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Let G = (V,E) be an undirected graph without loops and multiple edges. A subset C ⊆ V is called identifying if
for every vertex x ∈ V the intersection of C and the closed neighbourhood of x is nonempty, and these intersections
are different for different vertices x. Let k be a positive integer. We will consider graphs where every k-subset is
identifying. We prove that for every k > 1 the maximal order of such a graph is at most 2k−2. Constructions attaining
the maximal order are given for infinitely many values of k. The corresponding problem of k-subsets identifying any
at most ` vertices is considered as well.
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1 Introduction
Karpovsky et al. introduced identifying sets in [9] for locating faulty processors in multiprocessor sys-
tems. Since then identifying sets have been considered in many different graphs (see numerous references
in [14]) and they find their motivations, for example, in sensor networks and environmental monitoring
[10]. For recent developments see for instance [1, 2].

Let G = (V,E) be a simple undirected graph where V is the set of vertices and E is the set of edges.
The adjacency between vertices x and y is denoted by x ∼ y, and an edge between x and y is denoted
by {x, y} or xy. Suppose x, y ∈ V . The (graphical) distance between x and y is the number of edges
in any shortest path between these vertices and it is denoted by d(x, y). If there is no such path, then
d(x, y) = ∞. We denote by N(x) the set of vertices adjacent to x (neighbourhood) and the closed
neighbourhood of a vertex x is N [x] = {x} ∪N(x). The closed neighbourhood within radius r centered
at x is denoted by Nr[x] = {y ∈ V | d(x, y) ≤ r}. We denote further Sr(x) = {y ∈ V | d(x, y) = r}.
Moreover, for X ⊆ V , Nr[X] = ∪x∈XNr[x]. For C ⊆ V , X ⊆ V , and x ∈ V we denote

Ir(C;x) = Ir(x) = Nr[x] ∩ C
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and
Ir(C;X) = Ir(X) = Nr[X] ∩ C =

⋃
x∈X

Ir(C;x).

If r = 1, we drop it from the notations. When necessary, we add a subscript G. We also write, for
example, N [x, y] and I(C;x, y) for N [{x, y}] and I(C; {x, y}). The symmetric difference of two sets is

A4B = (A \B) ∪ (B \A).

The cardinality of a set X is denoted by |X|; we will also write |G| for the order |V | of a graph G =
(V,E). The degree of a vertex x is deg(x) = |N(x)|. Moreover, δG = δ = minx∈V deg(x) and ∆G =
∆ = maxx∈V deg(x). The diameter of a graph G = (V,E) is diam(G) = max{d(x, y) | x, y ∈ V }.

We say that a vertex x ∈ V dominates a vertex y ∈ V if and only if y ∈ N [x]. As well we can say
that a vertex y is dominated by x (or vice versa). A subset C of vertices V is called a dominating set (or
dominating) if ∪c∈CN [c] = V .

Definition 1 A subset C of vertices of a graph G = (V,E) is called (r,≤ `)-identifying (or an (r,≤ `)-
identifying set) if for all X,Y ⊆ V with |X| ≤ `, |Y | ≤ `, X 6= Y we have

Ir(C;X) 6= Ir(C;Y ).

If r = 1 and ` = 1, then we speak about an identifying set.

The idea behind identification is that we can uniquely determine the subset X of vertices of a graph
G = (V,E) by knowing only Ir(C;X) — provided that |X| ≤ ` and C ⊆ V is an (r,≤ `)-identifying
set.

Definition 2 Let, for n ≥ k ≥ 1 and ` ≥ 1, Gr(n, k, `) be the set of graphs on n vertices such that
every k-element set of vertices is (1,≤ `)-identifying. Moreover, we denote Gr(n, k, 1) = Gr(n, k) and
Gr(k) =

⋃
n≥kGr(n, k).

In other words, in a sensor network which is modeled by a graph in the class Gr(n, k, `) we can choose
freely k sensors [10] i.e. vertices to locate any ` objects in vertices.

Example 3 (i) For every ` ≥ 1, an empty graph En = ({1, . . . , n}, ∅) belongs to Gr(n, k, `) if and
only if k = n.

(ii) A cycle Cn (n ≥ 4) belongs to Gr(n, k) if and only if n− 1 ≤ k ≤ n. A cycle Cn with n ≥ 7 is in
Gr(n, n, 2).

(iii) A path Pn of n vertices (n ≥ 3) belongs to Gr(n, k) if and only if k = n.

(iv) A complete bipartite graphKn,m (n+m ≥ 4) is in Gr(n+m, k) if and only n+m−1 ≤ k ≤ n+m.

(v) In particular, a star Sn = K1,n−1 (n ≥ 4) is in Gr(n, k) if and only if n− 1 ≤ k ≤ n.

(vi) The complete graph Kn (n ≥ 2) is not in Gr(n, k) for any k.
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We are interested in the maximum number n of vertices which can be reached by a given k. We study
mainly the case ` = 1 and define

Ξ(k) = max{n : Gr(n, k) 6= ∅}. (1)

Conversely, the question is for a given graph on n vertices what is the smallest number k such that every
k-subset of vertices is an identifying set (or a (1,≤ `)-identifying set). (Note that even if we take k = n,
there are graphs on n vertices that do not belong to Gr(n, n), for example the complete graphKn, n ≥ 2.)
The ratio n/k is called the rate.

In particular, we are interested in the asymptotics as k →∞. Combining Theorem 17 and Corollary 26,
we obtain the following, which in particular shows that the rate is always less than 2.

Theorem 4 Ξ(k) ≤ 2k − 2 for all k ≥ 2, and limk→∞
Ξ(k)
k = 2.

We will see in Section 4 that Ξ(k) = 2k − 2 for infinitely many k.
We give some basic results in Section 2 and study small k in Section 2.1 where we give a complete

description of the sets Gr(k) for k ≤ 4. In Section 3 we give an upper bound, which bases on a relation
with error-correcting codes. We consider strongly regular graphs and some modifications of them in
Section 4; this provides us with examples (e.g., Paley graphs) that attain or almost attain the upper bound
in Theorem 4. In Section 5 we give results for the case ` ≥ 2.

2 Basic results
We begin with some simple consequences of the definition. We omit the simple proofs.

Lemma 5 If G = (V,E) ∈ Gr(n, k, `), then every induced subgraph G[A], where A ⊆ V , of order
|A| = m ≥ k belongs to Gr(m, k, `).

Lemma 6 If G has connected components Gi, i = 1, . . . ,m, with |G| = n and |Gi| = ni, then G ∈
Gr(n, k, `) if and only if Gi ∈ Gr(ni, k + ni − n, `) for every i. In other words, Gi ∈ Gr(ni, ki, `) with
ni − ki = n− k.

A graph G belongs to Gr(n, k, `) if and only if every k-subset intersects every symmetric difference of
the neighbourhoods of two sets that are of size at most `. Equivalently, G ∈ Gr(n, k, `) if and only if the
complement of every such symmetric difference of two neighbourhoods contains less than k vertices. We
state this as a theorem.

Theorem 7 Let G = (V,E) and |V | = n. A graph G belongs to Gr(n, k, `) if and only if

n− min
X,Y⊆V
X 6=Y
|X|,|Y |≤`

{|N [X]4N [Y ]|} ≤ k − 1. (2)

Now take ` = 1, and consider Gr(n, k). The characterization in Theorem 7 can be written as follows,
since X and Y either are empty or singletons.

Corollary 8 Let G = (V,E) and |V | = n. A graph G belongs to Gr(n, k) if and only if

(i) δG ≥ n− k, and
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(ii) maxx,y∈V, x6=y{|N [x] ∩N [y]|+ |V \ (N [x] ∪N [y])|} ≤ k − 1.

In particular, if G ∈ Gr(n, k) then every vertex is dominated by every choice of a k-subset, and for all
distinct x, y ∈ V we have |N [x] ∩N [y]| ≤ k − 1.

Example 9 Let G be the 3-dimensional cube, with 8 vertices. Then |N [x]| = 4 for every vertex x, and
|N [x]4 N [y]| is 4 when d(x, y) = 1, 4 when d(x, y) = 2, and 8 when d(x, y) = 3. Hence, Theorem 7
shows that G ∈ Gr(8, 5).

Lemma 10 Let G0 = (V0, E0) ∈ Gr(n0, k0) and let G = (V0 ∪ {a}, E0 ∪ {{a, x} | x ∈ V0}) for a new
vertex a /∈ V0. In words, we add a vertex and connect it to all other vertices. ThenG ∈ Gr(n0 +1, k0 +1)
if (and only if) |NG0

[x]| ≤ k0 − 1 for every x ∈ V0, or, equivalently, ∆G0
≤ k0 − 2.

Proof: An immediate consequence of Theorem 7 (or Corollary 8). 2

Example 11 If G0 is the 3-dimensional cube in Example 9, which belongs to Gr(8, 5) and is regular with
degree 3 = 5− 2, then Lemma 10 yields a graph G ∈ Gr(9, 6). G can be regarded as a cube with centre.

2.1 Small k
Example 12 For k = 1, it is easily seen that Gr(n, 1) = ∅ for n ≥ 2, and thus Gr(1) = {K1} and
Ξ(1) = 1.

Example 13 Let k = 2. If G ∈ Gr(2), then G cannot contain any edge xy, since then N [x] ∩ {x, y} =
{x, y} = N [y] ∩ {x, y}, so {x, y} does not separate {x} and {y}. Consequently, G has to be an empty
graph En, and then δG = 0 and Corollary 8(i) (or Example 3(i)) shows that n = k = 2. Thus Gr(2) =
{E2} and Ξ(2) = 2.

Example 14 Let k = 3. First, assume n = |G| = 3. There are only four graphs G with |G| = 3, and it
is easily checked that E3, P3 ∈ Gr(3, 3) (Example 3(i)(iii)), while C3 = K3 /∈ Gr(3, 3) (Example 3(vi))
and a disjoint union K1 ∪ K2 /∈ Gr(3, 3), for example by Lemma 6 since K2 /∈ Gr(2, 2). Hence
Gr(3, 3) = {E3, P3}.

Next, assume n ≥ 4. Since there are no graphs in Gr(n1, k1) if n1 > k1 and k1 ≤ 2, it follows from
Lemma 6 that there are no disconnected graphs in Gr(n, 3) for n ≥ 4. Furthermore, if G ∈ Gr(n, 3),
then every induced subgraph with 3 vertices is in Gr(3, 3) and is thus E3 or P3; in particular, G contains
no triangle.

If G ∈ Gr(4, 3), it follows easily that G must be C4 or S4, and indeed these belong to Gr(4, 3) by
Example 3(ii)(v). Hence Gr(4, 3) = {C4, S4}.

Next, assume G ∈ Gr(5, 3). Then every induced subgraph with 4 vertices is in Gr(4, 3) and is thus
C4 or S4. Moreover, by Corollary 8, δG ≥ 5 − 3 = 2. However, if we add a vertex to C4 or S4 such
that the degree condition δG ≥ 2 is satisfied and we do not create a triangle we get K2,3 – a complete
bipartite graph, and we know already K2,3 6∈ Gr(5, 3) (Example 3(iv)). Consequently Gr(5, 3) = ∅, and
thus Gr(n, 3) = ∅ for all n ≥ 5.

Consequently, Gr(3) = Gr(3, 3) ∪Gr(4, 3) = {E3, P3, S4, C4} and Ξ(3) = 4.

Example 15 Let k = 4. First, it follows easily from Lemma 6 and the descriptions of Gr(j) for j ≤ 3
above that the only disconnected graphs in Gr(4) are E4 and the disjoint union P3 ∪K1; in particular,
every graph in Gr(n, 4) with n ≥ 5 is connected.
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Next, if G ∈ Gr(n, 4), there cannot be a triangle in G because otherwise if a 4-subset includes the
vertices of a triangle, one more vertex cannot separate the vertices of the triangle from each other. (Cf.
Lemma 19.)

For n = 4, the only connected graphs of order 4 that do not contain a triangle are C4, P4 and S4, and
these belong to Gr(4, 4) by Example 3(ii)(iii)(v). Hence Gr(4, 4) = {C4, P4, S4, E4, P3 ∪K1}.

Now assume that G ∈ Gr(n, 4) with n ≥ 5.
(i) Suppose first that a graphK1∪K2 = ({x, y, z}, {{x, y}}) is an induced subgraph ofG. Then all the

other vertices of G are adjacent to either x or y but not both, since otherwise there would be an induced
triangle or an induced E2 ∪K2 or K2 ∪K2, and these do not belong to Gr(4, 4). Let A = N(x) \ {y}
and B = N(y) \ {x}, so we have a partition of the vertex set as {x, y, z} ∪A ∪B. There can be further
edges between A and B, z and A, z and B but not inside A and B. Let A = A0 ∪A1 and B = B0 ∪B1,
where A1 = {a ∈ A | a ∼ z}, A0 = A \ A1 and B1 = {b ∈ B | b ∼ z}, B0 = B \ B1. If a ∈ A0 and
b ∈ B, then the 4-subset {a, b, x, z} does not distinguish a and x unless a ∼ b. Similarly, if a ∈ A and
b ∈ B0, then a ∼ b. On the other hand, if a ∈ A1 and b ∈ B1, then a 6∼ b, since otherwise abz would be
a triangle. Thus, we have, where one or more of the sets A0, A1, B0, B1 might be empty, where an edge

=

is a complete bipartite graph on sets incident to it, and there are no edges inside these sets.
If n ≥ 6, then there are at least two elements in one of the sets {x} ∪ B0, {y} ∪ A0, A1 or B1.

However, these two vertices have the same neighbourhood and hence they cannot be separated by the
other n− 2 ≥ 4 vertices. Thus, n = 5.

If n = 5, and both A1 and B1 are non-empty, we must have A0 = B0 = ∅ and G = C5, which is in
Gr(5, 4) by Example 3(ii).

Finally, assume n = 5 and A1 = ∅ (the case B1 = ∅ is the same after relabelling). Then B1 is non-
empty, since G is connected. If B0 is non-empty, let b0 ∈ B0 and b1 ∈ B1, and observe that {x, b0, b1, z}
does not separate z and b1. Hence B0 = ∅. We thus have either |A0| = 1 and |B1| = 1, or |A0| = 0 and
|B1| = 2, and both cases yield the graph in Figure 1(b) which easily is seen to be in Gr(5, 4).

(ii) Suppose that there is no induced subgraph K1 ∪ K2. Since G is connected, we can find an edge
x ∼ y. Let, as above, A = N(x) \ {y} and B = N(y) \ {x}. If a ∈ A and b ∈ B and a 6∼ b, then
({a, x, b}, {{a, x}}) is an induced subgraph and we are back in case (i). Hence, all edges between sets A
and B exist and thus, recalling that G has no triangles, G is the complete bipartite graph with bipartition
(A∪{y}, B ∪{x}). By Example 3(iv), then n ≤ 5. If n = 5, we get G = K2,3 or G = K1,4 = S5, which
both belong to Gr(5, 4) by Example 3(iv).

We summarize the result in a theorem.

Theorem 16 We have Ξ(4) = 5. More precisely, Gr(4) = Gr(4, 4) ∪ Gr(5, 4), where Gr(4, 4) =
{C4, P4, S4, E4, P3 ∪K1} and Gr(5, 4) = {S5, C5,K2,3, G5} where G5 is the graph in Figure 1(b).
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(a) A graph in Gr(11, 7) found by a computer search. (b) Graph G5 in Gr(5, 4)

Fig. 1: Examples in Gr(11, 7) and Gr(5, 4).

Upper and lower bounds for Ξ(k) for 1 ≤ k ≤ 20 are given in Table 1. Note that we have determined
Ξ(k) exactly for k ≤ 6 and for 9, 19, but not for other values of k when k ≤ 20.

3 Upper estimates on the order
In the next theorem we give an upper on bound on Ξ(k), which is obtained using knowledge on error-
correcting codes.

Theorem 17 If k ≥ 2, then Ξ(k) ≤ 2k − 2.

Proof: We begin by giving a construction from a graph in Gr(n, k) to error-correcting codes. A non-
existence result of error-correcting codes then yields the non-existence of Gr(n, k) graphs of certain
parameters. Let G = (V,E) ∈ Gr(n, k), where V = {x1, x2, . . . , xn}. We construct n+ 1 binary strings
yi = (yi1, . . . , yin) of length n, for i = 0, . . . , n, from the sets ∅ = N [∅] and N [xi] for i = 1, . . . , n by
defining y0j = 0 for all j and

yij =

{
0 if xj 6∈ N [xi]

1 if xj ∈ N [xi]
, 1 ≤ i ≤ n.

Let C denote the code which consists of these binary strings as codewords. Because G ∈ Gr(n, k), the
symmetric difference of two closed neighbourhoods N [xi] and N [xj ], or of one neigbourhood N [xi] and
∅, is at least n − k + 1 by (2); in other words, the minimum Hamming distance d(C) of the code C is at
least n− k + 1.

We first give a simple proof that Ξ(k) ≤ 2k − 1. Thus, suppose that there is a G ∈ Gr(n, k) such that
n = 2k. In the corresponding error-correcting code C, the minimum distance is at least d = n− k+ 1 =
k + 1 > n/2. Let the maximum cardinality of the error-correcting codes of length n and minimum
distance at least d be denoted by A(n, d). We can apply the Plotkin bound (see for example [15, Chapter
2, §2]), which says A(n, d) ≤ 2bd/(2d− n)c, when 2d > n. Thus, we have

A(n, d) ≤ 2

⌊
k + 1

2

⌋
≤ k + 1.
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Because k + 1 < 2k = n < |C|, this contradicts the existence of C. Hence, there cannot exist a graph
G ∈ Gr(2k, k), and thus Gr(n, k) = ∅ when n ≥ 2k.

The Plotkin bound is not strong enough to imply Ξ(k) ≤ 2k− 2 in general, but we obtain this from the
proof of the Plotkin bound as follows. (In fact, for odd k, Ξ(k) ≤ 2k − 2 follows from the Plotkin bound
for an odd minimum distance. We leave this to the reader since the argument below is more general.)

Suppose that G = (V,E) ∈ Gr(n, k) with n = 2k − 1. We thus have a corresponding error-correcting
code C with |C| = n+ 1 = 2k and minimum Hamming distance at least n− k + 1 = k. Hence, letting
d denote the Hamming distance,

∑
0≤i<j≤n

d(yi, yj) ≥
(
n+ 1

2

)
k =

2k(2k − 1)

2
k = (2k − 1)k2. (3)

On the other hand, if there are sm strings yi with yim = 1, and thus |C| − sm = 2k − sm strings with
yim = 0, then the number of ordered pairs (i, j) such that yim 6= yjm is 2sm(2k − sm) and this parabola
gives 2sm(2k − sm) ≤ 2k2. Hence each bit contributes at most k2 to the sum in (3), and summing over
m we find ∑

0≤i<j≤n

d(yi, yj) ≤ nk2 = (2k − 1)k2. (4)

Consequently, we have equality in (3) and (4), and thus d(yi, yj) = k for all pairs (i, j) with i 6= j.
In particular, |N [xi]| = d(yi, y0) = k for i = 1, . . . , n, and thus every vertex in G has degree k − 1,

i.e., G is (k − 1)-regular. Hence, 2|E| = n(k − 1) = (2k − 1)(k − 1), and k must be odd.
Further, if i 6= j, then |N [xi]4 N [xj ]| = d(yi, yj) = k, and since N [xi] \ N [xj ] and N [xj ] \ N [xi]

have the same size k − |N [xi] ∩N [xj ]|, they have both the size k/2 and k must be even.
This contradiction shows that Gr(2k − 1, k) = ∅, and thus Ξ(k) ≤ 2k − 2. 2

The next theorem (which does not use Theorem 17) will lead to another upper bound in Theorem 20. It
can be seen as an improvement for the extreme case Gr(2k− 2, k) of Mantel’s [16] theorem on existence
of triangles in a graph. Note that this result fails for k = 5 by Example 9.

Theorem 18 Suppose G ∈ Gr(n, k) and k ≥ 6. If n ≥ 2k − 2, then there is a triangle in G.

Proof: Let G = (V,E) ∈ Gr(n, k). Suppose to the contrary that there are no triangles in G. If there is a
vertex x ∈ V such that deg(x) ≥ k + 1, then we select in N(x) a k-set X and a vertex y outside it; since
X has to dominate y, it is clear that there exists a triangle xyz. Hence deg(x) ≤ k for every x. On the
other hand, we know by Corollary 8(i) that for all x ∈ V deg(x) ≥ n− k ≥ k − 2.

Let x ∈ V be a vertex whose degree is minimum. We denote V \ N [x] = B and we use the fact that
|B| ≤ k − 1.

1) Suppose first deg(x) = k. Because deg(x) is minimum we know that for all a ∈ N(x), deg(a) = k.
This is possible if and only if |B| = k − 1 and for all a ∈ N(x) we have B ∩N(a) = B. But then in the
k-subset C = {x} ∪B we have I(C; a) = I(C; b) for all a, b ∈ N(x). This is impossible.

2) Suppose then deg(x) = k − 1. If now |B| ≤ k − 2 the graph is impossible as in the first case
(choose C = N [x]). Hence, |B| = k − 1. For every a ∈ N(x) there are at least k − 2 adjacent
vertices in B, and thus at most 1 non-adjacent. This implies that for all a, b ∈ N(x), a 6= b, we have
|N(a) ∩ N(b) ∩ B| ≥ k − 3 ≥ 2, when k ≥ 5. Hence, by choosing a, b ∈ N(x), a 6= b, we have
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the k-subset C = {x} ∪ (N(x) \ {a, b}) ∪ {c1, c2}, where c1, c2 ∈ N(a) ∩ N(b) ∩ B. In this k-subset
I(C; a) = I(C; b), which is impossible.

3) Suppose finally deg(x) = k − 2. Now |B| = k − 1, otherwise we cannot have n ≥ 2k − 2. If
there is b ∈ B such that |N(b) ∩N(x)| = k − 2, then because deg(b) ≤ k we have |N(b) ∩ B| ≥ 2 and
|B \ N [b]| ≥ k − 4 ≥ 2, when k ≥ 6. Hence, there are c1, c2 ∈ B \ N [b], c1 6= c2, and in the k-subset
C = N(x) ∪ {c1, c2} we have I(C;x) = I(C; b) which is impossible.

Thus, for all b ∈ B we have |N(b) ∩ N(x)| ≤ k − 3. On the other hand, each of the k − 2 vertices
in N(x) has at least k − 3 adjacent vertices in B, so the vertices in B have on the average at least
(k − 2)(k − 3)/(k − 1) > k − 4 adjacent vertices in the set N(x). Hence, we can find b ∈ B such that
|N(b) ∩ N(x)| = k − 3. Because deg(b) ≥ k − 2 we have at least one b0 ∈ B such that d(b, b0) = 1.
Because there are no triangles, each of the k − 3 neighbours of b in N(x) is not adjacent with b0, and
therefore adjacent to at least k− 3 of the k− 2 vertices in B \ {b0}. Hence, for all a1, a2 ∈ N(x)∩N(b),
a1 6= a2, we have |N(a1) ∩N(a2) ∩ B| ≥ k − 4 ≥ 2 when k ≥ 6. In the k-subset C = {x, b, c1, c2} ∪
(N(x)\{a1, a2}), where c1, c2 ∈ N(a1)∩N(a2)∩B, we have I(C; a1) = I(C; a2), which is impossible.
2

Lemma 19 If there is a graph G ∈ Gr(n, k) that contains a triangle, then n ≤ 3k − 9. (In particular,
k ≥ 5.)

Proof: Suppose that G = (V,E) ∈ Gr(n, k) and that there is a triangle {x, y, z} in G. Let, for v, w ∈ V ,
Jw(v) denote the indicator function given by Jw(v) = 1 if v ∈ N [w] and Jw(v) = 0 if v /∈ N [w]. Define
the set Mxy = {v ∈ V : Jx(v) = Jy(v)}, and M ′xy = Mxy \ {x, y, z}. Since Mxy does not distinguish
x and y, we have |Mxy| ≤ k − 1. Further, {x, y, z} ⊆ Mxy , and thus |M ′xy| ≤ k − 4. Define similarly
Mxz , Myz , M ′xz , M ′yz; the same conclusion holds for these.

Since the indicator functions take only two values, Mxy , Mxz and Myz cover V , and thus

n = |V | = |M ′xy ∪M ′xz ∪M ′yz ∪ {x, y, z}| ≤ 3(k − 4) + 3 = 3k − 9.

Since n ≥ k, this entails 3k − 9 ≥ k and thus k ≥ 5. 2

The following upper bound is generally weaker than Theorem 17, but it gives the optimal result for
k = 6.

Theorem 20 Suppose k ≥ 6. Then Ξ(k) ≤ 3k − 9.

Proof: Suppose that G ∈ Gr(n, k). If G does not contain any triangle, then Theorem 18 yields n ≤
2k − 3 ≤ 3k − 9. If G does contain a triangle, then Lemma 19 yields n ≤ 3k − 9. 2

4 Strongly regular graphs
A graph G = (V,E) is called strongly regular with parameters (n, t, λ, µ) if |V | = n, deg(x) = t
for all x ∈ V , any two adjacent vertices have exactly λ common neighbours, and any two nonadjacent
vertices have exactly µ common neighbours; we then say that G is an (n, t, λ, µ)-SRG. See [3] for more
information. By [3, Proposition 1.4.1] we know that if G is an (n, t, λ, µ)-SRG, then n = t + 1 + t(t −
1− λ)/µ.

We give two examples of strongly regular graphs that will be used below.
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Example 21 The well-known Paley graph P (q), where q is a prime power with q ≡ 1 (mod 4), is a
(q, (q − 1)/2, (q − 5)/4, (q − 1)/4)-SRG, see for example [3]. The vertices of P (q) are the elements of
the finite field Fq , with an edge ij if and only if i− j is a non-zero square in the field; when q is a prime,
this means that the vertices are {1, . . . , q} with edges ij when i− j is a quadratic residue mod q.

Example 22 Another construction of strongly regular graphs uses a regular symmetric Hadamard matrix
with constant diagonal (RSHCD) [6], [4], [5]. In particular, in the case (denoted RSHCD+) of a regular
symmetric n× n Hadamard matrix H = (hij) with diagonal entries +1 and constant positive row sums
2m (necessarily even when n > 1), then n = (2m)2 = 4m2 and the graph G with vertex set {1, . . . , n}
and an edge ij (for i 6= j) if and only if hij = +1 is a (4m2, 2m2 +m− 1, m2 +m− 2, m2 +m)-SRG
[4, §8D].

It is not known for which m such RSHCD+ exist (it has been conjectured that any m ≥ 1 is possible)
but constructions for many m are known, see [6], [17, V.3] and [5, IV.24.2]. For example, starting with
the 4× 4 RSHCD+

H4 =


1 1 1 −1
1 1 −1 1
1 −1 1 1
−1 1 1 1


its tensor power H⊗r4 is an RSHCD+ with n = 4r, and thus m = 2r−1, for any r ≥ 1. This yields a
(22r, 22r−1 + 2r−1 − 1, 22r−2 + 2r−1 − 2, 22r−2 + 2r−1)-SRG with vertex set {1, 2, 3, 4}r, where two
different vertices (i1, . . . , ir) and (j1, . . . , jr) are adjacent if and only if the number of coordinates ν such
that iν + jν = 5 is even.

Theorem 23 A strongly regular graph G = (V,E) with parameters (n, t, λ, µ) belongs to Gr(n, k) if
and only if

k ≥ max
{
n− t, n− 2t+ 2λ+ 3, n− 2t+ 2µ− 1

}
,

or, equivalently, t ≥ n− k and 2 max{λ+ 1, µ− 1} ≤ k + 2t− n− 1.

Proof: An immediate consequence of Theorem 7, since |N [x]| = t + 1 for every vertex x and |N [x]4
N [y]| equals 2(t− λ− 1) when x ∼ y and 2(t+ 1− µ) when x 6∼ y, x 6= y. 2

We can extend this construction to other values of n by modifying the strongly regular graph.

Theorem 24 If there exists a strongly regular graph with parameters (n0, t, λ, µ), then for every i =
0, . . . , n0 + 1 there exists a graph in Gr(n0 + i, k0 + i), where

k0 = max
{
n0 − t, t, n0 − 2t+ 2λ+ 3, n0 − 2t+ 2µ− 1, 2t− 2λ− 1, 2t− 2µ+ 2

}
,

provided k0 ≤ n0.

Proof: For i = 0, this is a weaker form of Theorem 23. For i ≥ 1, we suppose that G0 = (V0, E0) is
(n0, t, λ, µ)-SRG and build a graph Gi in Gr(n0 + i, k0 + i) from G0 by adding suitable new vertices and
edges.

If 1 ≤ i ≤ n0, choose i different vertices x1, x2, . . . , xi in V0. Construct a new graph Gi = (Vi, Ei) by
taking G0 and adding to it new vertices x′1, x

′
2, . . . , x

′
i and new edges x′jy for j ≤ i and all y /∈ NG0

(xj).
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First, degGi
(x) ≥ degG0

(x) = t for x ∈ V0 and degGi
(x′) = n0 − t for x′ ∈ V ′i = Vi \ V0. We

proceed to investigate N [x]4N [y], and separate several cases.
(i) If x, y ∈ V0, with x 6= y, then∣∣N [x]4N [y]

∣∣ ≥ ∣∣(N [x]4N [y]) ∩ V0

∣∣ =
∣∣NG0

[x]4NG0
[y]
∣∣,

which equals 2(t− λ− 1) if x ∼ y and 2(t− µ+ 1) if x 6∼ y.
(ii) If x ∈ V0, y′ ∈ V ′i , then, since4 is associative and commutative,∣∣(N [x]4N [y′]) ∩ V0

∣∣ =
∣∣(NG0

[x]4 (V0 4NG0
(y))

∣∣ = n0 −
∣∣NG0

[x]4NG0
(y)
∣∣,

which equals n0 − 1 if x = y, n0 − (2t− 2λ− 1) if x ∼ y, and n0 − (2t− 2µ+ 1) if x 6∼ y and x 6= y.
If x ∼ y, further,

∣∣(N [x]4N [y′]) ∩ V ′i
∣∣ ≥ 1, since y′ 6∈ N [x].

(iii) If x′, y′ ∈ V ′i , with x′ 6= y′, then∣∣(N [x′]4N [y′]) ∩ V0

∣∣ =
∣∣(V0 \NG0

(x))4 (V0 \NG0
(y))

∣∣ =
∣∣NG0

(x)4NG0
(y)
∣∣,

which equals 2(t− λ) if x ∼ y and 2(t− µ) if x 6∼ y. Further,
∣∣(N [x′]4N [y′]) ∩ V ′i

∣∣ = |{x′, y′}| = 2.
Collecting these estimates, we see that Gi ∈ Gr(n0 + i, k0 + i) by Theorem 7 (or Corollary 8) with our

choice of k0. Note that 2k0 ≥ (n0 − 2t+ 2λ+ 3) + (2t− 2λ− 1) = n0 + 2 ≥ 3, so k0 ≥ 2.
Finally, for i = n0 + 1, we construct Gn0+1 by adding a new vertex to Gn0

and connecting it to all
other vertices. The graph Gn0

has by construction maximum degree ∆Gn0
= n0 ≤ k0 + n0 − 2. Hence,

Lemma 10 shows that Gn0+1 ∈ Gr(2n0 + 1, k0 + n0 + 1). 2

We specialize to the Paley graphs, and obtain from Example 21 and Theorems 23–24 the following.

Theorem 25 Let q be an odd prime power such that q ≡ 1 (mod 4).

(i) The Paley graph P (q) ∈ Gr(q, (q + 3)/2).

(ii) There exists a graph in Gr(q + i, (q + 3)/2 + i) for all i = 0, 1, . . . , q + 1.

Note that the rate 2q/(q + 3) for the Paley graphs approaches 2 as q → ∞; in fact, with n = q and
k = (q+ 3)/2 we have n = 2k− 3, almost attaining the bound 2k− 2 in Theorem 17. (The Paley graphs
thus almost attain the bound in Theorem 17, but never attain it exactly.)

Corollary 26 Ξ(k) ≥ 2k − o(k) as k →∞.

Proof: Let q = p2 where (for k ≥ 6) p is the largest prime such that p ≤
√

2k − 3. It follows from the
prime number theorem that p/

√
2k − 3 → 1 as k → ∞, and thus q = 2k − o(k). Hence, if k is large

enough, then k ≤ q ≤ 2k − 3, and Theorem 25 shows that P (q) ∈ Gr(q, (q + 3)/2) ⊆ Gr(q, k), so
Ξ(k) ≥ q = 2k − o(k). (Alternatively, we may let q be the largest prime such that q ≤ 2k − 3 and q ≡ 1
(mod 4) and use the prime number theorem for arithmetic progressions [8, Chapter 17] to see that then
q = 2k − o(k).) 2

We turn to the strongly regular graphs constructed in Example 22 and find from Theorem 23 that they
are in Gr(4m2, 2m2 + 1), thus attaining the bound in Theorem 17. We state that as a theorem.
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Theorem 27 The strongly regular graph constructed in Example 22 from an n× n RSHCD+ belongs to
Gr(n, n/2 + 1).

Corollary 28 There exist infinitely many integers k such that Ξ(k) = 2k − 2.

Proof: If k = n/2 + 1 for an even n such that there exists an n× n RSHCD+, then Ξ(k) ≥ n = 2k − 2
by Theorem 27. The opposite inequality is given by Theorem 17. By Example 22, this holds at least for
k = 22r−1 + 1 for any r ≥ 1. 2

5 On Gr(n, k, `)
In this section we consider Gr(n, k, `) for ` ≥ 2. Let us denote

Ξ(k, `) = max{n : Gr(n, k, `) 6= ∅}.

Trivially, the empty graph Ek ∈ Gr(k, k, `) for any ` ≥ 1; thus Ξ(k, `) ≥k.
Note that a graph G = (V,E) with |V | = n admits a (1,≤ `)-identifying set ⇐⇒ V is (1,≤ `)-

identifying ⇐⇒ G ∈ Gr(n, n, `).

Theorem 29 Suppose that G = (V,E) ∈ Gr(n, k, `), where n > k and ` ≥ 2. Then the following
conditions hold:

(i) For all x ∈ V we have `+ 1 < n− k + `+ 1 ≤ |N [x]| ≤ k − `. In other words, δG ≥ n− k + `
and ∆G ≤ k − `− 1.

(ii) For all x, y ∈ V , x 6= y, |N [x] ∩N [y]| ≤ k − 2`+ 1.

(iii) n ≤ 2k − 2`− 1 and k ≥ 2`+ 2.

Proof: (i) Suppose first that there is a vertex x ∈ V such that |N [x]| ≤ n − k + `. By removing n − k
vertices from V , starting in N [x], we find a k-subset C with I(C;x) = {c1, . . . , cm} for some m ≤ `.
If m = 0, then I(C;x) = I(C; ∅), which is impossible. If 1 ≤ m < `, we can arrange (by removing x
first) so that x /∈ C, and thus x /∈ Y = {c1, . . . , cm}. Then I(C; {x} ∪ Y ) = I(C;Y ), a contradiction.
If m = ` ≥ 2, we can conversely arrange so that x ∈ C, and thus x ∈ I(C;x), say c1 = x. Then
I(C; c2, . . . , cm) = I(C; c1, . . . , cm), another contradiction. Consequently, |N [x]| ≥ n− k + `+ 1.

Suppose then |N [x]| ≥ k − `+ 1. If |N [x]| ≥ k, we can choose a k-subset C of N [x]; then I(C;x) =
C = I(C;x, y) for any y, which is impossible. If k > |N [x]| ≥ k − ` + 1, we can choose a k-subset
C = N [x]∪ {c1, . . . , ck−|N [x]|}. Choose also a ∈ N(c1) (which is possible because deg(c1) ≥ 1 by (i)).
Now I(C;x, c1, . . . , ck−|N [x]|) = C = I(C;x, a, c2, . . . , ck−|N [x]|), which is impossible.

(ii) Suppose to the contrary that there are x, y ∈ V , x 6= y, such that |N [x] ∩ N [y]| ≥ k − 2` + 2.
Let A = N(y) \ N [x]. Then, according to (i), |A| ≤ |N [y] \ N [x]| = |N [y]| − |N [x] ∩ N [y]| ≤
k − `− (k − 2`+ 2) = `− 2. Since k > `− 2 by (i), there is a k-subset C ⊆ V \ {y} such that A ⊂ C.
Then I(C;A ∪ {x, y}) = I(C;A ∪ {x}), a contradiction.

(iii) An immediate consequence of (i), which implies n− k + `+ 1 ≤ k − ` and `+ 1 < k − `. 2

Theorem 30 For ` ≥ 2, Ξ(k, `) ≤ max
{

`
`−1 (k − 2), k

}
.
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Proof: If Ξ(k, `) = k, there is nothing to prove. Assume then that there exists a graph G = (V,E) ∈
Gr(n, k, `), where n > k. By Theorem 29(iii), ` < k/2 < n. Let us consider any set of vertices
Z = {z1, z2, . . . , z`} of size `. We will estimate |N [Z]| as follows. By Theorem 29(i) we know |N [z1]| ≥
n− k+ `+ 1. Now N [z1, z2] must contain at least n− k+ 1 vertices, which do not belong to N [z1] due
to Theorem 7 which says that |N [X]4N [Y ]| ≥ n− k+ 1, where we take X = {z1} and Y = {z1, z2}.
Analogously, each setN [z1, . . . , zi] (i = 2, . . . , `) must contain at least n−k+1 vertices which are not in
N [z1, . . . , zi−1]. Hence, for the set Z we have |N [Z]| ≥ n−k+`+1+(`−1)(n−k+1) = `(n−k+2).
Since trivially |N [Z]| ≤ n, we have (`− 1)n ≤ `(k − 2), and the claim follows. 2

Corollary 31 For ` ≥ 2, we have Ξ(k,`)
k ≤ 1 + 1

`−1 .

The next results improve the result of Theorem 30 for ` = 2.

Lemma 32 Assume that n > k. Let G = (V,E) belong to Gr(n, k, 2). Then

n+
n− k + 2

n− 1
(n− k + 3) ≤ 2k − 3

Proof: Suppose x ∈ V . Let

f(n, k) =
n− k + 2

n− 1
(n− k + 3).

Our aim is first to show that there exists a vertex in N(x) or in S2(x) which dominates at least f(n, k)
vertices of N [x]. Let

λx = max{|N [x] ∩N [a]| | a ∈ N(x)}.

If λx ≥ f(n, k), we are already done. But if λx < f(n, k), then we show that there is a vertex in S2(x)
that dominates at least f(n, k) vertices of N [x]. Let us estimate the number of edges between the vertices
in N(x) and in S2(x) — we denote this number by M . By Theorem 29(i), every vertex y ∈ N(x)
yields at least |N [y]| − λx ≥ n − k + 3 − λx such edges and there are at least n − k + 2 vertices in
N(x). Consequently, M ≥ (n − k + 2)(n − k + 3 − λx). On the other hand, again by Theorem 29(i),
|S2(x)| ≤ n−|N [x]| ≤ k−3. Hence, there must exist a vertex in S2(x) incident with at least M/(k−3)
edges whose other endpoint is in N(x). Now, if λx < f(n, k), then

M

k − 3
>

(n− k + 2)(n− k + 3− f(n, k))

k − 3
= f(n, k).

Hence there exists in this case a vertex in S2(x) that is incident to at least f(n, k) such edges, i.e., it
dominates at least f(n, k) vertices in N(x).

In any case there thus exists z 6= x such that |N [x] ∩ N [z]| ≥ f(n, k). Let C = (N [x] ∩ N [z]) ∪
(V \N [x]). Then I(C;x, z) = I(C; z), so C is not (1,≤ 2)-identifying and thus |C| < k. Hence, using
Theorem 29(i),

k − 1 ≥ |C| ≥ f(n, k) + n− |N [x]| ≥ f(n, k) + n− (k − 2),

and thus n+ f(n, k) ≤ 2k − 3 as asserted. 2
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Theorem 33 If k ≤ 5, then Ξ(k, 2) = k. If k ≥ 6, then

Ξ(k, 2) <
(

1 +
1√
2

)
(k − 2) +

1

4
.

Proof: Let n = Ξ(k, 2), and let m = k − 2. If n > k, then k ≥ 6 by Theorem 29(iii); hence n = k when
k ≤ 5. Further, still assuming n > k, Lemma 32 yields

n+
(n−m)(n−m+ 1)

n− 1
≤ 2m+ 1

or
0 ≥ n(n− 1) + (n−m)2 + n−m− (2m+ 1)(n− 1) = 2

(
n− (m+ 1

4 )
)2 −m2 + 7

8 .

Hence, n− (m+ 1
4 ) < m/

√
2. 2

Corollary 34 For ` = 2, we have Ξ(k, 2)/k ≤ 1 + 1√
2

.

Problem 35 What is lim supk→∞ Ξ(k, `)/k for ` ≥ 2? In particular, is lim supk→∞ Ξ(k, `)/k > 1?

The following theorem implies that for any ` ≥ 2 there exist graphs in Gr(n, k, `) for n ≈ k + log2 k.
In particular, we have such graphs with n > k.

Theorem 36 Let ` ≥ 2 and m ≥ max{2` − 2, 4}. A binary hypercube of dimension m belongs to
Gr(2m, 2m −m+ 2`− 2, `).

Proof: Suppose first ` ≥ 3. By [11, Theorem 2] we know that then a set in a binary hypercube is (1,≤ `)-
identifying if and only if every vertex is dominated by at least 2` − 1 different vertices belonging to the
set. Hence, we can remove any m+ 1− (2`− 1) vertices from the set of vertices, and there will still be a
big enough multiple domination to assure that the remaining set is (1,≤ `)-identifying.

Suppose then that ` = 2 and G = (V,E) is the binary m-dimensional hypercube. Let us denote by
C ⊆ V a (2m −m + 2)−subset. Every vertex is dominated by at least m + 1 − (m − 2) = 3 vertices
of C. For all x, y ∈ V , x 6= y we have |N [x] ∩N [y]| = 2 if and only if 1 ≤ d(x, y) ≤ 2 and otherwise
|N [x] ∩N [y]| = 0. Hence, for all x, y, z ∈ V with x 6= y, I(y) = N [y] ∩ C contains at least 3 vertices,
and these cannot all be dominated by x; thus, we have I(x) 6= I(y) and I(x) 6= I(y, z).

We still need to show that I(x, y) 6= I(z, w) for all x, y, z, w ∈ V , x 6= y, z 6= w, {x, y} 6= {z, w}. By
symmetry we may assume that x 6∈ {z, w}. Suppose I(x, y) = I(z, w).

If |I(x)| ≥ 5, then any two vertices z, w 6= x cannot dominate I(x), a contradiction.
If |I(x)| = 4, then |I(z) ∩ I(x)| = |I(w) ∩ I(x)| = 2 and I(x) ∩ I(z) ∩ I(w) = ∅. It follows that

3 ≤ d(z, w) ≤ 4 which implies I(z)∩ I(w) = ∅. Since |N [x]\C| = |N [x]|− |I(x)| = m−3, all except
one vertex, say v, of V \C belong toN [x], so V \N [x] ⊆ C∪{v}; the vertex v cannot belong to bothN [z]
and N [w] since these are disjoint, so we may (w.l.o.g.) assume that v /∈ N [z], and thus N [z] \N [x] ⊆ C,
whence N [z] \N [x] ⊆ I(z) \ I(x). Hence, |I(z) ∩ I(y)| ≥ |I(z) \ I(x)| ≥ |N [z] \N [x]| = |N [z]| −
|N [z] ∩N [x]| = m+ 1− 2 ≥ 3. Thus y = z; however, then I(y) ∩ I(w) = I(z) ∩ I(w) = ∅ and since
I(w) 6⊆ I(x), we have I(w) 6⊆ I(x, y).

Suppose finally that |I(x)| = 3; w.l.o.g. we may assume |I(z) ∩ I(x)| = 2. Now |N [x] \ C| =
|N [x]| − |I(x)| = m− 2 = |V \C|, and thus V \C = N [x] \C ⊆ N [x]; hence, V \N [x] ⊆ C and thus
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N [z]\N [x] ⊆ I(z)\I(x). Consequently, |I(z)∩I(y)| ≥ |I(z)\I(x)| ≥ |N [z]\N [x]| ≥ m+1−2 ≥ 3,
and thus z = y. But similarly N [w] \N [x] ⊆ I(w) \ I(x) and the same argument shows w = y, and thus
w = z, a contradiction. 2

We finally consider graphs without isolated vertices (i.e., no vertices with degree zero), and in particular
connected graphs.

By [13, Theorem 8] a graph with no isolated vertices admitting a (1,≤ `)-identifying set has minimum
degree at least `. Hence, always n ≥ `+ 1.

In [7] and [12] it has been proven that there exist connected graphs which admit (1,≤ `)-identifying
sets. For example, the smallest known connected graph admitting a (1,≤ 3)-identifying set has 16 vertices
[12]. It is unknown whether there are such graphs with smaller order. In the next theorem we solve the
case of graphs admitting (1,≤ 2)-identifying sets.

Theorem 37 The smallest n ≥ 3 such that there exists a connected graph (or a graph without isolated
vertices) in Gr(n, n, 2) is n = 7.

(If we allow isolated vertices, we can trivially take the empty graph En for any n ≥ 2.)

Proof: The cycle Cn ∈ Gr(n, n, 2) for n ≥ 7 by Example 3(ii) (see also [12]).
Assume that G = (V,E) ∈ Gr(n, n, 2) is a graph of order n ≤ 6 without isolated vertices; we will

show that this leads to a contradiction. By [13], we know that deg(v) ≥ 2 for all v ∈ V . We will use this
fact frequently in the sequel.

If G is disconnected, the only possibility is that n = 6 and that G consists of two disjoint triangles, but
this graph is not even in Gr(n, n, 1).

Hence, G is connected. Let x, y ∈ V be such that d(x, y) = diam(G).
(i) Suppose that diam(G) = 1, or more generally that there exists a dominating vertex x. Then

N [x, y] = N [x] for any y ∈ V , which is a contradiction.
(ii) Suppose next diam(G) = 2. Moreover, by the previous case we can assume that for any v ∈ V

there is w ∈ V such that d(v, w) = 2.
Assume first |N(x)| = 4. Then S2(x) = {y}. Since deg(y) ≥ 2, there exist two vertices w1, w2 ∈

N(y) ∩N(x), but then N [x,w1] = N [x,w2].
Assume next |N(x)| = 3, say N(x) = {u1, u2, u3}. Then |S2(x)| = n − |N [x]| ≤ 2. Since the

four sets N [x] and N [x, ui], i = 1, 2, 3, must be distinct, we can assume without loss of generality that
|S2(x)| = 2, say S2(x) = {y, w}, and that the only edges between the elements in S2(x) and N(x) are
u1y, u2w, u3y and u3w. Then N [x, u3] = N [y, u2].

Assume finally that |N(x)| = 2. By the previous discussion we may assume that |N(v)| = 2 for all
v ∈ V . Then G must be a cycle Cn, but it can easily be seen that Cn /∈ Gr(n, n, 2) for 3 ≤ n ≤ 6.

(iii) Suppose that diam(G) = 3. Clearly |N(x)| ≥ 2 and |S2(x)| ≥ 1. If |S2(x)| = 1, say S2(x) =
{w}, then N [w, y] = N [w], which is not allowed. Since n ≤ 6, we thus have |N(x)| = 2 and |S2(x)| =
2, sayN(x) = {u1, u2} and S2(x) = {w1, w2}. We can assume without loss of generality that u1w1 ∈ E.
If w2u2 ∈ E, then N [w1, u2] = N [x, y]. If w2u2 /∈ E, then N [w1, w2] = N [w1].

(iv) Suppose that diam(x, y) ≥ 4. Then G contains an induced path P5. There is at most one additional
vertex, but it is impossible to add it to P5 and obtain δG ≥ 2 and diam(G) ≥ 4.

This completes the proof. 2
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Tab. 1: Lower and upper bounds for Ξ(k) for 1 ≤ k ≤ 20. The lower bounds come from the examples given in the
last column; for n ≥ 8 using Theorem 23, 25 or 27 or Lemma 10. The strongly regular graphs used here can be found
from [5]. The upper bounds for k ≥ 7 come from Theorem 17.

k lower bound upper bound example
1 1 1 (Ex. 12) E1

2 2 2 (Ex. 13) E2

3 4 4 (Ex. 14, Th.17) C4, S4

4 5 5 (Th. 16) Figure 1(b)
5 8 8 (Th. 17) Example 9
6 9 9 (Th. 20) Example 11, P (9)
7 11 12 (Th. 17, Th. 20) Figure 1(a)
8 13 14 P (13)
9 16 16 RSHCD+

10 17 18 P (17)
11 18 20 Th. 25(ii)
12 21 22 (21,10,3,6)-SRG
13 22 24 Lemma 10
14 25 26 P (25)
15 26 28 (26,15,8,9)-SRG
16 29 30 P (29)
17 30 32 Th. 25(ii)
18 31 34 Th. 25(ii)
19 36 36 RSHCD+
20 37 38 P (37)
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