
Discrete Mathematics and Theoretical Computer Science DMTCS vol. 13:3, 2011, 9–16

New Upper Bounds for the Heights of Some Light Subgraphs

in 1-Planar Graphs with High Minimum Degree†
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A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by at most one other edge. In this
paper, it is shown that each 1-planar graph of minimum degree 6 contains a copy of 4-cycle with all vertices of degree
at most 19. In addition, we also show that the complete graph K4 is light in the family of 1-planar graphs of minimum
degree 7, with its height at most 11.
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1 Introduction
Throughout this paper, all graphs are finite, simple and undirected. We use V (G), E(G), δ(G) and ∆(G)
to denote the vertex set, the edge set, the minimum degree and the maximum degree of a graph G. Let
e(G) = |E(G)| and v(G) = |V (G)|. For planar graphs, we use F (G) to denote the face set of G and let
f(G) = |F (G)|. A vertex (face) of degree k is called a k-vertex (face) and a vertex (face) of degree at
least k is called a k+-vertex (face). For undefined concepts we refer the reader to [2].

Let G be a family of graphs and let H be a connected graph such that each member of G contains a
subgraph isomorphic toH . Denote h(H,G ) and w(H,G ) respectively to be the smallest integers with the
property that each graph G ∈ G contains a subgraph K ' H such that maxx∈V (K){dG(x)} ≤ h(H,G )
and

∑
x∈V (K){dG(x)} ≤ w(H,G ). These two parameters h(H,G ) and w(H,G ) are called the height

and the weight of H in the family G . If they are finite, then we say H is light in G , otherwise we say H
is heavy in G .

A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by at most one other
edge. The notion of 1-planar was introduced by Ringel [12] while studying the simultaneous vertex-face
coloring of planar graphs; in the mentioned paper, he proved that each 1-planar graph is 7-colorable. Now
this bound was improved to 6 (being sharp) by Borodin [3, 4]. Borodin et al. [5] also proved that each
1-planar graph is acyclically 20-colorable. In addition, the list analogue of vertex coloring of 1-planar
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graphs was investigated in [1] by Albertson and Mohar. In [14], Wang and Lih proved that each 1-planar
graph is list 7-colorable. Recently, Zhang et al. showed that each 1-planar graph G with maximum degree
∆ is ∆-edge colorable if ∆ ≥ 10 [17], or ∆ ≥ 9 and G contains no chordal 5-cycles [16], or ∆ ≥ 8 and
G contains no chordal 4-cycles [15], or ∆ ≥ 7 and G contains no 3-cycles [19]; it is ∆-edge choosable
and (∆ + 1)-total choosable if ∆ ≥ 21 [20]; it is (∆ + 1)-edge choosable and (∆ + 2)-total choosable
if ∆ ≥ 16 [20]. The generalization of the total coloring of 1-planar graphs, the so called (p, 1)-total
labelling problem, is studied in [22].

Although 1-planar graphs is an interesting family, it is still little explored comparing to the family
of planar graphs. In general, the family of 1-planar graphs has many fundamental aspects which are
different from the planar ones. It is well-known that the planarity test for a graph is polynomial. But for
1-planarity, it is extremely unlucky that its recognizing is NP-complete [10]. This hardness may come
from the fact that the set of 1-planar graphs is not closed under taking minors and thus the 1-planarity
cannot be characterized by forbidding some minors.

On the other hand, 1-planar graphs also have some similar local structures as planar graphs. For ex-
ample, the maximum possible number of edges in a 1-planar graph G is 4v(G) − 8 and there are many
1-planar graphs that attain this bound [7]. This implies that the maximum possible minimum degree of a
1-planar graph is 7. Note that every planar graph is 5-degenerate. So each 1-planar graph with minimum
degree 6 or 7 cannot be planar. However, such 1-planar graphs may have many nice and similar properties
as planar graphs. In particular, we wonder whether a 1-planar graph with minimum degree 6 or 7 has a
similar behavior as a planar graph with high minimum degree concerning the local structures.

In the Fifth Workshop of “Graph Embeddings and Maps on Surfaces” held at Tále in the Summer of
2009, Madaras [11] reported some new results on the light subgraphs in 1-planar graphs with minimum
degree 6 and 7, as well as in 1-planar graphs with minimum degree 5 and girth 4. They (Hudák and
Madaras) proved that each 1-planar graph with minimum degree 6 contains a 4-cycle with all vertices of
degree at most 71, and this upper bound was later decreased to 47 [9]. They also proved the existence of
a complete graph K4 with all vertices of degree at most 13 in 1-planar graphs with minimum degree 7 [9,
11]. Some other local structures were extensively studied by many authors including [6–8, 10, 13, 18, 21].

In this paper, we improve Hudák and Madaras’s upper bounds for the heights of C4 and K4 in the
family of 1-planar graphs with minimum degree 6 and 7, respectively. We prove

Theorem 1 Each 1-planar graph with minimum degree 6 contains a copy ofC4 with all vertices of degree
at most 19.

Theorem 2 Each 1-planar graph with minimum degree 7 contains a copy ofK4 with all vertices of degree
at most 11.

However, we still do not know whether or not these bounds in Theorems 1 and 2 are best possible. We
leave this as an open problem for further research.

2 Preliminaries
In the rest of this paper, we always assume that G is a 1-planar graph with minimum degree 6 or 7, and
it is drawn on a plane so that (1) every edge is crossed by at most one another edge and (2) the number
of crossings is as small as possible. The associated plane graph G× of G is the plane graph that is
obtained from G by turning all crossings of G into new 4-valent vertices. By (1), no two 4-vertices are
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adjacent in G×. A 3-face in G× is called true if it is not incident with 4-vertices and false otherwise. A
big face denotes a face of degree at least 4.

For convenience, we use some specialized notations during the proofs in the next section. Let v be a
4-vertex in G× and let v1, v2, v3, v4 be its neighbors in clockwise order. By fi denote the face incident
with vvi and vvi+1 in G×, where the subtraction and addition on subscripts are taken modulo 4. We call
a 4-vertex v closed if d(f1) = d(f2) = d(f3) = d(f4) = 3, and open otherwise. It is easy to see that
if d(fi) = 3, then vivi+1 ∈ E(G×). In this case, let f ′i be the other face incident with the edge vivi+1.
If d(f ′i) = 3, then the third vertex on the boundary of f ′i , which is different from vi and vi+1, will be
denoted by v′i. So v′i is a 4-vertex if and only if f ′i is false, in which case we denote the neighbor of vi
(or vi+1) in G, such that the edge connecting them in G contains the crossing point v′i, to be v′′i (or v′′i+1,
respectively). Namely, viv′′i and vi+1v

′′
i+1 are two edges in G that cross each other at the point v′i. Denote

the face incident with the path xix′ix
′′
i+1 (or xi+1x

′
ix
′′
i ) in G× by fLi (or fRi , respectively).

The proofs of the two theorems are carried out by contradiction and their beginnings are just the same.
Suppose that G is a counterexample to the theorem. Consider the associated plane graph G× of G.
Using the well-known Euler formula v(G×)− e(G×) + f(G×) = 2 and the relation

∑
v∈V (G×) d(v) =∑

f∈F (G×) d(v) = 2e(G×), we have∑
v∈V (G×)

(2d(v)− 10) +
∑

f∈F (G×)

(3d(f)− 10) = −20.

Define an initial charge w on V (G×)
⋃
F (G×) by w(v) = 2d(v) − 10 if v ∈ V (G×) and w(f) =

3d(f) − 10 if f ∈ F (G×). Thus we have
∑

x∈V (G×)
⋃

F (G×) w(x) = −20. In order to prove Theorem
1 and Theorem 2, we shall design some discharging rules so that after discharging the new charge w′(x)
of every element x ∈ V (G×)

⋃
F (G×) is nonnegative. Since our rules only move charge around and do

not affect the total charges, this leads to a contradiction at the end and completes the proofs.

3 Proofs
3.1 Proof of Theorem 1
The proof follows the strategy described in Section 2. Suppose that G is a counterexample to Theorem 1.
Then each copy of C4 contained in G has a vertex of degree at least 20; we call such a vertex big. The
vertices of degree from 6 to 19 are called intermediate vertices. In the following. we proceed with the
discharging method and the initial charges are redistributed according to the following rules. Note that all
the faces as mentioned in the rules are faces in G×.
R1. Each 6+-vertex sends 1

3 to each of its incident faces.
R2. Each 4-vertex sends 1

3 to each of its incident false 3-faces.
R3. Each big face sends 1 to each of its incident 4-vertices.
R4. Let α = [xyz] be a true 3-face having a common edge yz with a false 3-face β = [uyz]. If x is a big
vertex, then x sends 2

3 to u through yz.
R5. Let α = [xyz] and β = [uyz] be two adjacent false 3-faces and z be a 4-vertex. If y is a big vertex,
then y sends 2 to z.
R6. Let α = [xyz] be a false 3-face having a common edge yz with a big face β. If y is a big vertex and
z is a 4-vertex, then y sends 1 to z.
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R7. Let α = [xyz] and β = [uyz] be two adjacent false 3-faces, x be a big vertex, z be a 4-vertex, and
y, u be two intermediate vertices. Suppose that yu is incident with another false 3-face γ = [yuw] and
yy′ crosses uu′ in G at w. If yu′ ∈ E(G) and u′ is an intermediate vertex, or y′u ∈ E(G) and y′ is an
intermediate vertex, then x sends 1

3 to w through yz and yu.
R8. Let α be a big face having a common edge xy with a false 3-face β = [xyz]. If z is a 4-vertex, then
α sends 2

3 to z through xy.
R9. Let α be a big face having a common edge xy with a false 3-face β = [xyz]. If x is a 4-vertex, y, z
are both intermediate vertices, and yz is incident with another false 3-face γ = [yzu], then α sends 1

3 to u
through xy and yz.

By the above rules, one can prove the following two claims that are quite useful.
Claim 1. For a big face f , if R3 is applied to f once, then R9 can be executed at most once.
Proof. Suppose that f is a big face with three incident vertices x, y, z such that xy, yz ∈ E(G×) and
y is a 4-vertex. Then xz 6∈ E(G) and we can suppose that xx′ crosses zz′ in G at y. By R3, there
must be a transfer from f to y now. If R3 is applied to f once and R9 is executed at least twice, then
xz′, x′z ∈ E(G) and all of x, x′, z, z′ are intermediate vertices. This implies the existence of a 4-cycle
xx′zz′ in G with all its vertices intermediate, a contradiction. Hence R9 can be executed at most once.
Claim 2. For a big vertex x, if R5 is applied to x once, then R7 can be executed at most once.
Proof. Let xyz be a false 3-face with a big vertex x and a 4-vertex z. Suppose that xx′ crosses yy′ in G
at z. If R5 is applied to x once, then xy′ ∈ E(G). Now we prove that R7 cannot be executed twice. For
otherwise, x′yz, x′y′z are both false 3-faces and y, y′, x′ are all intermediate vertices. Furthermore, x′y is
incident with another 3-face x′yu such that u 6= y′ and u is an intermediate vertex by R7. Consequently,
the four intermediate vertices x′, y′, y, u form a 4-cycle in G, a contradiction.

We now check that the final charge of every vertex and face in G× is nonnegative.
Case 1. Suppose that f is a 3-face. Then by R1 and R2, each vertex incident with f sends 1

3 to f . This
implies that w′(f) = w(f) + 3× 1

3 = −1 + 1 = 0.
Case 2. Suppose that f is a big face. Let a be the number of transfers from f to its incident 4-vertices
by R3 and let b be the number of transfers from f to its non-incident 4-vertices by R8. Since no two
4-vertices are adjacent in G×, a ≤ bd(f)−b2 c and f is incident with at least dd(f)2 e 6+-vertices. By Claim
1, if there is a transfer of 1 from f by R3, then there is a total transfer at most 1

3 from f by R9. Therefore,
w′(f) ≥ w(f) + 1

3d
d(f)
2 e − (1 + 1

3 )a − 2
3b ≥

19
6 d(f) − 10 − 2

3 (2a + b) ≥ 19
6 d(f) − 10 − 2

3d(f) =
5d(f)−20

2 ≥ 0 by R1 for d(f) ≥ 4.
Case 3. Suppose that v is a 4-vertex. Then w(v) = 2d(v)− 10 = −2.
Subcase 3.1. Suppose that v is incident with at least three big faces. Then by R2 and R3, w′(v) ≥
w(v)− 1

3 + 3× 1 = 2
3 > 0.

Subcase 3.2. Suppose that v is incident with two big faces and two false 3-faces. We follow the definitions
in Section 2 and split our proofs into two subcases.
Subcase 3.2.1. Without loss of generality, suppose that f1, f3 are big faces and f2, f4 are false 3-faces.
Then α = [v1v3v2v4] is a 4-cycle and thus at least one of the vertices on the boundary of α, say v1, is
a big vertex. This implies that v will receive 1 from v1 by R6. Finally, by R2 and R3, we also have
w′(v) ≥ w(v) + 1 + 2× 1− 2× 1

3 = 1
3 > 0.

Subcase 3.2.2. In this case, we suppose that f1, f2 are big faces and f3, f4 are false 3-faces. If v is
adjacent to at least two big vertices, then at least one of them will send charge to v by R6. Thus we still
have w′(v) ≥ w(v) + 1 + 2× 1− 2× 1

3 = 1
3 > 0 by R2, R3 and R6. So we suppose that v is adjacent to
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at most one big vertex. If one of v1, v3 and v4 is big, then the redistributed charge of v can be calculated
as before, hence, it is nonnegative. If none of v1, v3 and v4 is big (namely, all of them are intermediate),
then v2 will not send charge to v by any of the rules no matter v2 is big or intermediate. Now, consider the
face f ′3. If it is a big face, then it will send 2

3 to v through v3v4 by R8. If f ′3 is 3-face, denoted by v3v4v′3
(note that v′3 6= v1, v2), then v′3 must be a big vertex while f ′3 is true, that is because v1v3v′3v4 forms a
4-cycle in G with v1, v3, v4 being intermediate. In such a case, v′3 will send 2

3 to v through v3v4 by R4. If
f ′3 is false, then v′3 is a 4-vertex. Now consider the faces fL3 and fR3 . If fL3 is big face, then it will send 1

3
to v through v3v4 by R9. Otherwise fL3 must be a false 3-face, denoted by v3v′3v

′′
4 (note that v′′4 6= v1, v2).

In this case v1v3v′′4 v4 is a 4-cycle in G with v1, v3, v4 being intermediate, which implies that v′′4 must be
a big vertex. Then by R7, v′′4 will send 1

3 to v through v3v4. By a similar discussion on fR3 , v will receive
another 1

3 from fR3 or v′′3 through v3v4 (again, note that v′′3 6= v1, and if v′′3 = v2, then fR3 must be a big
face). Consequently, using the transfers through v3v4, v receives totally 2 × 1

3 = 2
3 . By symmetry, the

same discussion can be applied to the calculation of the transfers through v1v4. Thus, by R2 and R3, we
still have w′(v) ≥ w(v) + 2× 1− 2× 1

3 + 2× 2
3 = 2

3 > 0.
Subcase 3.3. Suppose that v is incident with one big faces and three false 3-faces. Without loss of
generality, we assume that f1 is big and the other three faces are false. Since v1v3v4v2 forms a 4-cycle
in G, v must be adjacent to at least one big vertex. If v is adjacent to at least two big vertices, then by
R5 and R6, v receives at least 2 × 1 = 2 from its big neighbors. Together with R2 and R3, we have
w′(v) ≥ w(v) + 1 − 3 × 1

3 + 2 = 0. Now we consider the case when v is adjacent to exactly one big
vertex. If v3 or v4 is big, then by R5, a transfer of 2 from v3 or v4 to v will be put into practice. This
implies thatw′(v) ≥ w(v)+1−3× 1

3 +2 = 0. If v1 or v2 is big, say v2, then v2 will send 1 to v by R6. By
the same argument as in Subcase 3.2.2, v will also receive 2

3 through the edge v3v4 and another 2
3 through

the edge v1v4. In total, by R2 and R3, we shall also have w′(v) ≥ w(v)+1−3× 1
3 +1+2× 2

3 = 1
3 > 0.

Subcase 3.4. Suppose that v is incident with four false 3-faces. Since v1v2v3v4 is a 4-cycle in G, v must
be adjacent to at least one big vertex. If v is adjacent to at least two big vertices, then by R2 and R5, we
have w′(v) ≥ w(v)− 4× 1

3 + 2× 2 = 2
3 > 0. If v is adjacent to exactly one big vertex, say v2, then v2

will send 2 to v by R5. Again, by the same argument as in Subcase 3.2.2, v will totally receive 2× 2
3 = 4

3
through the edges v1v4 and v3v4. This implies that w′(v) ≥ w(v)− 4× 1

3 + 2 + 4
3 = 0 by R2 and R3.

Case 4. Suppose that v is an intermediate vertex. Then v sends out charges only by R1, which implies
that w′(v) ≥ w(v)− 1

3d(v) = 2d(v)− 10− 1
3d(v) = 5d(v)−30

3 ≥ 0 for d(v) ≥ 6.
Case 5. Suppose that v is a big vertex. Let F denote the subgraph induced by the faces which are incident
with v. Then F can be decomposed into many parts, each of which is one of the following five clusters in
Figure 1, and any two parts of which are adjacent only if they have a common edge vw such that w is a
6+-vertex. The hollow vertices in Figure 1 are 4-vertices and the solid ones are 6+-vertices; all the faces
marked by 4+ are big faces and there is at least one big face contained in the clusters of type 2, 4 and 5.

Let ni be the number of clusters of type i contained in F . By their definitions, one can easily observe
that 2n1 + 2n2 +n3 + 3n4 +n5 ≤ d(v). If there is a cluster of type 1 in F , then v will send 2 to y by R5.
Meanwhile, v will also send out at most 1

3 through either xy or yz by R7 and Claim 2. If there is a cluster
of type 2 in F , then v will send 1 to y by R6 and send out at most 1

3 through xy by R7. If there is a cluster of
type 3 in F , then v will send out at most 2

3 though xy by R4. If there is a cluster of type 4 in F , then v will
send 1 to each of y and u by R6 and totally send out at most 2× 1

3 = 2
3 through xy and uw by R7. If there

is a cluster of type 5 in F , then v will not send out charges via this cluster by any of the rules. Therefore,
together with R1, we have w′(v) ≥ w(v)− 1

3d(v)− (2 + 1
3 )n1 − (1 + 1

3 )n2 − 2
3n3 − (2× 1 + 2

3 )n4 =
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Fig. 1: Five types of cluster

5
3d(v)−10− 7

6 (2n1+2n2+n3+3n4+n5)+(n2+ 1
2n3+ 5

6n4+ 7
6n5) ≥ 5

3d(v)−10− 7
6d(v) = d(v)−20

2 ≥ 0
for d(v) ≥ 20.

3.2 Proof of Theorem 2
The proof also follows the strategy described in Section 2. Let G be a counterexample to Theorem 2. So
each copy of K4 in G contains a 12+-vertex, which is called big vertex. The vertices of degree from 7
to 11 are called intermediate vertices. Let t(v) be the number of 3-faces that are incident with v. Then
v is closed if and only if t(v) = 4 (recall the definition of closed vertices in Section 2). Let c(v) (or
c(f)) be the number of 4-vertices that are adjacent to (or incident with) v (or f ). By c1(v) and c2(v),
respectively, we denote the number of closed 4-vertices and open 4-vertices adjacent to v. Obviously we
have c1(v) + c2(v) = c(v).
Claim 1. If d(v) = 7, then t(v) ≤ 6 if c(v) = 4, t(v) ≤ 4 if c(v) = 5, t(v) ≤ 2 if c(v) ≥ 6.
Proof. This follows directly from the fact that no two 4-vertices are adjacent in G×.
Claim 2. If d(v) ≥ 8, then t(v) + c(v) ≤ 3

2d(v) and t(v) + 2c(v) ≤ 2d(v).

Proof. If c(v) ≤ bd(v)2 c, then this holds trivially. So we assume that c(v) ≥ dd(v)2 e. Beginning with
dd(v)2 e, each unit of increase on c(v) will imply two units of decrease on the largest possible number
of the 3-faces that are incident with v, that is because no two 4-vertices are adjacent in G×. Therefore,
t(v) ≤ d(v) − 2(c(v) − dd(v)2 e) if d(v) is even, and t(v) ≤ d(v) − 1 − 2(c(v) − dd(v)2 e) if d(v) is odd.
In either case, t(v) + 2c(v) ≤ 2d(v). Since c(v) ≥ d(v)

2 , we have t(v) + c(v) ≤ 2d(v)− c(v) ≤ 3
2d(v).

Claim 3. If d(v) ≥ 12, then 2c1(v) + c2(v) ≤ d(v).
Proof. Since no two 4-vertices are adjacent in G×, we have c1(v) ≤ bd(v)2 c. If c(v) ≤ bd(v)2 c, then
2c1(v) + c2(v) = c1(v) + c(v) ≤ d(v). If c(v) > bd(v)2 c, then each unit of increase on c(v) from
bd(v)2 c implies the existence of at least two open 4-vertices that are adjacent to v. This implies that
c2(v) ≥ 2(c(v)− bd(v)2 c) ≥ 2(c1(v) + c2(v))− d(v). Therefore, we have 2c1(v) + c2(v) ≤ d(v).

We complete the proof of Theorem 2 by applying the following rules of discharging.
R1. Each big face sends 1 to each of its incident 4-vertices.
R2. Each intermediate vertex sends 1

3 to each of its adjacent 4-vertices.
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R3. Each big vertex sends 1
3 to each of its adjacent open 4-vertices, and 13

9 to each of its adjacent closed
4-vertices.
R4. Let α = [xyz] be a true 3-face. Then each of x, y, z sends 1

3 to α.
R5. Let α = [xyz] be a false 3-face. If x is a 4-vertex, then x sends 1

9 while both y and z sends 4
9 to α.

We now check that the final charge of every vertex and face in G× is nonnegative.
Case 1. Suppose that f is a 3-face. By R4 and R5, one can observe that w′(f) = w(f)+1 = −1+1 = 0.
Case 2. Suppose that f is a big face. Since no two 4-vertices are adjacent in G×, c(f) ≤ bd(f)2 c.
Therefore, by R1, we have w′(f) ≥ w(f)− bd(f)2 c ≥

5d(f)−20
2 ≥ 0 for d(f) ≥ 4.

Case 3. Suppose that v is a 4-vertex. If v is incident with at least two big faces, then by R1, R2, R3 and
R5, w′(v) ≥ w(v) + 1 × 2 + 4 × 1

3 − 2 × 1
9 = 10

9 > 0. If v is incident with exactly one big face, then
we still have w′(v) ≥ w(v) + 1 + 4× 1

3 − 3× 1
9 = 0. If v is incident with no big faces, then v is closed.

Meanwhile, v1, v2, v3 and v4 forms a K4 in G, which implies that at least one of them is a big vertex, say
v1. Then v1 will send 13

9 to v by R3. Since v2, v3 and v4 are either intermediate or big, each of them shall
send at least 1

3 to v by R2 and R3. Together with R5, we also havew′(v) ≥ w(v)+ 13
9 +3× 1

3−4× 1
9 = 0.

Case 4. Suppose that v is an intermediate vertex.
Subcase 4.1. Suppose that d(v) = 7. If c(v) ≤ 3, then v can be incident with at most six false 3-faces.
So by R2, R4 and R5, we have w′(v) ≥ w(v) − 3 × 1

3 −
1
3 − 6 × 4

9 = 0. If c(v) = 4, then by Claim 1,
t(v) ≤ 6. It follows that w′(v) ≥ w(v) − 4 × 1

3 − 6 × 4
9 = 0. If c(v) = 5, then t(v) ≤ 4 by Claim 1,

which implies that w′(v) ≥ w(v) − 5 × 1
3 − 4 × 4

9 = 5
9 > 0. If c(v) ≥ 6, then t(v) ≤ 2 by Claim 1.

Consequently, we still have w′(v) ≥ w(v)− 1
3c(v)− 4

9 t(v) ≥ 4− 7
3 −

8
9 = 7

9 > 0.
Subcase 4.2. Suppose that 8 ≤ d(v) ≤ 11. By R2, R4, R5 and Claim 2, we have w′(v) ≥ w(v)− 1

3c(v)−
4
9 t(v) ≥ 2d(v)− 10− 4

9 (c(v) + t(v)) ≥ 2d(v)− 10− 4
9 ×

3
2d(v) = 4d(v)−30

3 > 0 for d(v) ≥ 8.
Case 5. Suppose that v is a big vertex. If c(v) ≤ bd(v)2 c, then by R3, R4 and R5, w′(v) ≥ w(v)− 13

9 c(v)−
4
9d(v) ≥ 2d(v)− 10− 13

9 ×
d(v)
2 −

4
9d(v) = 5d(v)−60

6 ≥ 0 for d(v) ≥ 12. On the other hand, if c(v) ≥
dd(v)2 e, then by R3, R4, R5, Claim 2 and Claim 3, we have w′(v) ≥ w(v)− 13

9 c1(v)− 1
3c2(v)− 4

9 t(v) =
2d(v)−10− 1

3 (2c1(v)+c2(v))− 4
9 t(v)− 7

9c1(v) ≥ 2d(v)−10− 1
3d(v)− 4

9 (2d(v)−2c1(v)−2c2(v))−
7
9c1(v) = 7

9d(v)−10+ 1
9c1(v)+ 8

9c2(v) ≥ 7
9d(v)−10+ 1

9c(v) ≥ 7
9d(v)−10+ 1

18d(v) = 5d(v)−60
6 ≥ 0

for d(v) ≥ 12.
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