (M. G. Krein, around 1950, [20])

This is based entirely on the solution W (x) and does not involve the moments.

If
∫∞
0
− ln [W (x2)]

1+x2 dx <∞, i.e., the so-called Krein integral exists, then the solution is non-unique.

C3 Converse Carleman criterion for non-uniqueness (A. Pakes, 2001, [26], A. Gut, 2002, [24])

This is based on ρ(n)’s and W (x).

If there exists x′ ≥ 0 such that for x > x′, 0 < W (x) < ∞ and ψ(y) = − ln [W (ey)] is convex
in (y′,∞), where y′ = ln (x′), and if, in addition, S =

∑∞
n=1[ρ(n)]−

1
2n < ∞, then the solution

W (x) is non-unique.

See [21, 22, 24, 26, 27, 29] for various refinements of these criteria.

5 Construction of non-unique solutions for TM1 and TM2
We first apply the criterion C1 to sequences ρ(r)

1,2(n) (the logarithmic test of divergence of the series S

is conclusive) and conclude that for r = 1 both solutions W (1)
1 (x) = e−

√
x

2
√
x

and W (1)
2 (x) = 2K0(2x

1
2 )

are unique. For r > 1 we find that
∑∞
n=1[ρ(r)

1,2(n)]−
1
2n is convergent. Application of criterion C2 gives
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convergence of the Krein integral, showing that the solutions of TM1 and TM2 are non-unique. These
findings are confirmed by use of criterion C3: convexity of ψ(r)

1,2(x) = − ln [W (r)
1,2 (ex)] is proved as it is

equivalent to ex/r > 0 for x > 0, (TM1) and K1(2ex/r)−K0(2ex/r) > 0 for x > 0, (TM2). The quest
for non-unique solutions for r > 1 is then well founded. We remark that the phenomenon of switching
from unique to non-unique solutions can be also explained by methods exposed by Pakes et al. in Ref.[27],
which would also permit the study of r non-integer case.

We know of no general method to construct such solutions. However we have proposed a procedure
based on the application of inverse Mellin transform which generates the required solutions [9, 44] which
we now briefly expose.

The first step is to construct, within the framework of a given set of ρ(n)’s, a family of functions ωk(x),
parametrized by a constant k (to be defined below), such that all their moments vanish, i.e.

∞∫
0

xnωk(x)dx =

∞∫
0

xs−1ωk(x)dx = 0, n = 0, 1, 2, . . . , s = 1, 2, . . . . (20)

The Mellin transform of ωk(x), ω?k(s), vanishes for s = 1, 2, . . . . Such functions are orthogonal to all
polynomials and play an important role in the study of integral transforms [45]. For our purposes we
choose a particular method of producing the functions ω?k(x):

∞∫
0

xnωk(x)dx = ρ
(r)
1,2(n) · hk(n), (21)

or equivalently
∞∫
0

xs−1ωk(x)dx = ρ
(r)
1,2(s− 1) · hk(s− 1), (22)

where hk(s) is any holomorphic function vanishing for s = 1, 2, . . . . Among an infinity of possible
choices the simplest one is hk(s)=sin (πk(s+ 1)) and it defines a discrete parameter k=±1,±2,±3, . . . .
The function ωk(x) acquires new parameters now and is formally obtained by calculating the inverse
Mellin transform

ω
(r)
1,2,k(x) =

1
2πi

i∞∫
−i∞

ρ
(r)
1,2(s− 1) sin (πks)x−sds, k = ±1,±2,±3, . . . . (23)

It turns our that for both ρ(r)
1,2(s) the integration in Eq.(23) can be performed:

a) TM1: for ρ(r)
1 (n) = (2rn)!, ω(r)

1,k(x) is a special case of earlier evaluation [9] and reads:

ω
(r)
1,k(x) = 1

2rx
2r−1
2r

e−x
1
2r sin

[
kπ
(

2r−1
2r

)
+ x

1
2r tan

(
kπ
2r

)]
, (r > |k|)

= W
(r)
1 (x) sin

[
kπ
(

2r−1
2r

)
+ x

1
2r tan

(
kπ
2r

)]
.

(24)
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In Eq.(24) we notice a pleasant factorization of W (r)
1 (x).

b) TM2: for ρ(r)
2 (n) = [(rn)!]2 the corresponding function ω(r)

2,k(x) has to be, in the first place, represented
as

ω
(r)
2,k(x) =M−1[Γ(rs− s+ 1)︸ ︷︷ ︸

I

Γ(rs− s+ 1) sin (πks)︸ ︷︷ ︸
II

;x] (25)

which can be conceived as another case of Mellin convolution. A little thought gives the two partners to
be convoluted as

I→W
(r/2)
1 (x) =

1

rx
r−1

r

e−x
1
r , (26)

(see Eq.(24)) and

II→ ω
(r/2)
1,k (x) = 1

rx
r−1

r

e−x
1
r sin

[
kπ
(
r−1
r

)
+ x

1
r tan

(
kπ
r

)]
, (27)

(compare Eq.(24)). Thus, the integral form of ω(r)
2,k(x) is

ω
(r)
2,k(x) =

∞∫
0

W
(r/2)
1

(x
t

)
ω

(r/2)
1,k (t)

dt

t
(28)

whose evaluation requires a number of changes of variables as well as the use of formula 2.5.37.2, p. 453
of vol.1 Ref.[13], but is essentially elementary. The final result is

ω
(r)
2,k(x) = 2

rx
r−1

r

Re
[
eiπ( 1

2−k
r−1

r )K0

(
2x

1
2r

(
1 + i tan

(
πk
r

))1/2)]
≡ 2

rx
r−1

r

V
(r)
k (x)

(29)

where we note a “near” factorization of W (r)
2 (x).

Armed with explicit forms for ω(r)
1,k(x) and ω(r)

2,k(x) we are in position now to write down families of
non-unique solutions. Their structure has the form: principal solution + const·ωk(x). More precisely:
TM1:

W̃
(r)
1 (ε, k, x) = W

(r)
1 (x)

[
1 + ε sin

(
kπ

(
2r − 1

2r

)
+ x

1
2r tan

(
kπ

2r

))]
(30)

for real ε, |ε| < 1.
TM2:

W̃
(r)
2 (γ, k, x) = W

(r)
2 (x)

[
1 + γ

V
(r)
k (x)

K0(2x
1
2r )

]
(31)

for r > 2|k|.

As
[
1 + γ

V
(r)

k (x)

K0(2x1/2r)

]
is an oscillating function of bounded variation, a constant γ = γ(k, r) can be

always found to assure the overall positivity of W̃ (r)
2 (γ, k, x). The above technique for obtaining non-

unique solutions can be readily extended to moment sequences more general than ρ
(r)
1,2(n). We shall

simply mention two such extensions without entering into details.
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For ρ(r)
3 (n) = [(rn)!]3 we begin with the sequence (n!)3 for which the solution is

∞∫
0

xnMeijerG ([ [ ], [ ] ], [ [0, 0, 0], [ ] ], x) dx = (n!)3, (32)

where we use a convenient and self-explanatory notation for Meijer’s G-function borrowed from that of
computer algebra systems. Observe that ρ(r)

3 (n) corresponds to triple convolution of probability distri-
bution function characterizing (rn)!, hence the use of Meijer’s G-function. For applications of Meijer’s
G function in probability theory see Refs.[41, 42]. The extension, via Eq. (10), leads to the principal
solution

∞∫
0

xn
[

1

rx
r−1

r

MeijerG
(

[ [ ], [ ] ], [[0, 0, 0], [ ]], x
1
r

)]
dx = [(rn)!]3. (33)

The integrand in Eq. (33) is a positive function for x > 0 which cannot be represented by any other known
special function. It possesses an infinite series representation in terms of polygamma functions, which we
will not quote here. The Carleman sum S is convergent but the criterion C2 is not conclusive. Only the
criterion C3 permits to ascertain the non-uniqueness. The corresponding function ω(r)

3,k(x) is defined as

ω
(r)
3,k(x) =M−1[Γ2(rs− s+ 1)︸ ︷︷ ︸

I

Γ(rs− s+ 1) sin (πks)︸ ︷︷ ︸
II

;x] (34)

which can be calculated as Mellin convolution of I → W
(r)
2 (x) and II → ω

(r/2)
1,k (x), see Eqs. (24) and

(29), respectively.
As a final example consider the sequence ρ(r)

4 (n) = ρ
(r)
1 (n)ρ(r)

2 (n). The corresponding Mellin convo-
lution of two principal solutions W (r)

1,2 (x), see Eqs. (30) and (31), yields directly the principal solution for

ρ
(r)
4 (n):

∞∫
0

xn
[

4r−1

r
√
πx

2r−1
r

MeijerG
(

[ [ ], [ ] ], [[r − 1
2 , r, r, r], [ ]], 1

4x
1
r

)]
dx = (2rn)![(rn)!]2,

n = 0, 1, 2 . . . , r = 1, 2, . . . ,
(35)

which is non-unique by C3 only, as C2 remains inconclusive.

6 Discussion and Conclusion
We have demonstrated a methodology for obtaining unique and non-unique solutions of the Stieltjes
moment problem using the Mellin convolution method. Although the initial moment sequences were
simple and classical, one is rapidly forced to leave the realm of standard special functions, as the resulting
solutions are special cases of Meijer G-functions, a well-known fact to specialists in probability and
statistics. In most cases they resist the check for non-uniqueness via both the Carleman criterion C1 and
the Krein criterion C2, and Pakes-Gut criterion C3 appears to be the only tool to decide this question.
We have generated parametrized families of non-unique solutions exemplified here by Eqs. (24) and (29).
Such functions, after Stoyanov [31], are now called Stieltjes classes. Their general properties and methods
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of explicit construction for such probability distributions like lognormal, inverse Gaussian and logistic,
all leading to indeterminate Stieltjes moment problem, were investigated by Stoyanov and Tolmatz and
Pakes [32, 33, 28]. In the context of work of the aforementioned authors our example Eq. (24) belongs to
the class arising from Eq.(4) in [33] while the example Eq. (29) is more general. This supports our belief
that the Mellin transform/convolution technique, which we have presented and advocated throughout this
paper, provides a toolkit completing other methods of solving the indeterminate moment problems.
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and applications”, J. Phys. A: Math. Gen. 37 (2006) 4999–5006.

[17] P. Blasiak, A. Horzela, K. A. Penson, A. I. Solomon and G. H. E. Duchamp, “Combinatorics and
Boson normal ordering: A gentle introduction”, Am. J. Phys. 75 (2007) 639–646.

[18] K. A. Penson, P. Blasiak, A. Horzela, G.H.E. Duchamp and A.I. Solomon, “Laguerre-type deriva-
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