
Discrete Mathematics and Theoretical Computer Science DMTCS vol. 14:1, 2012, 1–20

Vertex-colouring edge-weightings with two
edge weights

Mahdad Khatirinejad1∗ Reza Naserasr2 Mike Newman3∗

Ben Seamone2† Brett Stevens2∗

1 Department of Communications and Networking, Aalto University, Finland
2 School of Mathematics and Statistics, Carleton University, Canada
3 Department of Mathematics, University of Ottawa, Canada

received 24th July 2010, accepted 24th November 2011.

An edge-weighting vertex colouring of a graph is an edge-weight assignment such that the accumulated weights at
the vertices yields a proper vertex colouring. If such an assignment from a set S exists, we say the graph is S-weight
colourable. It is conjectured that every graph with no isolated edge is {1, 2, 3}-weight colourable.

We explore the problem of classifying those graphs which are {1, 2}-weight colourable. We establish that a number
of classes of graphs are S-weight colourable for much more general sets S of size 2. In particular, we show that any
graph having only cycles of length 0 mod 4 is S-weight colourable for most sets S of size 2. As a consequence, we
classify the minimal graphs which are not {1, 2}-weight colourable with respect to subgraph containment. We also
demonstrate techniques for constructing graphs which are not {1, 2}-weight colourable.
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1 Introduction
Let G be a simple graph and S be a set of real numbers. An S-edge-weighting of G is an assignment
w : E(G)→ S. Given an S-edge-weighting, the weighted degree of a vertex v, denoted w(v), is the sum
of weights of the edges incident with v. An S-edge-weighting gives a vertex colouring if the weighted
degrees of adjacent vertices are different. If an S-edge-weighting vertex colouring w exists, we also call
w an S-weight colouring and we say G is S-weight colourable. For a positive integer k, we say G has
a k-weight colouring or G is k-weight colourable if it is S-weight colourable for every set S of size k.
The most commonly studied sets S are those of the form {1, . . . , k}.

Problem 1 Given a graphG with no isolated edges, find the minimum k such thatG is {1, . . . , k}-weight
colourable.
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It is not hard to verify that K4 with a single leaf attached is {1, 2}-weight colourable but is not {0, 1}-
weight colourable. It follows that the S-weight colourability of a graph is not only dependent on the size
of S but also on the particular elements of S. However, if a graph G is S-weight colourable then there
exists an i0 = i0(G,S) such that for all i > i0 the graph is also {s + i : s ∈ S}-weight colourable. One
such value for i0, though not necessarily the smallest, is i0 = |S| ·∆(G) ·max{|s| : s ∈ S}, where ∆(G)
is the maximum degree of G.

Let us start by considering the 2-weight colourability of a simple class of graphs – paths. If a and b are
non-zero real numbers, then every path of length at least 2 has an {a, b}-weight colouring. Assigning the
edge weights a, a, b, b, a, a, b, b, . . ., beginning with one leaf of the path, gives such a colouring. However,
a path has a {0, a}-weight colouring if and only if it is not of length 1 mod 4. The reader can easily check
that paths of length 2, 3 and 4 have a {0, a}-weight colouring. However, if we let P = e1, e2, e3, e4, e5 be
a path of length 5 (we omit vertex labels) then if w(e2) = 0 (or w(e4) = 0) then the ends of e1 (e5) will
have equal weight. Thus the only way to achieve a {0, a}-weight colouring of P is if w(e2) = w(e4) = a.
However, this implies that the ends of e3 will have the same weight, and hence a {0, a}-weight colouring
cannot exist. These examples easily extend to longer paths; the details are left to the reader.

In general, it is unknown how difficult it is to decide if a given graph admits a {1, 2}-weight colouring,
or more generally an {a, b}-weight colouring. As such, we present the following question:

Problem 2 Is it NP-complete to decide whether a given graph is 2-weight colourable?

Returning to Problem 1, we state the following conjecture, due to Karoński, Łuczak, and Thoma-
son [KŁT04], which motivates most of the known results on the {1, . . . , k}-weight colourability of graphs.

Conjecture 1.1 Every graph with no isolated edge is {1, 2, 3}-weight colourable.

Karoński et al. [KŁT04] showed that the Conjecture 1.1 is true for 3-colourable graphs. They also
proved that if S is any set of at least 183 real numbers which are linearly independent over the ratio-
nal numbers then every graph with no isolated edge is S-weight colourable. Recently, Kalkowski et
al. [KKP09] showed that every graph with no isolated edge is {1, . . . , k}-weight colourable for k = 5.
This result is an improvement on the previous bounds on k established by Addario-Berry et al. [ABDM+07],
Addario-Berry et al. [ABDR08], and Wang et al. [WY08], who obtained the bounds k = 30, k = 16, and
k = 13, respectively.

Our work in this paper is similarly motivated by Conjecture 1.1. However, where most others have
attempted to lower the best known value of k as described above, our focus is on establishing which graphs
are {1, 2}-weight colourable. Addario-Berry, Dalal and Reed [ABDR08] showed that asymptotically
almost every graph is {1, 2}-weight colourable, however it is not known which ones are not. Chang et
al and Lu et al ([CLWY10], [LYZ10]) have made some progress in determining which classes of graphs
are {1, 2}-weight colourable, notably having shown that 3-connected bipartite graphs are one such class.
A complete classification of such graphs would determine those graphs for which k = 3 is the smallest
possible solution in Problem 1, and would reduce Conjecture 1.1 to just those graphs.

The results that follow are, for the most part, concerned with a more general problem than that of finding
{1, 2}-weight colourings, namely that of finding {a, b}-weight colourings for more general values of a and
b. In such cases, the existence of a {1, 2}-weight colouring follows as an unstated corollary. In Section 2,
we establish a wide range of basic graphs which admit {a, b}-weight colourings. We also establish classes
of graphs which do not admit {a, b}-weight colourings, but which do admit an {a, b}-edge weighting
which is almost a proper colouring. These results provide building blocks for our results on the weight
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colourability of bipartite graphs in Section 3 and of other general classes of graphs, particularly direct
products of graphs, in Section 4. Of note, we show in Section 3 that if every cycle of G is of length
0 mod 4, then G is {1, 2}-weight colourable.

2 Building blocks: Weight colourings of basic graphs
We will use standard graph theory terminology; the reader may refer to [BM08] for clarification of any
terms which are not specifically defined here.

The length of a path (walk) is defined to be the number of edges of the path (walk). A thread in a graph
G is a walk connecting two vertices x and y, not necessarily distinct, such that the internal vertices are
distinct from all others on the walk, all internal vertices have degree 2 in G, and deg(x),deg(y) ≥ 3. If x
and y are distinct, then the walk is in fact a path and in this case we may refer to the thread as an ear. If the
condition that deg(x),deg(y) ≥ 3 is changed to deg(x),deg(y) ≥ 2 in either case, we have a subthread
or subear respectively.

A cut vertex of a graph is one whose removal disconnects the graph. A graph is 2-connected if it has
no cut vertex. A graph (not necessarily simple) is called separable if it can be decomposed into two
nonempty subgraphs with exactly one vertex in common. A simple graph is separable if and only if it is
not 2-connected. A maximal nonseparable subgraph of G is a block of G. Note that a block is isomorphic
either toK2 or to a 2-connected graph. An end block ofG is a block which contains at most one cut vertex
of G.

A graph is c-colourable if the vertices can be coloured with c colours so that adjacent vertices get
different colours.
Kn and Cn, respectively, denote the complete graph and the cycle on n vertices. The Cartesian product

of two graphsG andH , denoted byG2H , is defined as the graph having vertex set V (G)×V (H) where
two vertices (u, u′) and (v, v′) are adjacent if and only if either u = v and u′ is adjacent to v′ in H or
u′ = v′ and u is adjacent to v in G.

We present a few simple observations.

Proposition 2.1 Let a, b, t be nonzero real numbers and G a graph. Then

(i) G is {a, b}-weight colourable if and only if G is {at, bt}-weight colourable, and

(ii) if G is {a, b}-weight colourable then G is {p, q}-weight colourable for any nonzero p, q ∈ R which
are linearly independent over Q.

Proof: (i) This follows from the fact that w(u) 6= w(v) if and only if t · w(u) 6= t · w(v). (ii) Note that
if two adjacent vertices receive distinct linear combinations of a and b as weights, then the coefficients of
these linear combinations will suffice for any two linearly independent nonzero reals. 2

From Proposition 2.1 we deduce the following, adopting the convention that 0 and 1 are relatively prime
integers:

Corollary 2.2 A graph G is 2-weight colourable if and only if G is {a, b}-weight colourable for every
pair of relatively prime integers a and b.

Proposition 2.1 allows us to reduce our proofs of positive results on the existence of {a, b}-weight
colourings of a graph to relatively prime integers. Results in which we show that G does not admit an
{a, b}-weight colouring will not rely on such assumptions – we will prove them for all real a, b.
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Proposition 2.3 If G is d-regular and {a, b}-weight colourable for a fixed choice of a and b then (i) it is
d-colourable, and (ii) it is 2-weight colourable.

Proof: (i) The weighted degree of each vertex must be a number of the form ta + (d − t)b for some
0 ≤ t ≤ d, and a vertex of weighted degree da cannot be adjacent to a vertex of weighted degree db. Thus
putting the vertices of weighted degree da or db in the same colour class gives a d-colouring.

(ii) In an {a, b}-edge weighting of a d-regular graph, the accumulated weight at any vertex is in a one-
to-one correspondence with the number of incident edges of weight a. Thus if one choice of a and b gives
a vertex colouring, then any other choice of a and b will as well. 2

Corollary 2.4 If χ(G) = ∆(G) + 1 or, equivalently (by Brooks theorem), if G is an odd cycle or a
complete graph then G is not S-weight colourable for any set S of size 2.

Even though the complete graph is not S-weight colourable for any set of size 2, it has an S-edge-
weighting that is very close to being an S-weight colouring. This specific weighting will be useful in
constructing families of 2-weight colourable graphs and non-2-weight colourable graphs in Section 4.

Lemma 2.5 Given n ≥ 2 and a 6= b ∈ R, there is an {a, b}-edge-weighting of Kn such that the
weighted degrees of all the vertices are distinct except for 2 of them. Furthermore, in any such {a, b}-
edge-weighting, the degree sequence of the subgraph induced by the edges of weight a (as well as the
subgraph induced by the edges of weight b) is either

(1, 2, . . . ,
⌊n

2

⌋
− 1,

⌊n
2

⌋
,
⌊n

2

⌋
,
⌊n

2

⌋
+ 1, . . . , n− 2, n− 1),

or
(0, 1, . . . ,

⌈n
2

⌉
− 2,

⌈n
2

⌉
− 1,

⌈n
2

⌉
− 1,

⌈n
2

⌉
, . . . , n− 3, n− 2).

Proof: We prove the first part with an explicit construction. Choose any two vertices and assign weight a
to the edge joining them. Choose a new vertex and assign weight b to all the edges joining this vertex to the
previous two vertices. Choose another vertex and assign weight a to all the edges joining this vertex to the
previous three vertices. By repeating this process until all vertices are exhausted, we achieve the desired
edge-weighting since the two vertices chosen first will have the same weight while the remainder of the
graph is properly coloured. Note that we achieve the same result by swapping a and b in this argument.

We prove the second part of the lemma by induction on n. Suppose w is such an edge-weighting of Kn

and let w(u) = w(v). It is easy to verify the claim for n = 2 and n = 3. If w(x) /∈ {(n− 1)a, (n− 1)b}
for every vertex x then w(x) can only take n − 2 values, a contradiction to the choice of w. If w(u) =
w(v) ∈ {(n− 1)a, (n− 1)b} then by removing u and v, w induces an {a, b}-weight colouring of Kn−2,
a contradiction to Corollary 2.4. Thus there exists a vertex x 6= u, v such thatw(x) ∈ {(n−1)a, (n−1)b}.
The claim follows by induction on Kn − x. 2

The following technical lemmata will be useful for the rest of the paper, since they establish useful tools
for finding edge-weighting vertex colourings of graphs with specific structural properties.

Lemma 2.6 SupposeG has a vertex v with a set of leaf neighbours L where |L| ≥ ddeg(v)/2e. Let a 6= b
be real numbers with ab > 0. If G \ L is {a, b}-weight colourable, then so is G.
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Proof: As mentioned, Proposition 2.1 allows us to only consider a, b ∈ Z+. Suppose w is an {a, b}-
weight colouring of G \ L. The possible extensions of w to G give exactly |L| + 1 possible weights for
v. Since v has at most |L| neighbours in G \ L, in at least one of the extensions, the weighted degree of v
is different from the weighted degrees of the neighbours of v in G \ L. The weighted degree of v is also
different from the weighted degrees of the neighbours of v in L, since ab > 0. 2

Corollary 2.7 Every tree with at least 3 vertices is {a, b}-weight colourable, where a 6= b are real num-
bers with ab > 0.

Proof: The statement holds for any star, K1,n−1, since the assignment of a to all edges achieves the
desired result. As such the result holds for n = 3 since the unique tree on 3 vertices is a star. Let T be a
tree on n vertices which is not a star and assume the result holds for any tree with fewer than n vertices.
Every tree has a vertex v that has at least ddeg(v)/2e leaf neighbours. Since T is not a star, removing
the leaf neighbours of v gives a subtree T ′ on at least 3 vertices. By the induction hypothesis T ′ has an
{a, b}-weight colouring. By Lemma 2.6, T does as well. 2

The following lemma establishes that we may contract long threads in a way that maintains weight
colourability.

Lemma 2.8 Let G be a graph, P = v0, e1, v1, e2, v2, e3, v3, e4, v4, e5, v5 be a subthread of G, and a 6= b
be any two real numbers. Let G′ = G/{e1, e2, e3, e4} Then,

(i) If w is an {a, b}-weight colouring of G, then w(e1) = w(e5) 6= w(e3).

(ii) If G′ is {a, b}-weight colourable, then so is G.

(iii) If deg(v0) = 2 or deg(v5) = 2, then G is {a, b}-weight colourable if and only if G′ is {a, b}-weight
colourable.

Proof: (i) If w(e1) 6= w(e5) then either one of the two choices for w(e3) results in an improper colouring
at e2 or e4. Hence w(e1) = w(e5) and w(e3) must be distinct.

(ii) For convenience, we still denote the vertex obtained from the contraction by v0. Suppose w′ is an
{a, b}-weight colouring of G′. Then w′(v0) 6= w′(v5). Without loss of generality assume w′(v0v5) = a.
Let w(e) = w′(e) for each e /∈ {e1, e2, e3, e4, e5}, w(e1) = w(e5) = a and w(e3) = b. There are two
possibilities for the weights of e2 and e4. Assigning w(e2) = a and w(e4) = b does not yield a proper
vertex colouring of G if and only if either w(v0) = 2a or w(v5) = a + b. Similarly, defining w(e2) = b
and w(e4) = a does not yield a proper vertex colouring of G if and only if either w(v0) = a + b or
w(v5) = 2a. Suppose that neither weighting works. If the first possibility gives w(v0) = 2a, then
the second must give w(v5) = 2a. If the first possibility gives w(v5) = a + b, then the second gives
w(v0) = a+ b. In either case w(v0) = w(v5), a contradiction.

(iii) Assume deg(v0) = 2 and let e0 be the other edge incident with v0. Suppose w is an {a, b}-weight
colouring of G. By (i) we have w(e0) = w(e4) and w(e1) = w(e5). Hence w(v0) = w(v4) 6= w(v5).
Thus, by assigning the common weight of e1 and e5 to the edge v0v5, we get an {a, b}-weight colouring
of G′. 2

The degree condition on the ends of P in Lemma 2.8 (iii) cannot be dropped. For example, by taking
G to be the path of length 5, a = 1, and b = 2, Lemma 2.8 (iii) fails.
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From this lemma we may deduce necessary and sufficient conditions for the existence of {a, b}-weight
colourings of cycles.

Proposition 2.9 Let a and b be any distinct real numbers. Then Cn is {a, b}-weight colourable if and
only if n ≡ 0 (mod 4).

In lieu of a proof, we simply note that, by Lemma 2.8 (iii), the proof of this proposition may be reduced
to the cases C3, C4, C5 and C6. The details are left to the reader. There are {a, b}-edge weightings of
other cycles of length 4k + 1, 4k + 2 and 4k + 3 which give vertex colourings with as few conflicts as
possible. These results are largely technical, though not difficult to prove.

Proposition 2.10 Let a and b be any distinct real numbers. Then C2k+1 has an {a, b}-edge weighting w
such that only one edge e = uv has the property that w(u) = w(v).

Proposition 2.11 Let a and b be any distinct real numbers. Then C4k+2 has an {a, b}-edge weighting w
such that precisely two edges e = uv and e′ = u′v′ have the property that w(u) = w(v) and w(u′) =
w(v′). Furthermore,

• the distance between e and e′ is even,

• e and e′ may be chosen to be any two edges at an even distance, and

• if f1 and f2 are the edges incident to e, then their weights are equal and can be chosen to be either
a or b (similar for e′).

We present a specific consequence of Proposition 2.11 which we will find useful.

Proposition 2.12 Let k be an integer, k ≥ 1. Then C4k+2 has an {a, b}-edge-weighting such that three
consecutive vertices have equal weight and the rest of the cycle is properly coloured. Furthermore, the
edge-weighting can be chosen so that the weights of the four edges which contribute to the weights of
those three vertices will all be a, all b, or alternate between a and b.

Let Θ(m1,...md), d ≥ 3, be the graph constructed from d internally disjoint paths between distinct
vertices x and y, where the i-th path has of length mi. For simplicity, we assume m1 ≤ m2 ≤ · · · ≤ md.
Such graphs will be referred to as theta graphs. We present necessary and sufficient conditions for theta
graphs to be 2-weight colourable.

Theorem 2.13 Let d ≥ 3 and let a, b be real numbers. The graph Θ(m1,m2,...,md) is 2-weight colourable
if and only if it is not of the form Θ(1,4k2+1,...,4kd+1).

Proof: Let x and y be the two vertices of degree greater than two, and let {Pi|1 ≤ i ≤ d} be the d
internally disjoint paths between x and y.

Suppose w is an {a, b}-weight colouring of Θ(1,4k2+1,...,4kd+1). By applying Lemma 2.8 (i) to each
Pi, we observe that on any of the d disjoint paths between x and y the first and last edges must receive
same weight. Thus w(x) = w(y), a contradiction since x and y are adjacent. Hence Θ(1,4k2+1,...,4kd+1)

is not {a, b}-weight colourable for any a, b.
Consider Θ(m1,m2,...,md) � Θ(1,4k2+1,...,4kd+1). We can assume that |a| ≥ |b|. Let nj be the number

of paths that have length equivalent to j mod 4. Note that n0 + n1 + n2 + n3 = d = deg(x) = deg(y).
For each path Pi, weight each edge according to Lemma 2.8 so that the edges incident with x are weighted
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a. Then w(x) = da so it has no conflicts with its neighbours since d ≥ 3 and the condition on the mag-
nitudes of a and b gives da 6∈ {2a, a + b}. Note that, if |Pi| ≥ 2, there are two choices for the next
edge’s weight on Pi which determines the rest of the weights. Given one such weighting of a path Pi,
the effects of switching to the alternate weighting where the edge incident to x receives weight a depend
on the parity of the length of the path. If |Pi| is even, the weight of the edge incident to y and the vertex
weights of the neighbours of x and y on Pi all change. If |Pi| odd, the weight of the edge incident to y
remains unchanged, but the vertex weights of the neighbours of x and y on Pi do change. In all cases the
only possible weights on path-neighbours of x or y are 2b, a+ b and 2b. We prove, by cases, that there is
an appropriate set of choices which make w(y) distinct from its neighbours.

n0 + n2 ≥ 4: Our choice of weightings for even Pi’s give at least 5 possible values for w(y), so there is
a choice such that w(y) 6∈ {2b, a+ b, 2a, da}.

n0 + n2 = 3: If no Pi has length 1, da is not a forbidden weight for y. Also, if n3 ≥ 1 then there is an
edge incident to y with weight b, and w(y) 6= da. In either case there is a choice of weightings so that
w(y) 6∈ {2b, a+ b, 2a}.

So, assume that m1 = 1 and n3 = 0. If the initial weighting fails then we must have

{2b, a+ b, 2a, da} = {(d− 3)a+ 3b, (d− 2)a+ 2b, (d− 1)a+ b, da}

which implies that b = −(d − 3)a and d ≥ 4. The fact that |a| ≥ |b| gives that d = 4, implying n1 = 1
and b = −a. We weight all edges explicitly. The single edge on the path of length 1 receives weight a.
If n0 = 3 then weight the edges of one even path a, a, . . . ,−a,−a and the other two a,−a, . . . ,−a, a.
If n0 = 2 and n2 = 1 weight the edges of the paths of length 0 mod 4 with a, a, . . . ,−a,−a and the
other even path with a, a, . . . , a, a. If n0 = 1 and n2 = 2 weight the edges of the path of length 0 mod 4
with a,−a, . . . ,−a, a and the two other even paths with a,−a, . . . , a,−a. Finally if n0 = 0 and n2 = 3
weight the edges of all even paths with a,−a, . . . , a,−a. Each weighting gives a vertex-colouring for its
respective case.

n0 + n2 = 2: If n3 = 0 and n0 > 0 then assign weights to the edges of one path which is length 0 mod 4
so that the weights of the first and last edges are both a. Weight the edges of the other even path so that
the edge incident to x is weighted a and the edge incident to y is weighted b. If n3 = n0 = 0 but either
d > 3 or b 6= 0 then assign weights to the edges of both even paths so that their edges incident with x
are weighted a, one of the edges incident with y is weighted a and the other is weighted b. In both cases
weight the edges of the paths of length 1 mod 4 so the weights are, in order beginning with the edge
incident with x, a, a . . . b, a (if the path is a single edge, give it weight a). In the case when n3 = n0 = 0,
d = 3 and b = 0 weight the edges of the two even paths a, 0, 0, · · · a, a, 0 and the single odd path with
0, 0, a, a, · · · a, 0 (beginning with the edge incident with x in each case). The weighting given in each case
gives a proper vertex colouring.

Assume n3 ≥ 1. If n0 6= n2 then choose weightings for each Pi so that w(x) = da and each remaining
neighbour of y has accumulated weight a + b. Then w(y) = an0 + an1 + bn2 + bn3. Since n3 ≥ 1 we
have w(x) 6= w(y), so the only possible conflict is if w(y) = a+ b. In this case change both even Pi’s to
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their alternate weighting, maintaining w(x) = da and producing a new weight at y:

w′(y) = bn0 + an1 + an2 + bn3

= w(y) + (a− b)(n2 − n0)

= a+ b+ (a− b)(n2 − n0)

=

{
3a− b if n0 = 0, n2 = 2
3b− a if n0 = 2, n2 = 0

In either case w′(y) 6= a+b. If n0 = 2 then y has neighbours with weights 2b, and 3b−a 6= 2b. Similarly
if n2 = 2 then the weight at y avoids conflict with its neighbours with weight 2a.

If n0 = n2 = 1 we start again with choices from the basic strategy that leave all path-neighbours with
weight a+ b. We have w(x) = da 6= (n1 + 1)a+ (n3 + 1)b = w(y). Thus the only conflict can again be
if w(y) = a+ b or equivalently, an1 + bn3 = 0. In this case we weight the edges of Pi’s of lengths equiv-
alent to 0, 1, 2, and 3 mod 4 with {a, a, . . . , b, b}, {a, b, . . . , a, a}, {a, a, . . . , a, a} and {a, b, . . . , b, b}
respectively. We still have that w(y) = a+ b 6= da = w(x) and no neighbour of y has weight a+ b.

n0 + n2 = 1: If n3 = 0 then weight the edges of the even path so that the edge incident with x receives
weight a and the edge incident with y receives weight b. Weight the edges of the paths of length 1 mod 4
so the weights are, in order beginning with the edge incident with x, a, a . . . b, a (if the path is a single
edge, give it weight a). This weighting gives a proper vertex colouring. Assume n3 ≥ 1. Again, weight
the edges of each Pi so that w(x) = da and each neighbor of y (distinct from x) has accumulated weight
a + b. Since n3 ≥ 1 we have that w(x) = da 6= w(y). If w(y) 6= a + b, then w is an {a, b}-weight
colouring. Suppose w(y) = a+ b. Equivalently

(n0 + n1 − 1)a+ (n2 + n3 − 1)b = 0. (1)

Change the edge weights of the even length path to begin with b, a. Call this weighting w′. We now have
w′(x) = (d− 1)a+ b and w′(y) 6= a+ b. All neighbours of y still have weight a+ b, so the only possible
conflicts are between x and its neighbours. We reduce all potential conflicts to one of four cases, which
are solved explicitly.

If w′(x) = w′(y) then since w′(x) = (d− 1)a+ b, y is incident with precisely one edge with weight b.
Since n3 ≥ 1, the edge with weight b comes from a path of length 3 mod 4. This gives n0 = 0, n2 = 1
and n3 = 1 and then Equation 1 and |a| ≥ |b| gives either

• n0 = 0, n1 = 1, n2 = 1, n3 = 1 and b = 0 (case iii. below).

• n0 = 0, n1 = 2, n2 = 1, n3 = 1 and b = −a (case iv. below).

The neighbours of x have accumulated weights either a+ b or 2a. If w(x) = (d−1)a+ b = a+ b then
this implies that d = 2 but the hypotheses of the theorem include d ≥ 3. If w(x) = (d − 1)a + b = 2a
then b = −(d− 3)a. The fact that d ≥ 3 and |a| ≥ |b| now give either

• n0 = 1, n1 = 0, n2 = 0, n3 = 2 and b = 0 which is dealt with in case i. below.

• n0 = 1, n1 = 1, n2 = 0, n3 = 2 and b = −a which is dealt with in case ii. below.

• n0 = 0, n1 = 1, n2 = 1, n3 = 1 and b = 0 which is dealt with in case iii. below.
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• n0 = 0, n1 = 2, n2 = 1, n3 = 1 and b = −a which is dealt with in case iv. below.

case i. In this case x and y are not adjacent. Weight the edges of the path of length equivalent to 0 mod 4
with 0, 0, . . . , a, a and the two odd paths with a, 0, . . . , 0, 0.
case ii. In this case x and y are not adjacent. Weight the edges of the paths of lengths equivalent to 0 mod
4, 1 mod 4 and 3 mod 4 with −a,−a, . . . , a, a, a,−a, . . . , a, a and a,−a, . . . ,−a,−a respectively.
case iii. In this case x and y may be adjacent. Weight the edges of the paths of lengths equivalent to
1 mod 4, 2 mod 4 and 3 mod 4 with a, a, . . . , 0, a, 0, 0, . . . , 0, 0 and 0, 0, . . . , 0, a respectively.
case iv. In this case x and y may be adjacent. Weight the edges of the paths of lengths equivalent to 1 mod
4, 2 mod 4 and 3 mod 4 with a,−a, . . . , a, a, −a,−a, . . . ,−a,−a and a,−a, . . . ,−a,−a respectively.

Each of these edge-weightings gives a proper vertex colouring.

n0 + n2 = 0: Every weighting of the paths Pi which gives w(x) = da must give w(y) = an1 + bn3. If
m1 = 1 then, since our graph is not Θ(1,4k2+1,...,4kd+1), we have n3 ≥ 1 and thus w(x) 6= w(y). Suppose
m 6= 1. For each Pi we have two choices for y’s neighbour. Each choice leaves w(y) constant. Thus there
is a choice for each path which gives an edge-weighting vertex-colouring. 2

3 Bipartite graphs
We begin the section by noting that the property of being {a, b}-weight colourable is not one that is
inherited by subgraphs, nor is the property of being non-{a, b}-weight colourable. For example, the graph
consisting ofK4 with a leaf attached is {1, 2}-weight colourable, howeverK4 is not {a, b}-colourable for
any choice of a and b. Similarly K4 contains the subgraph C4 which is 2-weight colourable.

We can, however, characterize the minimal graphs with respect to subgraph containment in the class
of graph which are not {a, b}-weight colourable for many pairs {a, b} (in particular, {1, 2}). In Theorem
3.9 we establish that any graph which is not {a, b}-weight colourable must contain C2k+1 or C4k+2 as a
subgraph for some positive integer k.

Definition 3.1 A graph G is round if every cycle of G has length 0 mod 4.

The class of round graphs is much richer than merely those obtained by taking a graph and subdividing
each edge into a path of length 4. For example, Θ(2,2,2)

∼= K2,3 is a round graph which is not obtained in
this way.

The following lemma establishes a useful subgraph condition of round graphs which we will use in our
study of the {a, b}-weight colourability of round graphs.

Proposition 3.2 If G is a round graph and Θ(i,j,k) is a subgraph of G, then i, j and k are even and
i ≡ j ≡ k (mod 4).

Proof: Let Θ(i,j,k) be a subgraph of G and let Pi, Pj and Pk be the corresponding paths of length i, j and
k respectively. Since G is round, i+ j ≡ i+ k ≡ j + k ≡ 0 (mod 4). The result follows. 2

Before proceeding with our results on bipartite graphs we present the following definition which we
adopt throughout this section (and this section only). In any {a, b}-edge-weighting of a graph, the
weighted degree of every vertex is of the form ra + sb for some nonnegative integers r, s. We will
call a weighted vertex even (odd) if its weighted degree is ra+ sb with r even (odd). Note that the parity
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of a weighted vertex does not necessarily refer to the parity of its weight. However, by Proposition 2.1,
if a and b are not independent over Q then we will assume that they are relatively prime integers, and so
we will assume that a is an odd integer in this case. If b is even, which will be the case in a number of the
following results, then the parity of a weighted vertex does coincide with the parity of its weight.

Since a number of our arguments rely on this notion of parity, we often exclude those pairs of numbers
whose ratio may be reduced to a ratio of odd integers. We define the sets:

E =

{
{a, b}

∣∣∣∣ ab =
p

q
, p, q odd integers

}
N =

{
{a, b}

∣∣∣∣ ab =
p

q
, p, q ∈ Z, pq ≤ 0

}
We have already seen examples of bipartite graphs which are 2-weight colourable (C4k for any k ≥ 1,

bipartite theta graphs except Θ(1,4k2+1,...,4kd+1)) and some which are not (C4k+2 for any k ≥ 1). From
these examples, we note that a bipartite graph G with both parts of odd size is not necessarily {a, b}-
weight colourable. However, if G has one part of even size, we are able to prove G is {a, b}-weight
colourable for particular values of a and b.

Theorem 3.3 Let a, b ∈ R be such that {a, b} /∈ E . If G is a connected bipartite graph with at least one
part being of even size, then G is {a, b}-weight colourable.

Proof: Let V (G) = X ∪ Y be a bipartition of the vertices of G with |X| even. By Corollary 2.2 and
since {a, b} /∈ E , we may assume that a is an odd integer and b is an even integer. We assign the weight
b to each edge of G. Clearly v is even for each v ∈ V (G). Let V (X) = {x1, x2 . . . x2k} and let Pi be
an x2i−1x2i-path in G. By changing every edge weight along P1 we only change the parity of x1 and x2.
By repeating this process for each Pi we have that every vertex of X has odd parity and every vertex of
Y has even parity.

Call the resulting edge-weighting w. Suppose that w is not an {a, b}-weight colouring. Then there are
adjacent vertices x and y such that w(x) = w(y). Thus there exist integers r, r′, s, s′ such w(x) = ra+sb
where r is odd, w(y) = r′a + s′b where r′ is even, and ra + sb = r′a + s′b. If a and b are linearly
independent over Q, we must have r = r′, a contradiction. Hence b = (p/q)a for some p, q ∈ Z with
gcd(p, q) = 1. Thus rq + sp = r′q + s′p. Since r is odd and r′ is even, p even implies q must be even, a
contradiction. Hence p is odd. Similarly, q is odd. Therefore, b/a = p/q with p, q odd, contradicting our
choice of a and b. Thus w is an {a, b}-weight colouring of G. 2

Corollary 3.4 Let a, b ∈ R be such that {a, b} /∈ E∪N . LetG 6= K2 be a connected bipartite graph with
a vertex of degree 1. ThenG is {a, b}-weight colourable. In particular, trees are {a, b}-weight colourable.

Proof: Let V (G) = X ∪ Y be a bipartition of the vertices of G. Let x ∈ X be a vertex of degree 1 and
let y ∈ Y be its neighbour. If |X| or |Y | is even, then G is {a, b}-weight colourable by Theorem 3.3.
If |X| is odd, then G − x has an {a, b}-weight colouring by Theorem 3.3, say w′, such that vertices in
X \ {x} are odd and vertices in Y are even. By assigning b to the edge xy we maintain the parity of all
the vertices. Also, since {a, b} /∈ N we have w′(y) 6= 0 and so x and y will receive different weights,
thus giving an {a, b}-weight colouring of G. 2
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Theorem 3.5 Let a, b ∈ R be such that {a, b} /∈ E ∪ N . Let G be a connected bipartite graph with
a thread of even length P and let U be the internal vertices of P . If G − U is connected then G is
{a, b}-weight colourable.

Proof: We may assume that a is a positive odd integer and b is a positive even integer. If X ∪ Y is the
bipartition of V (G) and either |X| or |Y | is even, then G is {a, b}-weight colourable by Theorem 3.3.
Assume both parts of G are of odd size. Let x and y be the ends of P . We first assume that x and y are
distinct. By Lemma 2.8, we may assume that P is a path of length either 2 or 4.

Consider the case that P is of length 2, say P = xvy. Let G′ be the bipartite graph obtained from G by
deleting v and adding two leaves, v1 adjacent to x and v2 adjacent to y. NowG′ is connected and bipartite
with an even side, where v1 and v2 both belong to the even side. Theorem 3.3 gives an {a, b}-weight
colouring of G′, say w′, so that v1 and v2 are both odd vertices. Hence xv1 and yv2 must both receive
a as their weight. Let w be an {a, b}-edge-weighting of G, where w(xv) = w′(xv1) = a, w(yv) =
w′(yv2) = a and w(e) = w′(e) for all other edges e ∈ E(G). If w is not an {a, b}-weight colouring of
G, then either w(x) = 2a or w(y) = 2a. Without loss of generality, suppose w(x) = ra + sb = 2a (a
similar argument will hold for y). Since w(xv) = a and r even, we have r ≥ 2. If r = 2, then sb = 0
which implies s = 0 or equivalently degG(x) = 2, a contradiction. If r ≥ 3, then sb < 0 which gives
b < 0, a contradiction. Thus w is an {a, b}-weight colouring of G.

Suppose |P | = 4. Let P = xv1v2v3y and let G′ = G− v2. Now G′ is bipartite with an even side X ′,
and x, y ∈ X ′. Theorem 3.3 gives an {a, b}-weight colouring of G′, say w′, so that v1 and v3 are both
even vertices. Hence xv1 and yv3 must both receive b as their weight. Let w be an {a, b}-edge-weighting
of G, where w(v1v2) = w(v2v3) = a and w(e) = w′(e) for all other edges e ∈ E(G). If w is not an
{a, b}-weight colouring ofG, then eitherw(x) = a+b orw(y) = a+b. Supposew(x) = ra+sb = a+b.
Then (r − 1)a = −(s − 1)b, and thus r is odd. Again, we have that a and b are positive integers. Thus
either r − 1 < 0 or s − 1 < 0. However, since w(xv1) = b, we have s 6= 0, and since r is odd, r 6= 0.
Thus w is an {a, b}-weight colouring of G.

Now, suppose x and y are not distinct (call this vertex x). Then P is a cycle which is an end block of G
and x is a cut vertex of G. Let z1 and z2 be the neighbours of x in P . Since G′ = G− U is a connected
bipartite graph with one part having even size, then by Theorem 3.3 there is an {a, b}-weight colouring of
G′, say w′. We give an edge weighting w′′ of P as follows:

• if P has length 2 (mod 4), then by Proposition 2.12 we may define an {a, b}-weight colouring of
P , w′′, so that w′′(z1) = w′′(x) = w′′(z2) = 2a and P is properly coloured elsewhere;

• if P has length 0 (mod 4), then by Proposition 2.9 we may define an {a, b}-weight colouring of
P , w′′, so that w′′(x) is the larger of 2a and 2b and P is properly coloured.

Let w be the weighting obtained by combining w′ and w′′. Then w(x) > w(z1), w(z2) and x has the
same parity under w as under w′. Hence the weight of x is distinct from its neighbours in G. Since all
other vertices are properly coloured by w′ or w′′, w gives an {a, b}-weight colouring of G. 2

Theorem 3.6 IfG is a 2-connected round graph which is not a cycle thenG contains at least 2 even ears.

Proof:
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We first claim that G contains no proper 2-connected subgraph which contains all even ears of G.
Toward a contradiction suppose H is a 2-connected maximal proper subgraph of G that contains all even
ears of G. There exist two vertices of H , say x and y, which are connected by a path P such that
H ∩ P = {x, y}. Since H is 2-connected, there are also 2 edge disjoint paths P ′ and P ′′ in H between x
and y. Thus P ∪ P ′ ∪ P ′′ is a theta graph, and by Lemma 3.2 P must be of even length. Since H already
contains all even ears of G, H ′ = H ∪ P must be a proper subgraph of G but H ′ is also 2-connected
which contradicts the maximality of H .

Now, if G has no even ear, then any cycle of G is a 2-connected subgraph containing all the even ears
and this is a contradiction as G is not a cycle. If G has only one ear, let T be the ear and let x and y
be the two ends of T . Then there are 2 edge disjoint paths connecting x and y, one of which must be
edge disjoint from T . This path together with T forms a cycle that contains all the even ears of G, a
contradiction. 2

Corollary 3.7 If G is a round graph and all threads of G are odd, then G has at least two leaves.

We are now able to prove that round graphs can be edge-weight vertex-coloured with most sets of size
2.

Theorem 3.8 Every round graph is {a, b}-weight colourable for {a, b} /∈ E ∪ N .

Proof: Let G be a round graph. Let B be an end block with vertex of attachment v. If B is isomorphic to
K2, then G is a bipartite graph with a leaf and thus is {a, b}-weight colourable by Corollary 3.4. If B is
a cycle, then B is an even thread and G is {a, b}-weight colourable by Theorem 3.5. Otherwise, if B is a
2-connected graph which is not a cycle, then by Theorem 3.6, B has at least two even ears and thus B has
at least one even ear, say P , which does not contain v as an internal vertex. Let U be the internal vertices
of P . Since G− U is connected, G is {a, b}-weight colourable by Theorem 3.5. 2

Theorem 3.8, together with Proposition 2.9, gives a class of minimal subgraphs with respect to contain-
ment which cannot be {a, b}-weight coloured for the pairs {a, b} on which we have focused.

Corollary 3.9 Let a and b be real numbers such that {a, b} /∈ E ∪ N . Any graph which is not {a, b}-
weight colourable must contain a cycle of length 1, 2 or 3 mod 4.

We end this section with the following problem.

Problem 3 Is it true that all bipartite graphs except C4k+2 and Θ(1,4k1+1,4k2+1,...,4kd+1) are 2-weight
colourable?

4 More families of graphs with determined 2-weight colourability
We have given a number of examples of {a, b}-weight colourable graphs for values of a and b subject
to particular restrictions. However we have seen few examples of graphs for which a and b can be any
distinct real numbers. We note that the Petersen graph provides such an example of a 2-weight colourable
graph. One such edge-weighting is given in Figure 1. By Proposition 2.3, note that any 2-weight colouring
of the Petersen graph gives a 3-colouring of it, which is also an optimal proper vertex colouring.

In the rest of this section we describe more families of 2-weight colourable graphs as well as a class
of nonbipartite graphs which are {a, b}-weight colourable when ab > 0. In particular we show that all
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Fig. 1: An {a, b}-weight colouring of the Petersen graph. Bold edges are to receive weight b.

unicyclic graphs except cycles of length 1, 2, 3 mod 4 are 2-weight colourable. We also provide a number
of results on Cartesian products of graphs. Finally, we explore techniques for constructing graphs which
do not admit {a, b}-weight colourings for any choice of a and b.

We begin with our result on unicyclic graphs.

Theorem 4.1 Every connected unicyclic graph except C2k+1 and C4m+2 is {a, b}-weight colourable,
where a and b are real numbers with ab > 0.

Proof: We may assume that 0 < a < b. By contradiction, let G be the smallest counterexample to our
claim. Let C be the only cycle of G. We first note that by Lemma 2.6, we may assume that every vertex
of G is either on C or is adjacent to a vertex of C. We may also assume that every vertex of G has degree
at most 3. Next, we claim that there are at least two vertices of degree at least 3 on C. If not, let v be
the only vertex of degree at least 3 on C. Let x and y be the neighbours of v on C. It is easy to find an
edge-weighting w of C which yields a proper colouring on C − v and w(v) ≥ w(x), w(y). By assigning
b to the other edge incident with v, we get an {a, b}-weight colouring of G, a contradiction.

Next, we claim that G has at most one ear of length at least 2. If not, then we choose some maximal
path of degree 3 vertices on C, x1, . . . , xk, and remove all leaves of G adjacent to those vertices. Call
this subgraph G′. By minimality of our choice of G, we can assign an {a, b}-weight colouring w′ to
G′. Let w be the weighting of E(G) given by w(e) = w′(e) if e ∈ E(G′) and w(e) = b otherwise.
The only possible conflicts are between x1 and its neighbour on C which is not x2, say y (or, similarly,
between xk and it’s neighbour on C which is not xk−1). However, since w(x1) ≥ a + b + w(x1y) and
w(y) ≤ w(x1y) + b (similar for xk), w is an {a, b}-weight colouring of G which contradicts our choice
of G.

If G has exactly one ear of length at least 2, let e = rs and e′ = r′s′ be the two edges that have exactly
one endpoint of degree 2. Specifically, let deg(r) = deg(r′) = 2, deg(s) = deg(s′) = 3. Note that r and
r′ need not be distinct, but, since there are at least 2 vertices on C of degree 3, s and s′ are distinct. We
construct an {a, b}-weight colouring of G based on the length of C mod 4.

• Suppose |C| is odd. By Proposition 2.10, C has an {a, b}-edge weighting w′ which gives a proper
vertex colouring except across rs. Let w(e) = w′(e) if e ∈ E(C). If w′(r′) − w′(s′) = a, let
w(e) = b for all e ∈ E(G) \ E(C). Otherwise, let w(e) = a for all e ∈ E(G) \ E(C). Clearly
each leaf’s neighbour has a weight strictly greater than its own. Since w′ gives a proper colouring
of C except for r and s, the only adjacent vertices of G which might not be properly coloured are r
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and s or r′ and s′. However, our choice of weights for the leaves of G guarantees that r, s, r′, s′ are
properly coloured as well. Thus w is an {a, b}-weight colouring of G.

• Suppose |C| ≡ 0 (mod 4). By Proposition 2.9, C has an {a, b}-weight colouring w′ such that
w(r) = 2a and w(s) = a+ b. Let w(e) = w′(e) if e ∈ E(C). If w′(r′)−w′(s′) = a, let w(e) = b
for all e ∈ E(G)\E(C). Otherwise, let w(e) = a for all e ∈ E(G)\E(C). By the same argument
as above, w is an {a, b}-weight colouring of G.

• Suppose |C| ≡ 2 (mod 4). Let t be the other neighbour of s on C and let t′ be the other neighbour
of r′ on C. By Proposition 2.11, there is an {a, b}-edge weighting such that all vertices are properly
coloured except r, s and t, and such that w(t′r′) = w(r′s′) = a. Let w(e) = w′(e) for all e ∈
E(C). Let f be the edge between s and its leaf, and letw(f) = a. For each e ∈ E(G)\E(C)\{f},
let w(e) = b. The only possible improperly coloured pairs of vertices are r and s, s and t or r′ and
s′. However,

w(r) = w′(r) = w′(s) < w(s)

w(s) = w′(s) + a = w′(t) + a < w′(t) + b = w(t)

w(r′) = 2a < a+ 2b = w(s′)

and so w is an {a, b}-weight colouring of G.

The only remaining case is that every vertex of C has degree 3. If |C| is even, assign the same weight
to all the edges on the cycle and alternating weights to the leaf edges. The reader can verify that a solution
for the cases when |C| = 3 or |C| = 5 exists. Each of these cases can be extended to larger odd cycle by
making the replacement indicated in Figure 2. Note that the variables ¯̀and n̄ refer to the weights different
from ` and n, respectively.

`

m p

` n q

m m m m m p

` `n n n q

Fig. 2: Replacement operation to expand 2-weight colourings to larger cycles.

Thus, no minimal counterexample G exists. 2

Proposition 4.2 For n ≥ 4, the graph K2 2Kn is 2-weight colourable.

Proof: Let Kn and K ′n be the two copies of the complete graph. Denote the vertices of Kn and K ′n,
respectively by

{u1, u2, . . . , ubn/2c, vbn/2c, vbn/2c+1, . . . , vn−2, vn−1},
{u′1, u′2, . . . , u′bn/2c, v

′
bn/2c, v

′
bn/2c+1, . . . , v

′
n−2, v

′
n−1}.



Vertex-colouring edge-weightings with two edge weights 15

Let p be a derangement (permutation with no fixed points) of {1, bn/2c} and π be a derangement of
{bn/2c, n − 1}. Let ui be adjacent to u′p(i) for all 1 ≤ i ≤ bn/2c and vi be adjacent to v′π(i) for
bn/2c ≤ i ≤ n− 1.

Since the graph is n-regular, if adjacent vertices have distinct weights then they have distinct numbers
of incident edges having weight b. Using Lemma 2.5, we may weight the edges of Kn and K ′n so that the
subscript of the vertex is precisely equal to the number of edges weighted b incident to that edge in Kn.
Label uiu′p(i) with a for all 1 ≤ i ≤ bn/2c and weight viv′π(i) with b for bn/2c ≤ i ≤ n − 1. Then any
two vertices that are adjacent have a distinct number of incident edges weighted b and thus K2 2Kn is
2-weight colourable. 2

Figure 3 gives an illustration of this construction.

Kn

u1

v[n
2
]

v′
[n
2
]

Kn

vn−1

u′1 · · · · · · v′n−1
u′
[n
2
]

· · ·
u[n

2
]

· · ·

Fig. 3: An {a, b}-weight colouring of K2 2Kn. Bold edges are to receive weight b.

Proposition 4.3 The graph K2 2Cn is 2-weight colourable if and only if n ≥ 4 and n 6= 5.

Proof: If n is even, then give every edge of one copy of Cn weight a and every edge of the other copy
weight b. By alternating the weights of the images of K2 between a and b along the cycles, we have the
desired {a, b}-weight colouring.

An example of an {a, b}-weight colouring of K2 2C7 is given in Figure 4. It can be extended to an
{a, b}-weight colouring of K2 2C9 by replacing the left subgraph in Figure 5 with the right graph. Note
that the right subgraph contains the left one, and thus this operation may be repeated as many times as
needed to give an {a, b}-weight colouring for any K2 2C2k+1(k ≥ 3) The reader may verify that no
{a, b}-weight colouring of K2 2C3 or K2 2C5 exists. 2

Theorem 4.4 Let G be a graph and H be a regular bipartite graph. If G2K2 is 2-weight colourable,
then G2H is 2-weight colourable.

Proof: Let w be an {a, b}-weight colouring of G2K2. Denote the two copies of G by G1 and G2 and
denote the vertices of K2 by t1 and t2. Since H is regular (say d-regular) and bipartite, Hall’s Theorem
guarantees a perfect matching M of H . Let X and Y be the parts of V (H).
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Fig. 4: An {a, b}-weight colouring of K2 2C7. Bold edges are to receive weight b.

Fig. 5: Replacement operation for obtaining an {a, b}-weight colouring of K2 2C2k+1 for k ≥ 4.

Define an edge-weighting of G2H as follows. For each edge e = xy ∈ M where x ∈ X and
y ∈ Y , weight the edges of the subgraph G2 e by w so that each vertex (uG, x) ∈ V (G2H) has weight
w(uG, t1) and (uG, y) ∈ V (G2H) has weight w(uG, t2). Assign every other edge of G2H weight a.
Call this weighting φ.

We have that φ(u) = w(uG, t1) + (d− 1)a if uH ∈ X and φ(u) = w(uG, t2) + (d− 1)a if uH ∈ Y .
Two vertices are adjacent if either theirH-coordinates agree and they are adjacent in a copy ofG or if their
G-coordinates agree and they are adjacent in a copy of H . In the former case, their weights are distinct
under φ since they are distinct under w. In the latter, consider two adjacent vertices u = (uG, uH) and
u′ = (uG, u

′
H) where uH ∈ X,u′H ∈ Y . Then, w(uG, t1) 6= w(uG, t2) by choice of w, which implies

that φ(u) 6= φ(u′). Thus φ is an {a, b}-weight colouring of G2H . 2

Corollary 4.5 IfG andH are regular bipartite graphs, then the following graphs are 2-weight colourable:

(i) Kn2H , if n ≥ 4

(ii) Cn2H if n ≥ 4, n 6= 5

(iii) G2H
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Proof: Applying Theorem 4.4 to Propositions 4.2 and 4.3 immediately gives results (i) and (ii) respec-
tively. For (iii), since K2 2K2

∼= C4, K2 2K2 is 2-weight colourable by Proposition 2.9. By Theo-
rem 4.4, K2 2H is 2-weight colourable; applying Theorem 4.4 again gives us that G2H is 2-weight
colourable. 2

In order to construct non-2-weight colourable graphs below, we make use of a class of “gadget” graphs.
These gadgets are themselves 2-weight colourable, but they have the property that in any of their 2-weight
colourings, certain edges receive a predetermined weight.

Define the graph K̂n to be the graph obtained from Kn by subdividing one edge exactly once.

Proposition 4.6 For n ≥ 4, the graph K̂n is 2-weight colourable. Moreover, in any 2-weight colouring
of K̂n, the edges incident to its degree 2 vertex must receive the same colour.

Proof: Let x be the vertex of K̂n of degree 2 and let u, v be its neighbours. An {a, b}-weight colouring
of K̂4 is given in Figure 6. So assume n ≥ 5. Let Kn be obtained by adding the edge uv to K̂n − x.
By Lemma 2.5, there exists an edge-weighting w of Kn such that all the vertices have distinct weighted
degrees except for u and v. Moreover, w(u) = w(v) = ra+(n−1−r)b, where r ∈ {bn/2c , dn/2e−1}.
Assign the weight w(uv) from Kn to the edges xu and xv in K̂n. Note that w is an {a, b}-weight
colouring as long as w(u) = w(v) 6= w(x). We have w(x) ∈ {2a, 2b}. Since a and b may be swapped in
Lemma 2.5, we assume that w(x) = 2a. If w(u) 6= 2a, we are done. Suppose w(u) = 2a. We consider
two cases:

• If n is odd, then the edge weighting w′ given by swapping every edge’s weight gives w′(u) =
w(u) = 2a 6= 2b = w′(x).

• If n is even then, by the construction of the weighting in Lemma 2.5, w(u) = n
2 a+ (n2 − 1)b. So,

2a = n
2 (a+b)−b. If the edge weighting w′ given by swapping every edge’s weight gives a conflict

between u and x, then 2b = n
2 (a+ b)− a. Together, these imply that a = b, a contradiction.

Thus K̂n admits an {a, b}-weight colouring.
To prove the second part, toward a contradiction, suppose K̂n is the smallest counterexample for which

there exists an {a, b}-weight colouring w such that w(xu) 6= w(xv). By inspection, we may check that
K̂4 does not admit such edge-weighting. So assume n ≥ 5. Note that there exists no vertex y 6= u, v such
that w(y) ∈ {(n−1)a, (n−1)b}, otherwise K̂n−y would be a smaller counterexample. Therefore, since
w induces a vertex colouring and all the weighted degrees (except for x) are of the form ra+ (n−1− r)b
for some 0 ≤ r ≤ n− 1, we must have w(u), w(v) ∈ {(n− 1)a, (n− 1)b}. But then by removing u, v,
and x we get an {a, b}-weight colouring of Kn−2, a contradiction to Corollary 2.4. 2

Corollary 4.7 Given a graphG, letG′ be obtained from identifying a vertex ofG with the degree 2 vertex
of K̂n. Then in any 2-weight colouring of G′, edges in K̂n incident to its degree 2 vertex must receive
same colour.

Proof: Since the proof of Proposition 4.6 did not depend in any way on the accumulated weight at vertex
x, then regardless of graph joined to K̂n at x, the two edges incident with x in K̂n must still receive the
same weight. 2
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An example is given on the left of Figure 6. In the case G = K2 and n = 4, the weight of the leaf’s
edge is forced to be equal to that of its incident edges; this is another useful gadget. It is shown on the
right of Figure 6.

Fig. 6: The graphs K̂4 and K̂4 with a leaf are 2-weight colourable. Bold edges represent one weight-class.

We use Proposition 4.6, which established the weight colourability of K̂n, to construct the following
examples of non 2-weight colourable graphs.

Example 4.8 The following graphs cannot be 2-weight coloured:

(i) Join two copies of K̂4 by an edge attached at their vertices of degree 2.

(ii) Join 2n+ 1 copies of K̂4 to a C2n+1 by an edge attaching the degree 2 vertex in each copy of K̂4 to
a distinct cycle vertex.

To see why the graph defined in (ii), which we denote H , cannot be S-weight coloured for any set S of
size 2, consider the accumulated weight at one of the cycle vertices, say v. Since H is 3-regular graph,
w(v) ∈ {3a, 2a+b, a+2b, 3b}. Ifw(v) = 3a, then the noncycle edge, e, incident with v must have weight
a and, as shown in Figure 6, so must the two edges in the copy of K̂4 joined to v by an edge. Thus both
endpoints of e would have weight 3a. A similar argument shows that w(v) 6= 3b. Thus the only possible
accumulated weights on cycle vertices are 2a + b and 2b + a. Since an odd cycle cannot be properly
2-coloured, we see that H cannot be 2-weight coloured.

Our next family of gadget graphs are described below.

Proposition 4.9 Let 0 ≤ a ∈ Z and d | a. Let H be a graph and G be a graph obtained from identifying
a vertex u of H with a vertex of a Kn (all other vertices of H and Kn being disjoint). If

degH(u) <

(
d

a+ d

)⌊
n− 1

2

⌋
,

then G is not {a, a+ d}-weight colourable. Furthermore, if

degH(u) =

(
d

a+ d

)⌊
n− 1

2

⌋
,

then in any {a, a+ d}-weight colouring of G, all edges in H incident to u must receive weight a+ d.

Proof: We first prove the statement for d = 1. Toward a contradiction, suppose w is an {a, a + 1}-
weighting colouring of G. Every vertex of Kn − u has weighted degree ra + (n − 1 − r)(a + 1) =
(n− 1)(a+ 1)− r for some 0 ≤ r ≤ n− 1 and both of the weights (n− 1)a and (n− 1)(a+ 1) cannot
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appear simultaneously on Kn − u. If w(u) < (n− 1)(a+ 1) then there are only n− 1 colours available
for the vertices of Kn, a contradiction. So w(u) ≥ (n− 1)(a+ 1).

Let w|Kn be the edge-weighting of Kn induced by w. By Corollary 2.4, Kn is not {a, a + 1}-edge-
weight colourable. Thus, there must be exactly two vertices of Kn with the same weight given by w|Kn

and u must be one such vertex. By Lemma 2.5, we get w|Kn
(u) = ra + (n − 1 − r)(a + 1) = (n −

1)(a+ 1)− r, where r ∈ {bn/2c , dn/2e − 1}. Note that r ≥ b(n− 1)/2c. If u is incident with s edges
of weight a in H , then we have

(n− 1)(a+ 1) ≤ w(u) = ra+ (n− 1− r)(a+ 1) + sa+ (degH(u)− s)(a+ 1),

which simplifies to degH(u) ≥ ( 1
a+1 )(r + s). Hence

degH(u) ≥
(

1

a+ 1

)(⌊
n− 1

2

⌋
+ s

)
.

This is a contradiction since degH(u) < ( 1
a+1 )

⌊
n−1
2

⌋
. Also, if degH(u) = ( 1

a+1 )
⌊
n−1
2

⌋
then we must

have s = 0, proving the second claim.
Now, let d be any positive divisor of a. By Proposition 2.1, G has an {a, a + d}-weight colouring

if and only if it has a
{
a
d ,

a
d + 1

}
-weight colouring. If degH(u) <

(
1

a/d+1

) ⌊
n−1
2

⌋
then G has no{

a
d ,

a
d + 1

}
-weight colouring by the above argument. Hence, if degH(u) < ( d

a+d )
⌊
n−1
2

⌋
then G has no

{a, a+ d}-weight colouring. The second result follows similarly. 2

We may use Proposition 4.9 to construct many graphs which are not {a, a+ 1}-weight colourable and
so, in particular, are not {1, 2}-weight colourable. In fact, if H is any graph and u any vertex of H , then
there is an n large enough so that attaching Kn to u (and only to u) gives a graph which is not {a, a+ 1}-
weight colourable. We can also use the equality condition to construct graphs with no {a, a+ 1}-weight
colouring (for a specific a). For example, the graph obtained by joining two copies of Kn, n ≥ 5, with
a path of length 3, say e1, e2, e3, is not {a, a+ 1}-weight colourable for a = bn−12 c− 1 since the weights
of e1 and e3 are forced to be a+ 1, and thus the ends of e2 will receive the same weight.

We finish this section with a problem whose solution would be useful in the study of {1, 2, 3}-weight
colourable graphs.

Problem 4 Does there exist a graph which is either

• uniquely {1, 2, 3}-weight colourable (up to isomorphism), or

• {1, 2, 3}-weight colourable where any such colouring forces certain edges of G to receive a partic-
ular weight?

Moreover, does there exist a graph with either of these properties which maintains that property when it
is attached in some way to another graph?
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