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On hamiltonian chain saturated uniform hypergraphs
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We say that a hypergraph H is hamiltonian chain saturated if H does not contain a hamiltonian chain but by adding
any new edge we create a hamiltonian chain in H . In this paper we ask about the smallest size of a k-uniform hamil-
tonian chain saturated hypergraph. We present a construction of a family of k-uniform hamiltonian chain saturated
hypergraphs with O(nk−1/2) edges.
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1 Introduction
Let H be a k-uniform hypergraph on the vertex set V (H) = {v1, ..., vn} with n ≥ k. The set of the
edges — k-element subsets of V (H) — is denoted by E(H). For simplicity of notation vn+x with x ≥ 0
denotes the same vertex as vx. In [19] the authors defined the notion of a hamiltonian chain.

Definition 1 A cyclic ordering (v1, v2, . . . , vn) of the vertex set is called a hamiltonian chain and denoted
C

(k)
n , if and only if {vi, vi+1, . . . , vi+k−1} ∈ E(H) whenever 1 ≤ i ≤ n. An ordering (v1, v2, . . . , vl) of

a subset of the vertex set is called a path and denoted P (k)
l , if and only if {vi, vi+1, . . . , vi+k−1} ∈ E(H)

whenever 1 ≤ i ≤ l − k + 1. A path P (k)
n is a hamiltonian path.

For v ∈ V (H), let H − v be the hypergraph obtained by deleting v and all edges incident to v. We
refer to this operation as removing v from H .

Definition 2 We say that a hypergraph H is hamiltonian chain saturated if H does not contain a hamil-
tonian chain but by adding any new edge we create a hamiltonian chain in H .

The question investigated in this paper is the following: What is the minimum number sat(n,C(k)
n ) of

edges in a hamiltonian chain saturated k-uniform hypergraphs on n vertices?

In fact, the above problem belongs to the much wider theory of saturated graphs and hypergraphs.
Given a hypergraph F , we say that the hypergraph H is F -saturated if H has no F as a subhypergraph,
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but does contain F after the addition of any new edge. The minimum number of edges in an F -saturated
hypergraph on n vertices is denoted by sat(n, F ) (the maximum number is denoted by ex(n, F ) and the
problem of determining ex(n, F ) is the Turán’s problem). There are many results on sat(n, F ) for graphs,
including complete graphs [14], cycles [1, 2, 6, 16, 17, 20, 23], complete s-partite graphs [3, 7, 8, 21]. In
particular, the problem considered in the paper is solved for graphs. Namely, sat(n,Cn) = d 3n2 e (apart
from a few small values of n) which follows from [5, 9, 10]. Furthermore, sat(n, Pn) =

⌊
3n−1

2

⌋
for

n ≥ 54 [11, 15]. Much less is known for k ≥ 3. Bollobás [4] generalized Erdős, Hajnal and Moons
result [14] for complete k-uniform hypergraphs. Erdős, Füredi and Tuza [13] obtained sat(n, F ) for
some particular hypergraphs F with few edges. Pikhurko [22] proved that sat(n, F ) = O(nk−1) for any
fixed hypergraph F (generalizing previous result for graphs by Erdős, Füredi and Tuza [13]). The same
order of magnitude was conjectured for sat(n,C(k)

n ) [18] and sat(n, P (k)
n ) [12]. It is known that both

sat(n,C
(k)
n ) and sat(n, P (k)

n ) are at least
(
n
k

)
/(k(n−k)+1), see [12]. Hence the lower bound is of order

nk−1. On the other hand in [19] a construction is given of n-vertex hamiltonian path saturated k-uniform
hypergraphs with

∼
(

1

k!
− 1

2kdk/2e!bk/2c!

)
nk

edges. In case when k = 3, better constructions presented in [12] give hamiltonian path saturated 3-
uniform hypergraphs and hamiltonian chain saturated 3-uniform hypergraphs with O(n5/2) edges. In this
paper we present a non-obvious generalization of these construction for all k ≥ 4. As a result we obtain
that

sat(n,C(k)
n ) ≤

(
1

k!
+

1

(k − 1)!

)
nk−1/2 + o

(
nk−1/2

)
.

We notice also that the same bound holds for sat(n, P (k)
n ).

2 Construction
In the sequel we assume that k is a fixed integer greater than or equal to 4.

Definition 3 Let p and q be non-negative integers and U0, U1, . . . , Uq be pairwise disjoint sets of vertices
such that |U0| = p and |Ui| ≥ 2 for i = 1, 2, . . . , q. Define the vertex set of the hypergraph H to be
V (H) =

⋃q
i=0 Ui. Let u1 ∈ Ui1 , ..., uk ∈ Uik and j = min{i1, ..., ik}. Then {u1, ..., uk} =: E ∈ E(H)

if and only if j = 0 or |E ∩ Uj | ≥ 2. The family of all hypergraphs obtained by this construction is
denoted byHk(p, q).

Notation The above number j that is determined by the edge E is denoted by jE .

Theorem 1 LetH ∈ Hk(p, q) where p, q are non-negative integers such that p ≥ 2 and q ≥ k
2 (p−1)+2.

Let |Ui| = α for i = 1, ..., q−1 and α
2 (k−1) < |Uq| ≤ kα, where α is an integer satisfying α ≥ 2p(k−2).

Then H does not have a hamiltonian chain.

Proof. Suppose for a contradiction that H contains a hamiltonian chain (v1, v2, ..., vn). By removing all
vertices from U0 the chain (v1, v2, ..., vn) falls to m parts, m ≤ p. Each part induces a path in H −U0 or
consists of at most k − 1 vertices. Note that for any two adjacent edges E and E′ belonging to one part
jE = jE′ . Indeed, E′ has only one vertex which does not belong to E. Thus, since |E ∩ UjE | ≥ 2, E′

contains a vertex from UjE . Hence, jE′ ≤ jE . Due to symmetry we have also jE ≤ jE′ . Therefore, every
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edge in a part has at least two vertices from some fixed set Uj . We say that the set Uj is a dominating
set for this part. Let xi denote the number of vertices of the i-th part which belong to its dominating set.
Let yi denote the number of remaining vertices in the i-th part. In this part consider now consecutive
disjoint k-tuples and an r-tuple at the end, 0 ≤ r ≤ k − 1. Let xr denote the number of vertices from the
dominating set that belong to the r-tuple. Each k-tuple contains at least two vertices from the dominating
set. Hence, the number of considered k-tuples does not exceed

⌊
xi−xr

2

⌋
≤ α

2 . Thus, if r ≤ k− 2 then the
number of vertices in the i-th part satisfies

xi + yi ≤
α

2
k + (k − 2). (1)

If r = k − 1 then xr ≥ 1 (because the last k vertices form an edge, too). Hence, xi + yi ≤
⌊
α−1
2

⌋
k +

(k − 1), so (1) is satisfied, too. Hence, xi + yi ≤ α
2 k + (k − 2) or, if a part contains vertices from only

one set Uj , xi + yi ≤ |Uj |. In particular, xi + yi ≤ α
2 k + (k − 2) for all parts except possibly one which

contains only vertices from Uq (this is because |Uq| < 2(k2α + (k − 2)). Hence, if some part contains
only vertices from Uq then

(q − 1)α+ |Uq| = |U1|+ ...+ |Uq| =
m∑
i=1

(xi + yi) ≤
m−1∑
i=1

(
k

2
α+ (k − 2)

)
+ |Uq|

≤ (p− 1)

(
k

2
α+ (k − 2)

)
+ |Uq|, hence

q ≤ (p− 1)
k

2
+
k − 2

α
(p− 1) + 1 < (p− 1)

k

2
+ 2, a contradiction.

Otherwise,

(q − 1)α+ |Uq| = |U1|+ ...+ |Uq| =
m∑
i=1

(xi + yi) ≤
m∑
i=1

(
k

2
α+ (k − 2)

)
≤ p

(
k

2
α+ (k − 2)

)
, hence

(q − 1)α < p

(
k

2
α+ (k − 2)

)
− α

2
(k − 1), whence

q < (p− 1)
k

2
+ 2, a contradiction again.

2

Theorem 2 Let t be a positive integer and let H ∈ Hk(2t+1, kt+2). Let |Ui| = α for i = 1, ..., kt+1
and α

2 (k − 1) < |Ukt+2| ≤ (α− k)(k − 2), where α is an integer satisfying α ≥ (4t+ 2)(k − 2). Then
H is hamiltonian chain saturated.

Proof. Let p = 2t+ 1 and q = kt+ 2. Hence, q = k
2 (p− 1) + 2. Thus, by Theorem 1, H does not have

any hamiltonian chain. We will prove that adding any new edge E0 produces a hamiltonian chain in H .
Let E0 have the form {i1, i2, ..., ik} with 1 ≤ i1 < i2 ≤ i3, ...,≤ ik ≤ q, which means that E0 contains
a vertex from set Ui1 , a vertex from set Ui2 , and so on. Note that E0 contains only one vertex from Ui1
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since E0 /∈ E(H).
Suppose first that i2 6= q. Thus, E0 contains at most k − 2 vertices from Uq . Let j1 < j2 < ... < jq−3 be
consecutive integers from {1, ..., q − 1} \ {i1, i2}. Let Cji , i = 1, ..., p− 1, be a path of the form

∗, ..., ∗︸ ︷︷ ︸
k−2

, ji, ji, ∗, ..., ∗︸ ︷︷ ︸
k−2

, ji, ji, · · · , ∗, ..., ∗︸ ︷︷ ︸
k−2

, ji, ji, ∗, ..., ∗︸ ︷︷ ︸
k−2

, ji, ji, ∗, ..., ∗︸ ︷︷ ︸
k−2

, (ji)

which means that Cji contains

• all vertices from Uji \ E0 – in the positions denoted by ji (the symbol (ji) means that Cji may or
may not contain a vertex from Uji \ E0 in this position depending on the parity of |Uji \ E0|)

• some vertices from the set
(
Ujp ∪ ... ∪ Ujq−3

)
\ E0 – in the positions denoted by ∗.

Clearly, Uji is the dominating set for Cji (since i < p). Moreover, among every k consecutive vertices
there are two vertices from Uji . Thus, Cji is indeed a path. Let zji = |Uji ∩ E0|. Note that a single Cji
may contain

⌊
α−zji

2

⌋
k + (k − 2) vertices. Thus, the paths Cj1 , ..., Cjp−1

together may contain (q − 3)α

vertices. Indeed,
p−1∑
i=1

(⌊
α− zji

2

⌋
k + (k − 2)

)
≥

p−1∑
i=1

(
α− zji − 1

2
k + (k − 2)

)
(2)

=
α

2
k(p− 1) + (p− 1)(k − 2)−

p−1∑
i=1

zji + 1

2
k

=
α

2
k(p− 1) + (p− 1)(k − 2)− k

2

(
p−1∑
i=1

zji +

p−1∑
i=1

1

)

≥ α

2
k(p− 1) + (p− 1)(k − 2)− k

2
(k − 2 + p− 1)

≥ α

2
k(p− 1)− α = (q − 3)α, because α ≥ k

2
(k − 2).

On the other hand, after removing any number of vertices outside the set Uji from a Cji we still have a
path. Indeed, by removing some vertices from positions denoted by ∗ we do not spoil the property, that
among every k consecutive vertices there are at least two vertices from Uji . Therefore we can construct
p − 1 paths C′j1 , ..., C′jp−1

which together contain all vertices from
(
Uj1 ∪ ... ∪ Ujq−3

)
\ E0 (and do not

contain any other vertex). Finally, let Ci1 have the form

q, ..., q︸ ︷︷ ︸
k−2

, i1, i1, q, ..., q︸ ︷︷ ︸
k−2

, i1, i1, · · · , q, ..., q︸ ︷︷ ︸
k−2

, i1, i1,

k−2︷ ︸︸ ︷
i3, ..., ik, i2︸ ︷︷ ︸

E0

i2 q, ..., q︸ ︷︷ ︸
k−2

, · · · , i2, i2, q, ..., q︸ ︷︷ ︸
k−2

.

Note that ⌊
|Ui1 ∪ Ui2 | − (k − 2)

2

⌋
≥ 2α− k + 1

2
= α− k + k/2 + 1/2 > α− k + 2

=
(α− k)(k − 2)

k − 2
+ 2 >

⌈
|Uq|
k − 2

⌉
.



On hamiltonian chain saturated uniform hypergraphs 25

Hence, we are able to insert all vertices from Uq to Ci1 . Moreover, by adding at the beginning (or at the
end) of Ci1 any number of vertices from Ui1 \ E0 (from Ui2 \ E0) we still have a path. Hence, we can
construct a path C′i1 which contains all vertices from Ui1 ∪ Ui2 ∪ Uq ∪ E0. It is easy to see now that(

C′j1 , 0, C
′
j2 , 0, · · · , 0, C

′
jp−1

, 0, C′i1 , 0
)

(here symbols 0 denote distinct vertices from U0) is a hamiltonian chain in H .
Suppose now that i2 = q, whence E0 is of the form {i1, q, ..., q}. Let j1 < j2... < jq−2 be consecutive

integers from {1, ..., q − 1} \ {i1}. We construct paths Cj1 , ..., Cjp−1
in a similar way as previously.

This time the paths Cji may contain (q − 2)α vertices. This can be verified by similar computations as
previously, see (2), with one difference that now zji = 0 for each i = 1, ..., p − 1. Recall, that after
removing any number of vertices outside the set Uji from a Cji we still have a path. Therefore, we can
construct p− 1 paths C′′j1 , ...,C′′jp−1

which together contain all vertices from Uj1 ∪ ... ∪ Ujq−2
(and do not

contain any other vertex). Now let C′′i1 have the form

i1, i1, ..., i1, i1, q, q, ..., q︸ ︷︷ ︸
E0

, q, ..., q, q

and contain all vertices from Ui1 ∪ Uq . Therefore,(
C′′j1 , 0, C

′′
j2 , 0, · · · , 0, C

′′
jp−1

, 0, C′′i1 , 0
)

is a hamiltonian chain in H . 2

3 Main result
Theorem 3 For each n ≥ k4 + 8k3 + 16k2, there exists a k-uniform, hamiltonian chain saturated
hypergraph with fewer than

(
1
k! +

1
(k−1)!

)
nk−1/2 + o

(
nk−1/2

)
edges.

Proof. Let t0 :=
⌊√

n
2k

⌋
− 1 and α :=

⌊
n−2t0−2

kt0+1/2+k/2

⌋
. Thus, it is easy to check that α ≥ (4t0 + 2)k >

(4t0 + 2)(k − 2). Let H ∈ Hk(2t0 + 1, kt0 + 2) with |Ui| = α for i = 1, ..., kt0 + 1. Then

n− 2t0 − 1

kt0 + 1/2 + k/2
− 1 ≤ α < n− 2t0 − 1

kt0 + 1/2 + k/2
, whence

(kt0 + 1)α+
α

2
(k − 1) < n− 2t0 − 1 ≤ (kt0 + 1)α+

α

2
(k − 1) + (kt0 + k/2 + 1/2).

Thus, since n− 2t0 − 1 = (kt0 + 1)α+ |Ukt0+2|, we have

α

2
(k − 1) < |Ukt0+2| ≤

α

2
(k − 1) + kt0 + k/2 + 1/2 < (α− k)(k − 2)

for k ≥ 4, α ≥ (4t0 + 2)k and t0 ≥ k/2. Therefore, by Theorem 2, H is a hamiltonian chain saturated
hypergraph.
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Moreover,

|E(H)| ≤ |U0|
(
n− 1

k − 1

)
+

kt0+1∑
i=1

(
α

2

)(
n− 2t0 − 1− (i− 1)α

k − 2

)
+

(
|Ukt0+2|

k

)

≤ (2t0 + 1)
nk−1

(k − 1)!
+
α2

2

kt0+1∑
i=1

(n− (i− 1)α)
k−2

(k − 2)!
+
kkαk

k!
.

Comparing the sum of the areas of rectangles Ri, i = 1, ..., kt0 + 1, with sides ai = α and bi =

(n− (i− 1)α)
k−2 with the area of the figure limited by the x-axis and the graph of the function y = xk−2,

0 ≤ x ≤ n+ α, we obtain that

kt0+1∑
i=1

α (n− (i− 1)α)
k−2 ≤

∫ n+α

0

xk−2dx,hence,

kt0+1∑
i=1

(n− (i− 1)α)
k−2 ≤ (n+ α)k−1

α(k − 1)
(3)

Therefore,

|E(H)| ≤ (2t0 + 1)
nk−1

(k − 1)!
+
α(n+ α)k−1

2(k − 1)!
+
kkαk

k!
(4)

=

(
1

k!
+

1

(k − 1)!

)
nk−1/2 + o

(
nk−1/2

)
,

because t0 ≈
√
n

2k and α ≈ 2
√
n. 2

4 Concluding remarks
We have constructed a family of k-uniform hamiltonian chain saturated hypergraphs. The main result is
Theorem 3, which gives the hypergraphs with the smallest known number of edges. Unfortunately, since
the lower bound in [12] is smaller than the number of edges in our construction by a factor n1/2 the order
of magnitude for sat(C(k)

n ) remains unknown.
Note that our construction cannot be significantly improved by taking another t0. Indeed, if we take t0

of order greater than n1/2 then, the first component of (4) is of order greater than nk−1/2. Otherwise, if
t0 is of order less than n1/2, then α is of order greater than n1/2, whence the second component of (4)
is of order greater than nk−1/2. On the other hand, the coefficient 1

2k is chosen in order to minimize (4)
and satisfy all necessary conditions that the numbers p, q, α must have (some slight improvements are still
possible, however).

We observe that the same bounds can be obtained in case when we consider hamiltonian paths. The
upper bound can be realized by a hypergraph H ∈ Hk(2t0, kt0 + 2) with t0 and α being the same as in
Theorem 3.

Theorem 4 For each n ≥ k4 + 8k3 + 16k2, there exists a k-uniform, hamiltonian path saturated hyper-
graph with less than

(
1
k! +

1
(k−1)!

)
nk−1/2 + o

(
nk−1/2

)
edges.
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