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8-star-choosability of a graph with maximum
average degree less than 3
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A proper vertex coloring of a graphG is called a star-coloring if there is no path on four vertices assigned to two colors.
The graph G is L-star-colorable if for a given list assignment L there is a star-coloring c such that c(v) ∈ L(v). If G
is L-star-colorable for any list assignment L with |L(v)| ≥ k for all v ∈ V (G), then G is called k-star-choosable.
The star list chromatic number of G, denoted by χl

s(G), is the smallest integer k such that G is k-star-choosable.

In this article, we prove that every graph G with maximum average degree less than 3 is 8-star-choosable. This
extends a result that planar graphs of girth at least 6 are 8-star-choosable [A. Kündgen, C. Timmons, Star coloring
planar graphs from small lists, J. Graph Theory, 63(4): 324-337, 2010].
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1 Introduction
Only simple graphs are considered in this paper unless otherwise stated. A plane graph is a particular
drawing of a planar graph in the Euclidean plane. For a graph G, we use V (G), E(G), |G|, and δ(G) to
denote its vertex set, edge set, order, and minimum degree, respectively. The girth g(G) of G is the length
of a shortest cycle in G.

A proper k-coloring of G is an assignment of k colors 1, 2, · · · , k to V (G) such that adjacent vertices
receive different colors. If G has a proper k-coloring, then G is said to be k-colorable. The chromatic
number, denoted by χ(G), is the smallest integer k such thatG is k-colorable. A proper vertex coloring of
a graph G is acyclic if there is no bicolored cycle in G. In other words, the graph induced by the union of
every two color classes is a forest. The acyclic chromatic number, denoted by χa(G), of G is the smallest
integer k such that G has an acyclic k-coloring.

The notion of acyclic coloring of graphs was first introduced by Grünbaum in Grünbaum (1973). In
1979, Borodin Borodin (1979) confirmed Grünbaum’s conjecture that every planar graph is acyclically
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98 Min Chen André Raspaud Weifan Wang

5-colorable. This upper bound is best possible, based on two examples constructed in Grünbaum (1973)
and Kostochka and Mel’nikov (1976), respectively. Grünbaum also noted that the condition that the union
of any two color classes inducing a forest can be generalized to other bipartite graphs. Among other
problems, he suggested requiring that the union of any pair of color classes induces a star forest, namely,
a proper coloring avoiding 2-colored paths with four vertices. Formally, such coloring is called a star-
coloring. The star chromatic number χs(G) is defined to be the least number of colors required to obtain
a star-coloring of G.

Let P denote the family of planar graphs. By using both Borodin’s acyclic 5-color theorem and
Grünbaum’s inequality χs(G) ≤ χa(G)2

χa(G)−1, it is easy to obtain that χs(P) ≤ 80. In 2003,
Nešetřil and Ossona de Mendez Nes̆etr̆il and Ossana de Mendez (2003) made a big step by showing
that χs(P) ≤ 30. Then, Albertson et al. Albertson et al. (2004) further decreased this upper bound to 20
and gave a lower bound by showing an example of a planar graph H which needs at least 10 colors to star
color. It follows that 10 ≤ χs(P) ≤ 20. Moreover, they observed that the graph C+

n (an n-cycle with a
leaf vertex added to each vertex of the cycle) has star chromatic number 4 when n is not divisible by 3.
Additionally, they proved that planar graphs of girth at least 5 (resp. 7) can be star colored with 16 (resp.
9) colors. Other star-coloring results are provided in Bu et al. (2009); Fertin et al. (2001) and Timmons
(2007).

We say that G is L-star-colorable if for a given list assignment L there is a star-coloring c such that
c(v) ∈ L(v). If G is L-star-colorable for any list assignment L with |L(v)| ≥ k for all v ∈ V (G), then
G is k-star-choosable. The star list chromatic number, or star choice number, denoted by χls(G), of G is
the smallest integer k such that G is k-star-choosable.

Recently, L-star-coloring has been investigated by some authors. Kierstead, Kündgen and Timmons
Kierstead et al. (2009) showed that bipartite planar graphs are 14-star-choosable, and gave an example of
a bipartite planar graph that requires 8 colors to star color. Chen, Raspaud and Wang Chen et al. (2011)
showed that ifG is a planar subcubic graph, then (1) χls(G) ≤ 6 if g(G) ≥ 3; (2) χls(G) ≤ 5 if g(G) ≥ 8;
and (3) χls(G) ≤ 4 if g(G) ≥ 12.

The maximum average degree mad(G) of a graph G is defined as:

mad(G) = max{2|E(H)|
|V (H)|

: H ⊆ G}.

Kündgen and Timmons Kündgen and Timmons (2010) proved the following.

Theorem 1 (Kündgen and Timmons (2010)) Let G be a graph.
(1) If mad(G) < 8

3 , then χls(G) ≤ 6.
(2) If mad(G) < 14

5 , then χls(G) ≤ 7.
(3) If G is planar and g(G) ≥ 6, then χls(G) ≤ 8.

It is well known that a planar graph G with girth g(G) satisfies mad(G) < 2g(G)
g(G)−2 . Using this fact

and (1) and (2) in Theorem 1, we immediately deduce that for a planar graph G, we have χls(G) ≤ 6 if
g(G) ≥ 8, and χls(G) ≤ 7 if g(G) ≥ 7.

The purpose of this paper is to extend the result (3) in Theorem 1 to graphs with maximum average
degree less than 3. More precisely, we will prove the following:

Theorem 2 Every graph G with mad(G) < 3 is 8-star-choosable.
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2 Preliminaries
For simplicity, we use i+ to denote a number of at least i. A k-vertex, k+-vertex, or k−-vertex is a
vertex of degree k, at least k, or at most k. A k(d)-vertex is a k-vertex adjacent to d 2-vertices. For
v ∈ V (G), let n2(v) denote the number of 2-vertices adjacent to v, and NG(v) denote the set of neigh-
bors of v in G. A walk of G is a non-empty alternating sequence of vertices and edges denoted by
W = v1e1v2e2 · · · ek−1vk, where ei = vivi+1 for each 1 ≤ i ≤ k − 1. If all the vertices of a
walk v1e1v2e2 · · · ek−1vk are mutually distinct, then we call such a walk a path, simply denoted by
P = v1v2 · · · vk−1vk. We say that v1, vk are the endpoints of P and v2, · · · , vk−1 are internal vertices
of P . For S ⊆ V (G), let G − S denote the subgraph of G obtained by deleting the vertices in S and all
edges incident to some vertices in S. Let G[S] denote the subgraph of G induced by S.

Let xy ∈ E(G). We use x → y to denote that the edge xy is oriented from x to y. For a simple
undirected graph G, an orientation of G is obtained by assigning a direction to each edge, denoted by −→G .
For v ∈ V (

−→
G), we define the outdegree vertices set of v by D+−→

G
(v) = {u|u ∈ N−→

G
(v) and v → u}. A

special orientation −→G of G is an orientation in which each vertex v satisfies |D+−→
G
(v)| ≤ 2.

In order to study the star chromatic number of graphs, Albertson et al. Albertson et al. (2004) introduced
the following useful concept.

A proper coloring of an oriented graph G is called an in-coloring if for every 2-colored P3 on three
vertices in G, the edges are directed towards the middle vertex. A coloring of G is an in-coloring if it
is an in-coloring of some orientation of G. An L-in-coloring of G is an in-coloring of G such that the
colors are chosen from the lists assigned to each vertex. We say that a graph G with a given orientation is
k-in-choosable if it is L-in-colorable for every list assignment L with |L(v)| ≥ k for all v ∈ V (G0).

Though the proof of the following Lemma 1 is very similar to that of Lemma 3.2 in Albertson et al.
(2004), we like to write, for completeness, its details.

Lemma 1 An L-coloring of a graph G is an L-star-coloring if and only if it is an L-in-coloring of some
orientation of G.

Proof. Given an L-star-coloring, we can construct an orientation by directing the edges towards the center
of the star in each star-forest corresponding to the union of two color classes.

Conversely, consider an L-in-coloring of −→G , an orientation of G. Let P4 = uvwz be any path on four
vertices in G. We may assume that the edge vw is directed towards w in −→G . For the given coloring to be
an L-in-coloring at v, we must have three different colors on u, v and w. 2

So, in order to control the number of colors used in an in-coloring, it is useful to bound the maximum
outdegree of the orientation−→G . In 1981, Tarsi Tarsi (1981) observed the fact that a graph has an orientation
with maximum outdegree at most d if and only if mad(G) ≤ 2d. This implies that every graph with
mad(G) < 3 has an orientation with maximum outdegree at most 2. Therefore, to obtain our Theorem 2,
by Lemma 1, we only need to prove the following Theorem 3.

Theorem 3 Every graph G with mad(G) < 3 has an orientation of maximum outdegree at most 2 that
makes the graph 8-in-choosable.

The following section is dedicated to the proof of Theorem 3. For all figures depicted in Section 3, a
vertex is represented by a solid point when all of its incident edges are drawn; otherwise it is represented
by a hollow point.
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3 Proof of Theorem 3
In what follows, let L be an uncolorable list assignment of G with |L(v)| = 8 for all v ∈ V (G). Suppose
that G is a counterexample with the least number of vertices to Theorem 3. Thus G is connected. More-
over, any subgraph H with |H| < |G| admits an L-in-coloring of some special orientation −→H . We first
discuss some properties of G, then use discharging technique to derive a contradiction.

By the definition of maximum average degree and Tarsi’s observation, we first note the following state-
ment.

Observation 1 Every subgraph H ⊆ G admits a special orientation.

So, in the following, we always admit a special orientation −→H of H . Moreover, for v ∈ V (
−→
H ), define

N∗−→
H

(v) = D+−→
H

(v) ∪ {v}. It is obvious that |N∗−→
G
(v)| ≤ 3. For simplicity, we write N∗(v) for N∗−→

H
(v).

We further use S(v) to denote the set of vertices whose coloring is forbidden on v by the definition of
L-in-coloring when we are about to color v.

In the proofs below, in the subgraph in question the vertices will be taken in an appropriate order in such
a way that when we color a vertex v, in the subgraph which is colored before v, the number of vertices
putting a constraint to v is smaller than the list size of v, and therefore each vertex can get a color from its
list in this order.

Claim 1 G contains no 1-vertex.

Proof. Suppose that x is a 1-vertex ofG and y is the neighbor of x. LetH = G−{x}. By the minimality
of G, H admits an L-in-coloring c of some special orientation −→H . We orient the edge xy from x to y to
establish an orientation −→G of G. Clearly, the resulting orientation −→G is special. Now, we assign a color to
x in L(x), different from the colors of the vertices in N∗(y). It is easy to see that the color for x is proper
and thus we extend c to G, which is a contradiction. 2

In the proofs of Claims 2 to 8, we use B to denote the set of all solid vertices, depicted in Fig. 1 to Fig. 6.
Let H = G − B. By the minimality of G, H admits an L-in-coloring c of some special orientation −→H .
We give an orientation of G[B] and those edges between V (H) and B such that the resulting orientation
−→
G is special. Then we extend c to B to obtain an L-in-coloring of −→G , which contradicts the choice of G.
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Claim 2 G contains no k(k − 1)-vertex for any 2 ≤ k ≤ 5.

Proof. Assume to the contrary that v is a k(k − 1)-vertex with 2 ≤ k ≤ 5. Let v1, · · · , vk denote the
neighbors of v. Without loss of generality, assume that d(vi) = 2 for all i ∈ {1, · · · , k−1} and d(vk) ≥ 2.
For each i ∈ {1, · · · , k − 1}, let v′i be the other neighbor of vi different from v.
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Let B = {v, v1, · · · , vk−1} andH = G−B. By the minimality ofG, H has an L-in-coloring c of some
special orientation −→H . We construct an orientation for the edge set E(G[B]) and those edges between
V (H) and B, as shown in Fig. 1. The resulting orientation −→G is also special. Notice that |N∗(u)| ≤ 3 for
each u ∈ {v′1, · · · , v′k−1, vk}. Based on c, we can color v, v1, · · · , vk−1, successively, because
• S(v) = N∗(vk) ∪ {v′1, · · · , v′k−1};
• S(vi) = N∗(v′i) ∪ {v, vk}, for each i ∈ {1, · · · , k − 1}.
Obviously, for each vertex x ∈ B we have |S(x)| ≤ 3 + (k − 1) = k + 2 ≤ 7 because 2 ≤ k ≤ 5. So

the resulting coloring is an L-in-coloring of −→G , which is a contradiction. 2

Assume that P = v1v2 · · · vn is an induced path with n ≥ 3 and all internal vertices are 3-vertices. If
d(v1) = d(vn) = 2 then P is called a good path. If d(v1) = 2 and d(vn) ≥ 4 then P is called a bad path.
If d(v1) = 2 and d(vn) = 3 then P is called a terrible path. For simplicity, we use P (v1 → vn) to denote
an orientation for the edge set E(P ) in such a way that vi → vi+1 for each i ∈ {1, · · · , n− 1}.

Claim 3 There is no good path in G.

Proof. Assume to the contrary that there exists a good path P = v1v2 · · · vn with n ≥ 3 in G. By
definition, v1, vn are both 2-vertices and the remaining vertices are all 3-vertices. Since P is an induced
path, for each vertex vi ∈ V (P ), we may let v′i be the other neighbor of vi which is not on P .

Let B = {v1, · · · , vn} and H = G − B. By the minimality of G, H has an L-in-coloring c of some
special orientation−→H . We define an orientation for the edge set E(G[B])∪{v1v′1, · · · , viv′i, · · · , vnv′n} in
the following way: P (v1 → vn) and vj → v′j for each j ∈ {1, · · · , n}, as depicted in Fig. 2. The resulting
orientation −→G is special. We can color v1, v2, · · · , vn, successively, because
• S(v1) = N∗(v′1) ∪ {v′2};
• S(v2) = N∗(v′2) ∪ {v1, v′1, v′3};
• S(vi) = N∗(v′i) ∪ {vi−1, vi−2, v′i−1, v′i+1}, for each i ∈ {3, · · ·n− 1};
• S(vn) = N∗(v′n) ∪ {vn−1, vn−2, v′n−1}.
Since |S(v)| ≤ 7 for each vertex v ∈ B, the obtained coloring is an L-in-coloring of G, which is a

contradiction. 2
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A cycle C is called good if C is formed from a good path P = v1v2 · · · vn by identifying 2-vertices v1
and vn.

Claim 4 There is no good cycle in G.
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Proof. Suppose to the contrary thatC = u1u2 · · ·umu1 is a good cycle such that d(u1) = 2 and d(ui) = 3
for all i ∈ {2, · · · ,m}. Notice that m ≥ 3. Since C is formed from a good path which is also an induced
path, we may let u′i be the third neighbor of ui that is not on C, for each i ∈ {2, · · · ,m}.

Let B = {u1, · · · , um} and H = G− B. By the choice of G, H admits an L-in-coloring c of a special
orientation −→H . We define an orientation for the edge set E(G[B]) ∪ {u2u′2, · · · , uiu′i, · · · , umu′m} in the
following way: for each j ∈ {2, · · · ,m−1}, set uj → uj+1, uj → u′j ; we further set u1 → u2, um → u1

and um → u′m, see Fig. 3. We notice that the resulting orientation −→G is also special. Based on c, we can
color u2, u3, · · · , um, u1, successively, because
• S(u2) = N∗(u′2) ∪ {u′3};
• S(ui) = N∗(u′i) ∪ {ui−1, ui−2, u′i−1, u′i+1}, for each i ∈ {3, · · · ,m− 1};
• S(um) = N∗(u′m) ∪ {u2, um−1, um−2, u′m−1};
• S(u1) = {u2, u′2, u3, um, u′m, um−1}.
Since |S(v)| ≤ 7 for each vertex v ∈ B, the resultant coloring is an L-in-coloring of G. 2

A cycle C is called light if every vertex is of degree 3. A chordless light cycle is a light cycle that is
chordless. Suppose that C = v1v2 · · · vnv1 is a chordless light cycle. If there exists a terrible path P
connecting one vertex in C, say v1, such that V (P ) ∩ V (C) = {v1}, then C is called a removable cycle,
where v1 is called a heavy 3-vertex of C.
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Claim 5 There is no removable cycle in G.

Proof. Suppose to the contrary that there exists a removable cycle C = v1v2 · · · vmv1 with a heavy 3-
vertex v1 such that P = x1 · · ·xtv1 is a terrible path. Namely, x1 is a 2-vertex and the remaining other
vertices of P are 3-vertices such that V (P ) ∩ V (C) = {v1}. For each i ∈ {2, · · · ,m}, let v′i be the other
neighbor of vi not on C. Since P is an induced path, we further let x′j be the other neighbor of xj not on
P for each j ∈ {1, · · · , t}. In the following, denote A1 = {x1, · · · , xt} and A2 = {v2, · · · , vm}. We have
to consider the following two cases.

Case 1 wz /∈ E(G) for all w ∈ A1 and z ∈ A2.

It means that the third neighbor of xj is not in C, for all j. Let B = V (C)∪V (P ) and H = G−B. By
the choice of G, H admits an L-in-coloring c of a special orientation −→H . We define an orientation for the
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edge set E(G[B]) and those edges between V (H) and B, as shown in Fig. 4. We note that −→G is a special
orientation. So we can color v2, · · · , vm, v1, xt, · · · , x1, successively, because
• S(v2) = N∗(v′2) ∪ {v′3};
• S(vi) = N∗(v′i) ∪ {vi−1, vi−2, v′i−1, v′i+1}, for each i ∈ {3, · · · ,m− 1};
• S(vm) = N∗(v′m) ∪ {vm−1, vm−2, v′m−1, v2};
• S(v1) = {v2, v′2, v3, vm, v′m, vm−1};
• S(xt) = N∗(x′t) ∪ {x′t−1, v1, v2};
• S(xt−1) = N∗(x′t−1) ∪ {x′t−2, xt, x′t, v1};
• S(xj) = N∗(x′j) ∪ {x′j−1, xj+1, xj+2, x

′
j+1}, for each j ∈ {t− 2, · · · , 2};

• S(x1) = N∗(x′1) ∪ {x2, x′2, x3}.

Case 2 wz ∈ E(G), for some w ∈ A1 and z ∈ A2.

Case 2.1 w = x1 and z ∈ A2.

This means that x1vs ∈ E(G), where s ∈ {2, 3, · · · ,m}. If none of vs+1, · · · , vm is adjacent to xj
for some fixed j ∈ {2, · · · , t}, then x1x2 · · ·xtv1vmvm−1 · · · vsx1 is a good cycle, which contradicts
Claim 4. Otherwise, we may suppose that xjvk ∈ E(G) for some fixed k ∈ {s + 1, · · · ,m} such
that there is no edge between {x2, x3 · · · , xj−1} and {vs+1, vs+2, · · · , vk−1}. However, a good cycle
x1x2 · · ·xjvkvk−1 · · · vsx1 is established, contradicting Claim 4.

Case 2.2 w ∈ {x2, x3, · · · , xt} and z ∈ A2.

We may suppose that xjvs ∈ E(G) for some fixed s ∈ {2, · · · ,m} such that there is no edge between
{x2, x3 · · · , xj−1} and V (C)−{v1}. If xlvq /∈ E(G) for all l ∈ {j+1, j+2, · · · , t} and q ∈ {s+1, s+
2, · · · ,m}, then a removable cycle xjxj+1 · · ·xtv1vmvm−1 · · · vsxj with a heavy 3-vertex xj is formed
and then the proof is reduced to the former Case 1. Otherwise, we may suppose that xkvq ∈ E(G) for
some fixed q ∈ {s + 1, s + 2, · · · ,m} such that there is no edge between {xj+1, xj+2, · · · , xk−1} and
{vs+1, vs+2, · · · , vq−1}. However, a removable cycle xjxj+1 · · ·xkvqvq−1 · · · vsxj with a heavy 3-vertex
xj is constructed which has been settled in the previous Case 1. 2

Suppose that P = v1v2 · · · vn is a bad path such that d(v1) = 2, d(vn) ≥ 4, and d(vi) = 3 for all
i ∈ {2, · · · , n−1}. We say that vn is a sponsor of v2 and v2 is a target of vn. Moreover, let T (vn) denote
the set of targets of vn and let SP(v2) denote the set of sponsors of v2.

Claim 6 For each 4+-vertex v, we have |T (v)| ≤ d(v)− n2(v).

Proof. Let x1 be a 3+-vertex adjacent to v. It suffices to show that there is at most one bad path starting
from edge vx1. If d(x1) ≥ 4, then vx1 is not a bad path and thus we are done. Otherwise, we may
suppose that P = vx1 · · ·xm is a bad path with a target xm−1 such that d(xm) = 2 and d(xi) = 3 for all
i = 1, · · · ,m− 1. Next, we are going to show that there is no other bad path starting from edge vx1 and
thus conclude the proof of Claim 6.

Without loss of generality, assume that P 6= P ′ = vx1 · · ·xix′i+1 · · ·x′s−1x′s is a bad path with a target
x′s−1 of v. So d(x′s) = 2 and d(x′k) = 3 for all k ∈ {i + 1, · · · , s − 1}. Let B1 = {x′i+1, x

′
i+2, · · · , x′s}

and B2 = {xi+1, xi+2, · · · , xm}. The proof is divided into the two cases below.

Case 1 wz /∈ E(G) for all w ∈ B1 and z ∈ B2.
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This implies that B1 ∩ B2 = ∅. It is easy to observe that a good path xmxm−1 · · ·xi+1xix
′
i+1

x′i+2 · · ·x′s is established. This contradicts Claim 3.

Case 2 wz ∈ E(G), where w ∈ B1 and z ∈ B2.

By symmetry, we only need to consider the following two possibilities.

Case 2.1 w ∈ {x′i+1, x
′
i+2, · · · , x′s−1} and z ∈ {xi+1, xi+2, · · · , xm−1}.

Denote z = xk for some fixed k ∈ {i + 1, i + 2, · · · ,m − 1}. We may assume x′j = w such that
x′jxk ∈ E(G) and x′j is the nearest 3-vertex to xi on P ′. In other words, there are no edges between
{x′i+1, x

′
i+2, · · · , xj−1} and {xi+1, xi+2, · · · , xk−1}. It is obvious that xixi+1 · · ·xkx′jx′j−1 · · ·x′i+1xi is

a chordless light cycle with a heavy 3-vertex xk. Such kind of cycle is removable, which is a contradiction
to Claim 5.

Case 2.2 w ∈ {x′i+1, x
′
i+2, · · · , x′s−1} and z = xm.

Denote w = xj , where j ∈ {i+1, · · · , s− 1}. Obviously, xmxm−1 · · ·xi+1xix
′
i+1 · · ·x′jxm is a good

cycle, which is impossible by Claim 4. 2
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Claim 7 If v is a 4(2)-vertex, then |T (v)| = 0.

Proof. Let v be a 4(2)-vertex with four neighbors x1, y1, w1, z1 such that d(x1) = d(y1) = 2 and
d(z1), d(w1) ≥ 3. Suppose to the contrary that |T (v)| ≥ 1. We further suppose that P = vz1 · · · zt
is a bad path connecting v and v’s target zt−1. Let NG(x1) = {v, x′1} and NG(y1) = {v, y′1}. For
each k ∈ {1, · · · , t}, let z′k be the other neighbor of zk that is not on P . Obviously, x1 6= y1. Let
B = V (P ) ∪ {x1, y1} and H = G−B. Let c denote an L-in-coloring of H for its special orientation −→H .
By the symmetry of G, we only need to consider the two cases below.

Case 1 zt /∈ {x1, y1}.

We define an orientation for the edge set E(G[B]) and the edges between V (H) and B, as depicted in
Fig. 5(1). The resulting orientation of−→G is a special orientation. Based on c, we can color v, x1, y1, z1, · · · , zt,
successively, because
• S(v) = N∗(w1) ∪ {x′1, y′1, z′1};
• S(x1) = N∗(x′1) ∪ {v, w1};
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• S(y1) = N∗(y′1) ∪ {v, w1};
• S(z1) = N∗(z′1) ∪ {v, w1, z

′
2};

• S(z2) = N∗(z′2) ∪ {z1, z′1, v, z′3};
• S(zi) = N∗(z′i) ∪ {zi−1, zi−2, z′i−1, z′i+1}, for each i ∈ {3, · · · , t− 1};
• S(zt) = N∗(z′t) ∪ {zt−1, z′t−1, zt−2}.

Case 2 zt = y1.

We define an orientation for the edge set E(G[B]) and those edges between V (H) and B, as shown
in Fig. 5(2). We observe that the resulting orientation of −→G is special. Based on c, we may color
v, x1, z1, · · · , zt, successively, because
• S(v) = N∗(w1) ∪ {x′1, z′1};
• S(x1) = N∗(x′1) ∪ {v, w1};
• S(z1) = N∗(z′1) ∪ {v, w1, z

′
2};

• S(z2) = N∗(z′2) ∪ {z1, z′1, v, z′3};
• S(zi) = N∗(z′i) ∪ {zi−1, zi−2, z′i−1, z′i+1}, for each i ∈ {3, · · · , t− 1};
• S(zt) = {v, w1, zt−1, z

′
t−1, zt−2}.

Therefore, we have completed the proof of Claim 7. 2
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Claim 8 If v is a 4(1)-vertex, then |T (v)| ≤ 1.

Proof. Let v be a 4(1)-vertex with four neighbors x1, y1, w1, z1 such that x1 is a 2-vertex and y1, z1, w1

are all 3+-vertices. Suppose to the contrary that |T (v)| ≥ 2. Now, assume that there exist two bad paths
P and P ′ starting from vy1, vz1, respectively. We denote them by P = vy1 · · · ys and P ′ = vz1 · · · zt.
Obviously, d(ys) = d(zt) = 2 and the remaining internal vertices of P and P ′ are all 3-vertices. Let
x′1 denote the other neighbor of x1 distinct from v. Let y′j be the third neighbor of yj that is not on
P . Similarly, let z′k be the third neighbor of zk that is not on P ′. For our convenience, we denote
C1 = {y1, · · · , ys} and C2 = {z1, · · · , zt}. We only need to consider the two cases as follows.

Case 1 yz /∈ E(G) for all y ∈ C1 and z ∈ C2

This implies that C1 ∩ C2 = ∅. Let B = V (P ) ∪ V (P ′) ∪ {x1} and H = G − B. Let c denote an
L-in-coloring of H for its special orientation −→H . To complete the proof of Case 1, we have to discuss the
following two possibilities, depending on the situations of x1, ys and zt.
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Case 1.1 x1 6= ys 6= zt 6= x1.

We define an orientation for the edge set E(G[B]) and those edges between V (H) and B, as shown
in Fig. 6(1). The resulting orientation of −→G is also special. We can color v, x1, y1, · · · , ys, z1, · · · , zt,
successively, because
• S(v) = N∗(w1) ∪ {x′1, y′1, z′1};
• S(x1) = N∗(x′1) ∪ {v, w1};
• S(y1) = N∗(y′1) ∪ {v, w1, y

′
2};

• S(y2) = N∗(y′2) ∪ {y1, y′1, v, y′3};
• S(yj) = N∗(y′j) ∪ {yj−1, yj−2, y′j−1, y′j+1}, for each j ∈ {3, · · · , s− 1};
• S(ys) = N∗(y′s) ∪ {ys−1, y′s−1, ys−2};
• S(z1) = N∗(z′1) ∪ {v, w1, z

′
2};

• S(z2) = N∗(z′2) ∪ {z1, z′1, v, z′3};
• S(zi) = N∗(z′i) ∪ {zi−1, zi−2, z′i−1, z′i+1}, for each i ∈ {3, · · · , t− 1};
• S(zt) = N∗(z′t) ∪ {zt−1, z′t−1, zt−2}.

Case 1.2 x1 = ys 6= zt.

We define an orientation for the edge set E(G[B]) and those edges between V (H) and B, as depicted
in Fig. 6(2). The resulting orientation of−→G is special. We can color v, y1, · · · , ys, z1, · · · , zt, successively,
because
• S(v) = N∗(w1) ∪ {y′1, z′1};
• S(y1) = N∗(y′1) ∪ {v, w1, y

′
2};

• S(y2) = N∗(y′2) ∪ {y1, y′1, v, y′3};
• S(yj) = N∗(y′j) ∪ {yj−1, yj−2, y′j−1, y′j+1}, for each j ∈ {3, · · · , s− 2};
• S(ys−1) = N∗(y′s−1) ∪ {ys−2, y′s−2, ys−3, v};
• S(ys) = {v, w1, ys−1, y

′
s−1, ys−2};

• S(z1) = N∗(z′1) ∪ {v, w1, z
′
2};

• S(z2) = N∗(z′2) ∪ {z1, z′1, v, z′3};
• S(zi) = N∗(z′i) ∪ {zi−1, zi−2, z′i−1, z′i+1}, for each i ∈ {3, · · · , t− 1};
• S(zt) = N∗(z′t) ∪ {zt−1, z′t−1, zt−2}.
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Case 2 yz ∈ E(G), where y ∈ C1 and z ∈ C2.

We need to consider the following two subcases, according to the situation of z.

Case 2.1 z ∈ {z1, · · · , zt−1}.

We may denote z = zj such that zj is the 3-vertex nearest to v on P ′. The proof is divided into two
possibilities.

Case 2.1.1 y = ys.

This means that zjys ∈ E(G) for some fixed j ∈ {1, · · · , t}. Let B = V (P ) ∪ {x1, z1, · · · , zj} and
H = G − B. Let c denote an L-in-coloring of H for its special orientation −→H . We define an orientation
for the edge set E(G[B]) and those edges between V (H) and B, as shown in Fig. 6(3). The resulting
orientation −→G is special. We can color v, x1, y1, · · · , ys−1, z1, · · · , zj , ys, successively, because
• S(v) = N∗(w1) ∪ {x′1, y′1, z′1};
• S(x1) = N∗(x′1) ∪ {v, w1};
• S(y1) = N∗(y′1) ∪ {v, w1, y

′
2};

• S(y2) = N∗(y′2) ∪ {y1, y′1, v, y′3};
• S(yk) = N∗(y′k) ∪ {yk−1, yk−2, y′k−1, y′k+1}, for each k ∈ {3, · · · , s− 2};
• S(ys−1) = N∗(y′s−1) ∪ {ys−2, y′s−2, ys−3};
• S(z1) = N∗(z′1) ∪ {v, w1, z

′
2};

• S(z2) = N∗(z′2) ∪ {z1, z′1, v, z′3};
• S(zi) = N∗(z′i) ∪ {zi−1, zi−2, z′i−1, z′i+1}, for each i ∈ {3, · · · , j − 2};
• S(zj−1) = N∗(z′j−1) ∪ {zj−2, z′j−2, zj−3, z∗j };
• S(zj) = N∗(z∗j ) ∪ {zj−1, z′j−1, zj−2, ys−1};
• S(ys) = {ys−1, y′s−1, ys−2, zj , z∗j , zj−1},

Case 2.1.2 y ∈ {y1, · · · , ys−1}.

Without loss of generality, we may let y = yk. If zjys ∈ E(G), then a good cycle ysys−1 · · · ykzjys
is formed, contradicting Claim 4. If zjyl ∈ E(G) for some fixed l ∈ {k + 1, k + 2, · · · , s − 1}, then a
removable cycle ylyl−1 · · · ykzjyl with a heavy 3-vertex yl is formed, contradicting Claim 5. So, in what
follows, we suppose that there is no edge connecting zj and one vertex belonging to {yk+1, · · · , ys}. On
the other hand, we recall that zq with q ∈ {1, · · · , j − 1} is not adjacent to any vertex of yk+1, · · · , ys
since zj is the nearest vertex to v on P ′.

Let B = V (P ) ∪ {x1, z1, · · · , zj} and H = G− B. Let c denote an L-in-coloring of H for its special
orientation −→H . We need to deal with the following two possibilities, according to the situations of x1 and
ys.

(i) x1 6= ys.

We define an orientation for the edge set E(G[B]) and those edges between V (H) and B, as depicted
in Fig. 6(4). Clearly, the resulting orientation of −→G is special. We can color v, x1, z1, · · · , zj , y1, · · · , ys,
successively, because
• S(v) = N∗(w1) ∪ {x′1, y′1, z′1};
• S(x1) = N∗(x′1) ∪ {v, w1};
• S(z1) = N∗(z′1) ∪ {v, w1, z

′
2};
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• S(zi) = N∗(z′i) ∪ {zi−1, zi−2, z′i−1, z′i+1}, for each i ∈ {2, · · · , j − 2};
• S(zj−1) = N∗(z′j−1) ∪ {zj−2, z′j−2, zj−3, z∗j };
• S(zj) = N∗(z∗j ) ∪ {zj−1, zj−2, z′j−1};
• S(y1) = N∗(y′1) ∪ {v, w1, y

′
2};

• S(yl) = N∗(y′l) ∪ {yl−1, yl−2, y′l−1, y′l+1}, for each l ∈ {2, · · · , k − 2};
• S(yk−1) = N∗(y′k−1) ∪ {yk−2, yk−3, y′k−2, zj};
• S(yk) = {yk−1, yk−2, y′k−1, zj , zj−1, z∗j , y′k+1};
• S(yk+1) = N∗(yk+1) ∪ {yk, yk−1, zj , y′k+2};
• S(yp) = N∗(y′p) ∪ {yp−1, yp−2, y′p−1, y′p+1} for each p ∈ {k + 2, · · · , s− 1};
• S(ys) = N∗(y′s) ∪ {ys−1, y′s−1, ys−2}.

(ii) x1 = ys.

We define an orientation for the edge setE(G[B]) and those edges in V (H) andB, as shown in Fig. 6(5).
The resulting orientation of −→G is special. We can color v, z1, · · · , zj , y1, · · · , ys, successively, because
• S(v) = N∗(w1) ∪ {y′1, z′1};
• S(z1) = N∗(z′1) ∪ {v, w1, z

′
2};

• S(zi) = N∗(z′i) ∪ {zi−1, zi−2, z′i−1, z′i+1}, for each i ∈ {2, · · · , j − 2};
• S(zj−1) = N∗(z′j−1) ∪ {zj−2, z′j−2, zj−3, z∗j };
• S(zj) = N∗(z∗j ) ∪ {zj−1, zj−2, z′j−1};
• S(y1) = N∗(y′1) ∪ {v, w1, y

′
2};

• S(yl) = N∗(y′l) ∪ {yl−1, yl−2, y′l−1, y′l+1}, for each l ∈ {2, · · · , k − 2};
• S(yk−1) = N∗(y′k−1) ∪ {yk−2, yk−3, y′k−2, zj};
• S(yk) = {yk−1, yk−2, y′k−1, zj , zj−1, z∗j , y′k+1};
• S(yk+1) = N∗(yk+1) ∪ {yk, yk−1, zj , y′k+2};
• S(yp) = N∗(y′p) ∪ {yp−1, yp−2, y′p−1, y′p+1} for each p ∈ {k + 2, · · · , s− 2};
• S(ys−1) = N∗(y′s−1) ∪ {ys−2, y′s−2, ys−3, v};
• S(ys) = {ys−1, y′s−1, ys−2, v, w1}.

Case 2.2 z = zt.

The proof can be reduced to the previous Case 2.1.1.
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Therefore, we have completed the proof of Claim 8. 2

Now we use a discharging argument with initial charge ω(v) = d(v) at each vertex v and with the
following two discharging rules (R1) and (R2). We write ω∗ to denote the charge at each vertex v after
we apply the discharging rules. Note that the discharging rules do not change the sum of the charges.
To complete the proof, we show that ω∗(v) ≥ 3 for all v ∈ V (G). This leads to the following obvious
contradiction:

3 ≤
∑
v∈V (G) ω

∗(v)

|V (G)|
=

∑
v∈V (G) ω(v)

|V (G)|
=

2|E(G)|
|V (G)|

≤ mad(G) < 3. (1)

Hence no counterexample can exist.
Our discharging rules are defined as follows:

(R1) Each 2-vertex gets 1
2 from each of its neighbors.

(R2) Each 3(1)-vertex gets 1
4 from each of its sponsors.

Let us check that ω∗(v) ≥ 3 for each v ∈ V (G). By Claim 1, we derive that δ(G) ≥ 2. In the following
argument, we let v1, v2, · · · , vd(v) denote all neighbors of v in a cyclic order. The following discussion is
divided into five cases.

Case 1 d(v) = 2.

Then ω(v) = 2. By Claim 2, there is no 2(1)-vertex. It means that v1, v2 are both 3+-vertices.
Therefore, ω∗(v) ≥ 2 + 1

2 × 2 = 3 by (R1).

Case 2 d(v) = 3.

Then ω(v) = 3. Recall that SP(v) denotes the set of sponsors of v, which was defined before Claim 6.
We begin with the following claim.

Claim 9 If v is a 3(1)-vertex, then |SP(v)| ≥ 2.

Proof. Without loss of generality, suppose that v1 is a 2-vertex and v2, v3 are both 3+-vertices. By Claim
3, it is easy to deduce that there exist at least two bad paths starting from vv2 and vv3, respectively. It
follows immediately that |SP(v)| ≥ 2. 2

According to Claim 2, we infer that v is neither a 3(2)-vertex nor a 3(3)-vertex. So, it suffices to
consider the following two subcases.
• If v is a 3(0)-vertex, then v sends nothing to each vi by (R1) and (R2) and thus ω∗(v) = 3.
• Now we suppose that v is a 3(1)-vertex. Without loss of generality, assume that d(v1) = 2 and

d(v2), d(v3) ≥ 3. By (R1), v sends a charge 1
2 to v1. On the other hand, by Claim 9, we observe that v has

at least two sponsors, each of which sends a charge 1
4 to v by (R2). Therefore, ω∗(v) ≥ 3− 1

2 +
1
4×2 = 3.

Case 3 d(v) = 4.

This implies that ω(v) = 4. By using Claim 2, we derive that v is neither a 4(4)-vertex nor a 4(3)-
vertex. If v is a 4(2)-vertex, then |T (v)| = 0 by Claim 7. So, ω∗(v) ≥ 4 − 1

2 × 2 = 3 by (R2). If v is
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a 4(1)-vertex, then |T (v)| ≤ 1 by Claim 8 and therefore ω∗(v) ≥ 4 − 1
2 −

1
4 × 1 = 3 1

4 > 3 by (R2).
Finally, we suppose that v is a 4(0)-vertex. It means that n2(v) = 0. Then |T (v)| ≤ 4 by Claim 6 and we
conclude that ω∗(v) ≥ 4− 1

4 × 4 = 3 by (R2).

Case 4 d(v) = 5.

Obviously, ω(v) = 5. By Claim 2, we deduce that n2(v) ≤ 3. Moreover, it follows immediately from
Claim 6 that |T (v)| ≤ 5− n2(v). So, by applying (R1) and (R2), we obtain that ω∗(v) ≥ 5− 1

2n2(v)−
1
4 |T (v)| ≥ 5− 1

2n2(v)−
1
4 (5− n2(v)) = 3 3

4 −
1
4n2(v) ≥ 3 3

4 −
1
4 × 3 = 3.

Case 5 d(v) ≥ 6.

It follows directly from Claim 6 that ω∗(v) ≥ d(v)− 1
2n2(v)−

1
4 |T (v)| ≥ d(v)−

1
2n2(v)−

1
4 (d(v)−

n2(v)) =
3
4d(v)−

1
4n2(v) ≥

3
4d(v)−

1
4d(v) =

1
2d(v) ≥ 3.
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403–406, 1976.

A. Kündgen and C. Timmons. Star coloring planar graphs from small lists. J. Graph Theory, 63(4):324–337, 2010.

J. Nes̆etr̆il and P. Ossana de Mendez. Colorings and homomorphisms of minor closed classes. 17:651–664, 2003.

M. Tarsi. On the decomposition of a graph into stars. Discrete Math., 36:299–304, 1981.

C. Timmons. Star-coloring planar graphs. Master’s Thesis, California State University San Marcos, 2007.


	Introduction
	Preliminaries
	Proof of Theorem 3

