Vertex-colouring edge-weightings with two edge weights

Mahdad Khatirinejad ${ }^{1 *} \quad$ Reza Naserasr ${ }^{2} \quad$ Mike Newman ${ }^{3 *}$
Ben Seamone ${ }^{2 \dagger} \quad$ Brett Stevens ${ }^{2 *}$
${ }^{1}$ Department of Communications and Networking, Aalto University, Finland
${ }^{2}$ School of Mathematics and Statistics, Carleton University, Canada
${ }^{3}$ Department of Mathematics, University of Ottawa, Canada

received $24^{\text {th }}$ July 2010, accepted $24^{\text {th }}$ November 2011.

An edge-weighting vertex colouring of a graph is an edge-weight assignment such that the accumulated weights at the vertices yields a proper vertex colouring. If such an assignment from a set S exists, we say the graph is S-weight colourable. It is conjectured that every graph with no isolated edge is $\{1,2,3\}$-weight colourable.

We explore the problem of classifying those graphs which are $\{1,2\}$-weight colourable. We establish that a number of classes of graphs are S-weight colourable for much more general sets S of size 2 . In particular, we show that any graph having only cycles of length $0 \bmod 4$ is S-weight colourable for most sets S of size 2 . As a consequence, we classify the minimal graphs which are not $\{1,2\}$-weight colourable with respect to subgraph containment. We also demonstrate techniques for constructing graphs which are not $\{1,2\}$-weight colourable.

Keywords: edge weighting, graph colouring

1 Introduction

Let G be a simple graph and S be a set of real numbers. An S-edge-weighting of G is an assignment $w: E(G) \rightarrow S$. Given an S-edge-weighting, the weighted degree of a vertex v, denoted $w(v)$, is the sum of weights of the edges incident with v. An S-edge-weighting gives a vertex colouring if the weighted degrees of adjacent vertices are different. If an S-edge-weighting vertex colouring w exists, we also call w an S-weight colouring and we say G is S-weight colourable. For a positive integer k, we say G has a k-weight colouring or G is k-weight colourable if it is S-weight colourable for every set S of size k. The most commonly studied sets S are those of the form $\{1, \ldots, k\}$.
Problem 1 Given a graph G with no isolated edges, find the minimum k such that G is $\{1, \ldots, k\}$-weight colourable.

[^0]It is not hard to verify that K_{4} with a single leaf attached is $\{1,2\}$-weight colourable but is not $\{0,1\}$ weight colourable. It follows that the S-weight colourability of a graph is not only dependent on the size of S but also on the particular elements of S. However, if a graph G is S-weight colourable then there exists an $i_{0}=i_{0}(G, S)$ such that for all $i>i_{0}$ the graph is also $\{s+i: s \in S\}$-weight colourable. One such value for i_{0}, though not necessarily the smallest, is $i_{0}=|S| \cdot \Delta(G) \cdot \max \{|s|: s \in S\}$, where $\Delta(G)$ is the maximum degree of G.

Let us start by considering the 2 -weight colourability of a simple class of graphs - paths. If a and b are non-zero real numbers, then every path of length at least 2 has an $\{a, b\}$-weight colouring. Assigning the edge weights $a, a, b, b, a, a, b, b, \ldots$, beginning with one leaf of the path, gives such a colouring. However, a path has a $\{0, a\}$-weight colouring if and only if it is not of length $1 \bmod 4$. The reader can easily check that paths of length 2,3 and 4 have a $\{0, a\}$-weight colouring. However, if we let $P=e_{1}, e_{2}, e_{3}, e_{4}, e_{5}$ be a path of length 5 (we omit vertex labels) then if $w\left(e_{2}\right)=0\left(\right.$ or $\left.w\left(e_{4}\right)=0\right)$ then the ends of $e_{1}\left(e_{5}\right)$ will have equal weight. Thus the only way to achieve a $\{0, a\}$-weight colouring of P is if $w\left(e_{2}\right)=w\left(e_{4}\right)=a$. However, this implies that the ends of e_{3} will have the same weight, and hence a $\{0, a\}$-weight colouring cannot exist. These examples easily extend to longer paths; the details are left to the reader.

In general, it is unknown how difficult it is to decide if a given graph admits a $\{1,2\}$-weight colouring, or more generally an $\{a, b\}$-weight colouring. As such, we present the following question:

Problem 2 Is it NP-complete to decide whether a given graph is 2-weight colourable?

Returning to Problem 13, we state the following conjecture, due to Karoński, Łuczak, and Thomason [KŁT04], which motivates most of the known results on the $\{1, \ldots, k\}$-weight colourability of graphs.
Conjecture 1.1 Every graph with no isolated edge is $\{1,2,3\}$-weight colourable.
Karoński et al. [KŁT04] showed that the Conjecture 1.1 is true for 3 -colourable graphs. They also proved that if S is any set of at least 183 real numbers which are linearly independent over the rational numbers then every graph with no isolated edge is S-weight colourable. Recently, Kalkowski et al. [KKP09] showed that every graph with no isolated edge is $\{1, \ldots, k\}$-weight colourable for $k=5$. This result is an improvement on the previous bounds on k established by Addario-Berry et al. ABDM ${ }^{+}$07], Addario-Berry et al. ABDR08], and Wang et al. [WY08], who obtained the bounds $k=30, k=16$, and $k=13$, respectively.

Our work in this paper is similarly motivated by Conjecture 1.1 . However, where most others have attempted to lower the best known value of k as described above, our focus is on establishing which graphs are $\{1,2\}$-weight colourable. Addario-Berry, Dalal and Reed ABDR08 showed that asymptotically almost every graph is $\{1,2\}$-weight colourable, however it is not known which ones are not. Chang et al and Lu et al ([|CLWY10], [LYZ10]) have made some progress in determining which classes of graphs are $\{1,2\}$-weight colourable, notably having shown that 3 -connected bipartite graphs are one such class. A complete classification of such graphs would determine those graphs for which $k=3$ is the smallest possible solution in Problem 1, and would reduce Conjecture 1.1 to just those graphs.

The results that follow are, for the most part, concerned with a more general problem than that of finding $\{1,2\}$-weight colourings, namely that of finding $\{a, b\}$-weight colourings for more general values of a and b. In such cases, the existence of a $\{1,2\}$-weight colouring follows as an unstated corollary. In Section 2 , we establish a wide range of basic graphs which admit $\{a, b\}$-weight colourings. We also establish classes of graphs which do not admit $\{a, b\}$-weight colourings, but which do admit an $\{a, b\}$-edge weighting which is almost a proper colouring. These results provide building blocks for our results on the weight
colourability of bipartite graphs in Section 3 and of other general classes of graphs, particularly direct products of graphs, in Section 4 . Of note, we show in Section 3 that if every cycle of G is of length $0 \bmod 4$, then G is $\{1,2\}$-weight colourable.

2 Building blocks: Weight colourings of basic graphs

We will use standard graph theory terminology; the reader may refer to [BM08] for clarification of any terms which are not specifically defined here.

The length of a path (walk) is defined to be the number of edges of the path (walk). A thread in a graph G is a walk connecting two vertices x and y, not necessarily distinct, such that the internal vertices are distinct from all others on the walk, all internal vertices have degree 2 in G, and $\operatorname{deg}(x), \operatorname{deg}(y) \geq 3$. If x and y are distinct, then the walk is in fact a path and in this case we may refer to the thread as an ear. If the condition that $\operatorname{deg}(x), \operatorname{deg}(y) \geq 3$ is changed to $\operatorname{deg}(x), \operatorname{deg}(y) \geq 2$ in either case, we have a subthread or subear respectively.

A cut vertex of a graph is one whose removal disconnects the graph. A graph is 2-connected if it has no cut vertex. A graph (not necessarily simple) is called separable if it can be decomposed into two nonempty subgraphs with exactly one vertex in common. A simple graph is separable if and only if it is not 2 -connected. A maximal nonseparable subgraph of G is a block of G. Note that a block is isomorphic either to K_{2} or to a 2-connected graph. An end block of G is a block which contains at most one cut vertex of G.

A graph is c-colourable if the vertices can be coloured with c colours so that adjacent vertices get different colours.
K_{n} and C_{n}, respectively, denote the complete graph and the cycle on n vertices. The Cartesian product of two graphs G and H, denoted by $G \square H$, is defined as the graph having vertex set $V(G) \times V(H)$ where two vertices $\left(u, u^{\prime}\right)$ and $\left(v, v^{\prime}\right)$ are adjacent if and only if either $u=v$ and u^{\prime} is adjacent to v^{\prime} in H or $u^{\prime}=v^{\prime}$ and u is adjacent to v in G.

We present a few simple observations.

Proposition 2.1 Let a, b, t be nonzero real numbers and G a graph. Then

(i) G is $\{a, b\}$-weight colourable if and only if G is $\{a t, b t\}$-weight colourable, and
(ii) if G is $\{a, b\}$-weight colourable then G is $\{p, q\}$-weight colourable for any nonzero $p, q \in \mathbb{R}$ which are linearly independent over \mathbb{Q}.

Proof: (i) This follows from the fact that $w(u) \neq w(v)$ if and only if $t \cdot w(u) \neq t \cdot w(v)$. (ii) Note that if two adjacent vertices receive distinct linear combinations of a and b as weights, then the coefficients of these linear combinations will suffice for any two linearly independent nonzero reals.

From Proposition 2.1 we deduce the following, adopting the convention that 0 and 1 are relatively prime integers:
Corollary 2.2 A graph G is 2-weight colourable if and only if G is $\{a, b\}$-weight colourable for every pair of relatively prime integers a and b.

Proposition 2.1 allows us to reduce our proofs of positive results on the existence of $\{a, b\}$-weight colourings of a graph to relatively prime integers. Results in which we show that G does not admit an $\{a, b\}$-weight colouring will not rely on such assumptions - we will prove them for all real a, b.

Proposition 2.3 If G is d-regular and $\{a, b\}$-weight colourable for a fixed choice of a and b then (i) it is d-colourable, and (ii) it is 2-weight colourable.

Proof: (i) The weighted degree of each vertex must be a number of the form $t a+(d-t) b$ for some $0 \leq t \leq d$, and a vertex of weighted degree $d a$ cannot be adjacent to a vertex of weighted degree $d b$. Thus putting the vertices of weighted degree $d a$ or $d b$ in the same colour class gives a d-colouring.
(ii) In an $\{a, b\}$-edge weighting of a d-regular graph, the accumulated weight at any vertex is in a one-to-one correspondence with the number of incident edges of weight a. Thus if one choice of a and b gives a vertex colouring, then any other choice of a and b will as well.

Corollary 2.4 If $\chi(G)=\Delta(G)+1$ or, equivalently (by Brooks theorem), if G is an odd cycle or a complete graph then G is not S-weight colourable for any set S of size 2 .

Even though the complete graph is not S-weight colourable for any set of size 2 , it has an S-edgeweighting that is very close to being an S-weight colouring. This specific weighting will be useful in constructing families of 2-weight colourable graphs and non-2-weight colourable graphs in Section 4.

Lemma 2.5 Given $n \geq 2$ and $a \neq b \in \mathbb{R}$, there is an $\{a, b\}$-edge-weighting of K_{n} such that the weighted degrees of all the vertices are distinct except for 2 of them. Furthermore, in any such $\{a, b\}$ -edge-weighting, the degree sequence of the subgraph induced by the edges of weight a (as well as the subgraph induced by the edges of weight b) is either

$$
\left(1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor-1,\left\lfloor\frac{n}{2}\right\rfloor,\left\lfloor\frac{n}{2}\right\rfloor,\left\lfloor\frac{n}{2}\right\rfloor+1, \ldots, n-2, n-1\right)
$$

or

$$
\left(0,1, \ldots,\left\lceil\frac{n}{2}\right\rceil-2,\left\lceil\frac{n}{2}\right\rceil-1,\left\lceil\frac{n}{2}\right\rceil-1,\left\lceil\frac{n}{2}\right\rceil, \ldots, n-3, n-2\right)
$$

Proof: We prove the first part with an explicit construction. Choose any two vertices and assign weight a to the edge joining them. Choose a new vertex and assign weight b to all the edges joining this vertex to the previous two vertices. Choose another vertex and assign weight a to all the edges joining this vertex to the previous three vertices. By repeating this process until all vertices are exhausted, we achieve the desired edge-weighting since the two vertices chosen first will have the same weight while the remainder of the graph is properly coloured. Note that we achieve the same result by swapping a and b in this argument.

We prove the second part of the lemma by induction on n. Suppose w is such an edge-weighting of K_{n} and let $w(u)=w(v)$. It is easy to verify the claim for $n=2$ and $n=3$. If $w(x) \notin\{(n-1) a,(n-1) b\}$ for every vertex x then $w(x)$ can only take $n-2$ values, a contradiction to the choice of w. If $w(u)=$ $w(v) \in\{(n-1) a,(n-1) b\}$ then by removing u and v, w induces an $\{a, b\}$-weight colouring of K_{n-2}, a contradiction to Corollary 2.4 Thus there exists a vertex $x \neq u, v$ such that $w(x) \in\{(n-1) a,(n-1) b\}$. The claim follows by induction on $K_{n}-x$.

The following technical lemmata will be useful for the rest of the paper, since they establish useful tools for finding edge-weighting vertex colourings of graphs with specific structural properties.

Lemma 2.6 Suppose G has a vertex v with a set of leaf neighbours L where $|L| \geq\lceil\operatorname{deg}(v) / 2\rceil$. Let $a \neq b$ be real numbers with $a b>0$. If $G \backslash L$ is $\{a, b\}$-weight colourable, then so is G.

Proof: As mentioned, Proposition 2.1 allows us to only consider $a, b \in \mathbb{Z}^{+}$. Suppose w is an $\{a, b\}$ weight colouring of $G \backslash L$. The possible extensions of w to G give exactly $|L|+1$ possible weights for v. Since v has at most $|L|$ neighbours in $G \backslash L$, in at least one of the extensions, the weighted degree of v is different from the weighted degrees of the neighbours of v in $G \backslash L$. The weighted degree of v is also different from the weighted degrees of the neighbours of v in L, since $a b>0$.

Corollary 2.7 Every tree with at least 3 vertices is $\{a, b\}$-weight colourable, where $a \neq b$ are real numbers with $a b>0$.

Proof: The statement holds for any star, $K_{1, n-1}$, since the assignment of a to all edges achieves the desired result. As such the result holds for $n=3$ since the unique tree on 3 vertices is a star. Let T be a tree on n vertices which is not a star and assume the result holds for any tree with fewer than n vertices. Every tree has a vertex v that has at least $\lceil\operatorname{deg}(v) / 2\rceil$ leaf neighbours. Since T is not a star, removing the leaf neighbours of v gives a subtree T^{\prime} on at least 3 vertices. By the induction hypothesis T^{\prime} has an $\{a, b\}$-weight colouring. By Lemma $2.6 . T$ does as well.

The following lemma establishes that we may contract long threads in a way that maintains weight colourability.

Lemma 2.8 Let G be a graph, $P=v_{0}, e_{1}, v_{1}, e_{2}, v_{2}, e_{3}, v_{3}, e_{4}, v_{4}, e_{5}, v_{5}$ be a subthread of G, and $a \neq b$ be any two real numbers. Let $G^{\prime}=G /\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ Then,
(i) If w is an $\{a, b\}$-weight colouring of G, then $w\left(e_{1}\right)=w\left(e_{5}\right) \neq w\left(e_{3}\right)$.
(ii) If G^{\prime} is $\{a, b\}$-weight colourable, then so is G.
(iii) If $\operatorname{deg}\left(v_{0}\right)=2$ or $\operatorname{deg}\left(v_{5}\right)=2$, then G is $\{a, b\}$-weight colourable if and only if G^{\prime} is $\{a, b\}$-weight colourable.

Proof: (i) If $w\left(e_{1}\right) \neq w\left(e_{5}\right)$ then either one of the two choices for $w\left(e_{3}\right)$ results in an improper colouring at e_{2} or e_{4}. Hence $w\left(e_{1}\right)=w\left(e_{5}\right)$ and $w\left(e_{3}\right)$ must be distinct.
(ii) For convenience, we still denote the vertex obtained from the contraction by v_{0}. Suppose w^{\prime} is an $\{a, b\}$-weight colouring of G^{\prime}. Then $w^{\prime}\left(v_{0}\right) \neq w^{\prime}\left(v_{5}\right)$. Without loss of generality assume $w^{\prime}\left(v_{0} v_{5}\right)=a$. Let $w(e)=w^{\prime}(e)$ for each $e \notin\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}, w\left(e_{1}\right)=w\left(e_{5}\right)=a$ and $w\left(e_{3}\right)=b$. There are two possibilities for the weights of e_{2} and e_{4}. Assigning $w\left(e_{2}\right)=a$ and $w\left(e_{4}\right)=b$ does not yield a proper vertex colouring of G if and only if either $w\left(v_{0}\right)=2 a$ or $w\left(v_{5}\right)=a+b$. Similarly, defining $w\left(e_{2}\right)=b$ and $w\left(e_{4}\right)=a$ does not yield a proper vertex colouring of G if and only if either $w\left(v_{0}\right)=a+b$ or $w\left(v_{5}\right)=2 a$. Suppose that neither weighting works. If the first possibility gives $w\left(v_{0}\right)=2 a$, then the second must give $w\left(v_{5}\right)=2 a$. If the first possibility gives $w\left(v_{5}\right)=a+b$, then the second gives $w\left(v_{0}\right)=a+b$. In either case $w\left(v_{0}\right)=w\left(v_{5}\right)$, a contradiction.
(iii) Assume $\operatorname{deg}\left(v_{0}\right)=2$ and let e_{0} be the other edge incident with v_{0}. Suppose w is an $\{a, b\}$-weight colouring of G. By (i) we have $w\left(e_{0}\right)=w\left(e_{4}\right)$ and $w\left(e_{1}\right)=w\left(e_{5}\right)$. Hence $w\left(v_{0}\right)=w\left(v_{4}\right) \neq w\left(v_{5}\right)$. Thus, by assigning the common weight of e_{1} and e_{5} to the edge $v_{0} v_{5}$, we get an $\{a, b\}$-weight colouring of G^{\prime}.

The degree condition on the ends of P in Lemma 2.8 (iii) cannot be dropped. For example, by taking G to be the path of length $5, a=1$, and $b=2$, Lemma 2.8 (iii) fails.

From this lemma we may deduce necessary and sufficient conditions for the existence of $\{a, b\}$-weight colourings of cycles.

Proposition 2.9 Let a and b be any distinct real numbers. Then C_{n} is $\{a, b\}$-weight colourable if and only if $n \equiv 0(\bmod 4)$.

In lieu of a proof, we simply note that, by Lemma 2.8 (iii), the proof of this proposition may be reduced to the cases C_{3}, C_{4}, C_{5} and C_{6}. The details are left to the reader. There are $\{a, b\}$-edge weightings of other cycles of length $4 k+1,4 k+2$ and $4 k+3$ which give vertex colourings with as few conflicts as possible. These results are largely technical, though not difficult to prove.
Proposition 2.10 Let a and b be any distinct real numbers. Then $C_{2 k+1}$ has an $\{a, b\}$-edge weighting w such that only one edge $e=u v$ has the property that $w(u)=w(v)$.

Proposition 2.11 Let a and b be any distinct real numbers. Then $C_{4 k+2}$ has an $\{a, b\}$-edge weighting w such that precisely two edges $e=u v$ and $e^{\prime}=u^{\prime} v^{\prime}$ have the property that $w(u)=w(v)$ and $w\left(u^{\prime}\right)=$ $w\left(v^{\prime}\right)$. Furthermore,

- the distance between e and e^{\prime} is even,
- e and é may be chosen to be any two edges at an even distance, and
- if f_{1} and f_{2} are the edges incident to e, then their weights are equal and can be chosen to be either a or b (similar for e^{\prime}).

We present a specific consequence of Proposition 2.11 which we will find useful.
Proposition 2.12 Let k be an integer, $k \geq 1$. Then $C_{4 k+2}$ has an $\{a, b\}$-edge-weighting such that three consecutive vertices have equal weight and the rest of the cycle is properly coloured. Furthermore, the edge-weighting can be chosen so that the weights of the four edges which contribute to the weights of those three vertices will all be a, all b, or alternate between a and b.

Let $\Theta_{\left(m_{1}, \ldots m_{d}\right)}, d \geq 3$, be the graph constructed from d internally disjoint paths between distinct vertices x and y, where the i-th path has of length m_{i}. For simplicity, we assume $m_{1} \leq m_{2} \leq \cdots \leq m_{d}$. Such graphs will be referred to as theta graphs. We present necessary and sufficient conditions for theta graphs to be 2-weight colourable.

Theorem 2.13 Let $d \geq 3$ and let a, b be real numbers. The graph $\Theta_{\left(m_{1}, m_{2}, \ldots, m_{d}\right)}$ is 2 -weight colourable if and only if it is not of the form $\Theta_{\left(1,4 k_{2}+1, \ldots, 4 k_{d}+1\right)}$.

Proof: Let x and y be the two vertices of degree greater than two, and let $\left\{P_{i} \mid 1 \leq i \leq d\right\}$ be the d internally disjoint paths between x and y.

Suppose w is an $\{a, b\}$-weight colouring of $\Theta_{\left(1,4 k_{2}+1, \ldots, 4 k_{d}+1\right)}$. By applying Lemma 2.8 (i) to each P_{i}, we observe that on any of the d disjoint paths between x and y the first and last edges must receive same weight. Thus $w(x)=w(y)$, a contradiction since x and y are adjacent. Hence $\Theta_{\left(1,4 k_{2}+1, \ldots, 4 k_{d}+1\right)}$ is not $\{a, b\}$-weight colourable for any a, b.

Consider $\Theta_{\left(m_{1}, m_{2}, \ldots, m_{d}\right)} \not \not \Theta_{\left(1,4 k_{2}+1, \ldots, 4 k_{d}+1\right)}$. We can assume that $|a| \geq|b|$. Let n_{j} be the number of paths that have length equivalent to $j \bmod 4$. Note that $n_{0}+n_{1}+n_{2}+n_{3}=d=\operatorname{deg}(x)=\operatorname{deg}(y)$. For each path P_{i}, weight each edge according to Lemma 2.8 so that the edges incident with x are weighted
a. Then $w(x)=d a$ so it has no conflicts with its neighbours since $d \geq 3$ and the condition on the magnitudes of a and b gives $d a \notin\{2 a, a+b\}$. Note that, if $\left|P_{i}\right| \geq 2$, there are two choices for the next edge's weight on P_{i} which determines the rest of the weights. Given one such weighting of a path P_{i}, the effects of switching to the alternate weighting where the edge incident to x receives weight a depend on the parity of the length of the path. If $\left|P_{i}\right|$ is even, the weight of the edge incident to y and the vertex weights of the neighbours of x and y on P_{i} all change. If $\left|P_{i}\right|$ odd, the weight of the edge incident to y remains unchanged, but the vertex weights of the neighbours of x and y on P_{i} do change. In all cases the only possible weights on path-neighbours of x or y are $2 b, a+b$ and $2 b$. We prove, by cases, that there is an appropriate set of choices which make $w(y)$ distinct from its neighbours.
$\mathbf{n}_{\mathbf{0}}+\mathbf{n}_{\mathbf{2}} \geq \mathbf{4}$: Our choice of weightings for even P_{i} 's give at least 5 possible values for $w(y)$, so there is a choice such that $w(y) \notin\{2 b, a+b, 2 a, d a\}$.
$\mathbf{n}_{\mathbf{0}}+\mathbf{n}_{\mathbf{2}}=\mathbf{3}$: If no P_{i} has length $1, d a$ is not a forbidden weight for y. Also, if $n_{3} \geq 1$ then there is an edge incident to y with weight b, and $w(y) \neq d a$. In either case there is a choice of weightings so that $w(y) \notin\{2 b, a+b, 2 a\}$.

So, assume that $m_{1}=1$ and $n_{3}=0$. If the initial weighting fails then we must have

$$
\{2 b, a+b, 2 a, d a\}=\{(d-3) a+3 b,(d-2) a+2 b,(d-1) a+b, d a\}
$$

which implies that $b=-(d-3) a$ and $d \geq 4$. The fact that $|a| \geq|b|$ gives that $d=4$, implying $n_{1}=1$ and $b=-a$. We weight all edges explicitly. The single edge on the path of length 1 receives weight a. If $n_{0}=3$ then weight the edges of one even path $a, a, \ldots,-a,-a$ and the other two $a,-a, \ldots,-a, a$. If $n_{0}=2$ and $n_{2}=1$ weight the edges of the paths of length $0 \bmod 4$ with $a, a, \ldots,-a,-a$ and the other even path with a, a, \ldots, a, a. If $n_{0}=1$ and $n_{2}=2$ weight the edges of the path of length $0 \bmod 4$ with $a,-a, \ldots,-a, a$ and the two other even paths with $a,-a, \ldots, a,-a$. Finally if $n_{0}=0$ and $n_{2}=3$ weight the edges of all even paths with $a,-a, \ldots, a,-a$. Each weighting gives a vertex-colouring for its respective case.
$\mathbf{n}_{\mathbf{0}}+\mathbf{n}_{\mathbf{2}}=\mathbf{2}$: If $n_{3}=0$ and $n_{0}>0$ then assign weights to the edges of one path which is length $0 \bmod 4$ so that the weights of the first and last edges are both a. Weight the edges of the other even path so that the edge incident to x is weighted a and the edge incident to y is weighted b. If $n_{3}=n_{0}=0$ but either $d>3$ or $b \neq 0$ then assign weights to the edges of both even paths so that their edges incident with x are weighted a, one of the edges incident with y is weighted a and the other is weighted b. In both cases weight the edges of the paths of length $1 \bmod 4$ so the weights are, in order beginning with the edge incident with $x, a, a \ldots b, a$ (if the path is a single edge, give it weight a). In the case when $n_{3}=n_{0}=0$, $d=3$ and $b=0$ weight the edges of the two even paths $a, 0,0, \cdots a, a, 0$ and the single odd path with $0,0, a, a, \cdots a, 0$ (beginning with the edge incident with x in each case). The weighting given in each case gives a proper vertex colouring.
Assume $n_{3} \geq 1$. If $n_{0} \neq n_{2}$ then choose weightings for each P_{i} so that $w(x)=d a$ and each remaining neighbour of y has accumulated weight $a+b$. Then $w(y)=a n_{0}+a n_{1}+b n_{2}+b n_{3}$. Since $n_{3} \geq 1$ we have $w(x) \neq w(y)$, so the only possible conflict is if $w(y)=a+b$. In this case change both even P_{i} 's to
their alternate weighting, maintaining $w(x)=d a$ and producing a new weight at y :

$$
\begin{aligned}
w^{\prime}(y) & =b n_{0}+a n_{1}+a n_{2}+b n_{3} \\
& =w(y)+(a-b)\left(n_{2}-n_{0}\right) \\
& =a+b+(a-b)\left(n_{2}-n_{0}\right) \\
& = \begin{cases}3 a-b & \text { if } n_{0}=0, n_{2}=2 \\
3 b-a & \text { if } n_{0}=2, n_{2}=0\end{cases}
\end{aligned}
$$

In either case $w^{\prime}(y) \neq a+b$. If $n_{0}=2$ then y has neighbours with weights $2 b$, and $3 b-a \neq 2 b$. Similarly if $n_{2}=2$ then the weight at y avoids conflict with its neighbours with weight $2 a$.

If $n_{0}=n_{2}=1$ we start again with choices from the basic strategy that leave all path-neighbours with weight $a+b$. We have $w(x)=d a \neq\left(n_{1}+1\right) a+\left(n_{3}+1\right) b=w(y)$. Thus the only conflict can again be if $w(y)=a+b$ or equivalently, $a n_{1}+b n_{3}=0$. In this case we weight the edges of P_{i} 's of lengths equivalent to $0,1,2$, and $3 \bmod 4$ with $\{a, a, \ldots, b, b\},\{a, b, \ldots, a, a\},\{a, a, \ldots, a, a\}$ and $\{a, b, \ldots, b, b\}$ respectively. We still have that $w(y)=a+b \neq d a=w(x)$ and no neighbour of y has weight $a+b$.
$\mathbf{n}_{\mathbf{0}}+\mathbf{n}_{\mathbf{2}}=\mathbf{1}$: If $n_{3}=0$ then weight the edges of the even path so that the edge incident with x receives weight a and the edge incident with y receives weight b. Weight the edges of the paths of length $1 \bmod 4$ so the weights are, in order beginning with the edge incident with $x, a, a \ldots b, a$ (if the path is a single edge, give it weight a). This weighting gives a proper vertex colouring. Assume $n_{3} \geq 1$. Again, weight the edges of each P_{i} so that $w(x)=d a$ and each neighbor of y (distinct from x) has accumulated weight $a+b$. Since $n_{3} \geq 1$ we have that $w(x)=d a \neq w(y)$. If $w(y) \neq a+b$, then w is an $\{a, b\}$-weight colouring. Suppose $w(y)=a+b$. Equivalently

$$
\begin{equation*}
\left(n_{0}+n_{1}-1\right) a+\left(n_{2}+n_{3}-1\right) b=0 \tag{1}
\end{equation*}
$$

Change the edge weights of the even length path to begin with b, a. Call this weighting w^{\prime}. We now have $w^{\prime}(x)=(d-1) a+b$ and $w^{\prime}(y) \neq a+b$. All neighbours of y still have weight $a+b$, so the only possible conflicts are between x and its neighbours. We reduce all potential conflicts to one of four cases, which are solved explicitly.

If $w^{\prime}(x)=w^{\prime}(y)$ then since $w^{\prime}(x)=(d-1) a+b, y$ is incident with precisely one edge with weight b. Since $n_{3} \geq 1$, the edge with weight b comes from a path of length $3 \bmod 4$. This gives $n_{0}=0, n_{2}=1$ and $n_{3}=1$ and then Equation 1 and $|a| \geq|b|$ gives either

- $n_{0}=0, n_{1}=1, n_{2}=1, n_{3}=1$ and $b=0$ (case iii. below).
- $n_{0}=0, n_{1}=2, n_{2}=1, n_{3}=1$ and $b=-a$ (case iv. below).

The neighbours of x have accumulated weights either $a+b$ or $2 a$. If $w(x)=(d-1) a+b=a+b$ then this implies that $d=2$ but the hypotheses of the theorem include $d \geq 3$. If $w(x)=(d-1) a+b=2 a$ then $b=-(d-3) a$. The fact that $d \geq 3$ and $|a| \geq|b|$ now give either

- $n_{0}=1, n_{1}=0, n_{2}=0, n_{3}=2$ and $b=0$ which is dealt with in case i. below.
- $n_{0}=1, n_{1}=1, n_{2}=0, n_{3}=2$ and $b=-a$ which is dealt with in case ii. below.
- $n_{0}=0, n_{1}=1, n_{2}=1, n_{3}=1$ and $b=0$ which is dealt with in case iii. below.
- $n_{0}=0, n_{1}=2, n_{2}=1, n_{3}=1$ and $b=-a$ which is dealt with in case iv. below.
case i. In this case x and y are not adjacent. Weight the edges of the path of length equivalent to $0 \bmod 4$ with $0,0, \ldots, a, a$ and the two odd paths with $a, 0, \ldots, 0,0$.
case ii. In this case x and y are not adjacent. Weight the edges of the paths of lengths equivalent to 0 mod $4,1 \bmod 4$ and $3 \bmod 4$ with $-a,-a, \ldots, a, a, a,-a, \ldots, a, a$ and $a,-a, \ldots,-a,-a$ respectively.
case iii. In this case x and y may be adjacent. Weight the edges of the paths of lengths equivalent to $1 \bmod 4,2 \bmod 4$ and $3 \bmod 4$ with $a, a, \ldots, 0, a, 0,0, \ldots, 0,0$ and $0,0, \ldots, 0, a$ respectively.
case iv. In this case x and y may be adjacent. Weight the edges of the paths of lengths equivalent to 1 mod $4,2 \bmod 4$ and $3 \bmod 4$ with $a,-a, \ldots, a, a,-a,-a, \ldots,-a,-a$ and $a,-a, \ldots,-a,-a$ respectively.

Each of these edge-weightings gives a proper vertex colouring.
$\mathbf{n}_{\mathbf{0}}+\mathbf{n}_{\mathbf{2}}=\mathbf{0}$: Every weighting of the paths P_{i} which gives $w(x)=d a$ must give $w(y)=a n_{1}+b n_{3}$. If $m_{1}=1$ then, since our graph is not $\Theta_{\left(1,4 k_{2}+1, \ldots, 4 k_{d}+1\right)}$, we have $n_{3} \geq 1$ and thus $w(x) \neq w(y)$. Suppose $m \neq 1$. For each P_{i} we have two choices for y 's neighbour. Each choice leaves $w(y)$ constant. Thus there is a choice for each path which gives an edge-weighting vertex-colouring.

3 Bipartite graphs

We begin the section by noting that the property of being $\{a, b\}$-weight colourable is not one that is inherited by subgraphs, nor is the property of being non- $\{a, b\}$-weight colourable. For example, the graph consisting of K_{4} with a leaf attached is $\{1,2\}$-weight colourable, however K_{4} is not $\{a, b\}$-colourable for any choice of a and b. Similarly K_{4} contains the subgraph C_{4} which is 2-weight colourable.

We can, however, characterize the minimal graphs with respect to subgraph containment in the class of graph which are not $\{a, b\}$-weight colourable for many pairs $\{a, b\}$ (in particular, $\{1,2\}$). In Theorem 3.9 we establish that any graph which is not $\{a, b\}$-weight colourable must contain $C_{2 k+1}$ or $C_{4 k+2}$ as a subgraph for some positive integer k.
Definition 3.1 A graph G is round if every cycle of G has length $0 \bmod 4$.
The class of round graphs is much richer than merely those obtained by taking a graph and subdividing each edge into a path of length 4 . For example, $\Theta_{(2,2,2)} \cong K_{2,3}$ is a round graph which is not obtained in this way.

The following lemma establishes a useful subgraph condition of round graphs which we will use in our study of the $\{a, b\}$-weight colourability of round graphs.
Proposition 3.2 If G is a round graph and $\Theta_{(i, j, k)}$ is a subgraph of G, then i, j and k are even and $i \equiv j \equiv k(\bmod 4)$.

Proof: Let $\Theta_{(i, j, k)}$ be a subgraph of G and let P_{i}, P_{j} and P_{k} be the corresponding paths of length i, j and k respectively. Since G is round, $i+j \equiv i+k \equiv j+k \equiv 0(\bmod 4)$. The result follows.

Before proceeding with our results on bipartite graphs we present the following definition which we adopt throughout this section (and this section only). In any $\{a, b\}$-edge-weighting of a graph, the weighted degree of every vertex is of the form $r a+s b$ for some nonnegative integers r, s. We will call a weighted vertex even (odd) if its weighted degree is $r a+s b$ with r even (odd). Note that the parity
of a weighted vertex does not necessarily refer to the parity of its weight. However, by Proposition 2.1. if a and b are not independent over \mathbb{Q} then we will assume that they are relatively prime integers, and so we will assume that a is an odd integer in this case. If b is even, which will be the case in a number of the following results, then the parity of a weighted vertex does coincide with the parity of its weight.

Since a number of our arguments rely on this notion of parity, we often exclude those pairs of numbers whose ratio may be reduced to a ratio of odd integers. We define the sets:

$$
\begin{aligned}
& \mathcal{E}=\left\{\begin{array}{l|l}
\{a, b\} & \frac{a}{b}=\frac{p}{q}, p, q \text { odd integers }
\end{array}\right\} \\
& \mathcal{N}=\left\{\begin{array}{l|l}
\{a, b\} & \frac{a}{b}=\frac{p}{q}, p, q \in \mathbb{Z}, p q \leq 0
\end{array}\right\}
\end{aligned}
$$

We have already seen examples of bipartite graphs which are 2-weight colourable ($C_{4 k}$ for any $k \geq 1$, bipartite theta graphs except $\left.\Theta_{\left(1,4 k_{2}+1, \ldots, 4 k_{d}+1\right)}\right)$ and some which are not ($C_{4 k+2}$ for any $k \geq 1$). From these examples, we note that a bipartite graph G with both parts of odd size is not necessarily $\{a, b\}$ weight colourable. However, if G has one part of even size, we are able to prove G is $\{a, b\}$-weight colourable for particular values of a and b.
Theorem 3.3 Let $a, b \in \mathbb{R}$ be such that $\{a, b\} \notin \mathcal{E}$. If G is a connected bipartite graph with at least one part being of even size, then G is $\{a, b\}$-weight colourable.

Proof: Let $V(G)=X \cup Y$ be a bipartition of the vertices of G with $|X|$ even. By Corollary 2.2 and since $\{a, b\} \notin \mathcal{E}$, we may assume that a is an odd integer and b is an even integer. We assign the weight b to each edge of G. Clearly v is even for each $v \in V(G)$. Let $V(X)=\left\{x_{1}, x_{2} \ldots x_{2 k}\right\}$ and let P_{i} be an $x_{2 i-1} x_{2 i}$-path in G. By changing every edge weight along P_{1} we only change the parity of x_{1} and x_{2}. By repeating this process for each P_{i} we have that every vertex of X has odd parity and every vertex of Y has even parity.

Call the resulting edge-weighting w. Suppose that w is not an $\{a, b\}$-weight colouring. Then there are adjacent vertices x and y such that $w(x)=w(y)$. Thus there exist integers $r, r^{\prime}, s, s^{\prime}$ such $w(x)=r a+s b$ where r is odd, $w(y)=r^{\prime} a+s^{\prime} b$ where r^{\prime} is even, and $r a+s b=r^{\prime} a+s^{\prime} b$. If a and b are linearly independent over \mathbb{Q}, we must have $r=r^{\prime}$, a contradiction. Hence $b=(p / q) a$ for some $p, q \in \mathbb{Z}$ with $\operatorname{gcd}(p, q)=1$. Thus $r q+s p=r^{\prime} q+s^{\prime} p$. Since r is odd and r^{\prime} is even, p even implies q must be even, a contradiction. Hence p is odd. Similarly, q is odd. Therefore, $b / a=p / q$ with p, q odd, contradicting our choice of a and b. Thus w is an $\{a, b\}$-weight colouring of G.

Corollary 3.4 Let $a, b \in \mathbb{R}$ be such that $\{a, b\} \notin \mathcal{E} \cup \mathcal{N}$. Let $G \neq K_{2}$ be a connected bipartite graph with a vertex of degree 1. Then G is $\{a, b\}$-weight colourable. In particular, trees are $\{a, b\}$-weight colourable.

Proof: Let $V(G)=X \cup Y$ be a bipartition of the vertices of G. Let $x \in X$ be a vertex of degree 1 and let $y \in Y$ be its neighbour. If $|X|$ or $|Y|$ is even, then G is $\{a, b\}$-weight colourable by Theorem 3.3 . If $|X|$ is odd, then $G-x$ has an $\{a, b\}$-weight colouring by Theorem 3.3, say w^{\prime}, such that vertices in $X \backslash\{x\}$ are odd and vertices in Y are even. By assigning b to the edge $x y$ we maintain the parity of all the vertices. Also, since $\{a, b\} \notin \mathcal{N}$ we have $w^{\prime}(y) \neq 0$ and so x and y will receive different weights, thus giving an $\{a, b\}$-weight colouring of G.

Theorem 3.5 Let $a, b \in \mathbb{R}$ be such that $\{a, b\} \notin \mathcal{E} \cup \mathcal{N}$. Let G be a connected bipartite graph with a thread of even length P and let U be the internal vertices of P. If $G-U$ is connected then G is $\{a, b\}$-weight colourable.

Proof: We may assume that a is a positive odd integer and b is a positive even integer. If $X \cup Y$ is the bipartition of $V(G)$ and either $|X|$ or $|Y|$ is even, then G is $\{a, b\}$-weight colourable by Theorem 3.3. Assume both parts of G are of odd size. Let x and y be the ends of P. We first assume that x and y are distinct. By Lemma 2.8 , we may assume that P is a path of length either 2 or 4.

Consider the case that P is of length 2, say $P=x v y$. Let G^{\prime} be the bipartite graph obtained from G by deleting v and adding two leaves, v_{1} adjacent to x and v_{2} adjacent to y. Now G^{\prime} is connected and bipartite with an even side, where v_{1} and v_{2} both belong to the even side. Theorem 3.3 gives an $\{a, b\}$-weight colouring of G^{\prime}, say w^{\prime}, so that v_{1} and v_{2} are both odd vertices. Hence $x v_{1}$ and $y v_{2}$ must both receive a as their weight. Let w be an $\{a, b\}$-edge-weighting of G, where $w(x v)=w^{\prime}\left(x v_{1}\right)=a, w(y v)=$ $w^{\prime}\left(y v_{2}\right)=a$ and $w(e)=w^{\prime}(e)$ for all other edges $e \in E(G)$. If w is not an $\{a, b\}$-weight colouring of G, then either $w(x)=2 a$ or $w(y)=2 a$. Without loss of generality, suppose $w(x)=r a+s b=2 a$ (a similar argument will hold for y). Since $w(x v)=a$ and r even, we have $r \geq 2$. If $r=2$, then $s b=0$ which implies $s=0$ or equivalently $\operatorname{deg}_{G}(x)=2$, a contradiction. If $r \geq 3$, then $s b<0$ which gives $b<0$, a contradiction. Thus w is an $\{a, b\}$-weight colouring of G.

Suppose $|P|=4$. Let $P=x v_{1} v_{2} v_{3} y$ and let $G^{\prime}=G-v_{2}$. Now G^{\prime} is bipartite with an even side X^{\prime}, and $x, y \in X^{\prime}$. Theorem 3.3 gives an $\{a, b\}$-weight colouring of G^{\prime}, say w^{\prime}, so that v_{1} and v_{3} are both even vertices. Hence $x v_{1}$ and $y v_{3}$ must both receive b as their weight. Let w be an $\{a, b\}$-edge-weighting of G, where $w\left(v_{1} v_{2}\right)=w\left(v_{2} v_{3}\right)=a$ and $w(e)=w^{\prime}(e)$ for all other edges $e \in E(G)$. If w is not an $\{a, b\}$-weight colouring of G, then either $w(x)=a+b$ or $w(y)=a+b$. Suppose $w(x)=r a+s b=a+b$. Then $(r-1) a=-(s-1) b$, and thus r is odd. Again, we have that a and b are positive integers. Thus either $r-1<0$ or $s-1<0$. However, since $w\left(x v_{1}\right)=b$, we have $s \neq 0$, and since r is odd, $r \neq 0$. Thus w is an $\{a, b\}$-weight colouring of G.

Now, suppose x and y are not distinct (call this vertex x). Then P is a cycle which is an end block of G and x is a cut vertex of G. Let z_{1} and z_{2} be the neighbours of x in P. Since $G^{\prime}=G-U$ is a connected bipartite graph with one part having even size, then by Theorem 3.3 there is an $\{a, b\}$-weight colouring of G^{\prime}, say w^{\prime}. We give an edge weighting $w^{\prime \prime}$ of P as follows:

- if P has length $2(\bmod 4)$, then by Proposition 2.12 we may define an $\{a, b\}$-weight colouring of $P, w^{\prime \prime}$, so that $w^{\prime \prime}\left(z_{1}\right)=w^{\prime \prime}(x)=w^{\prime \prime}\left(z_{2}\right)=2 a$ and P is properly coloured elsewhere;
- if P has length $0(\bmod 4)$, then by Proposition 2.9 we may define an $\{a, b\}$-weight colouring of $P, w^{\prime \prime}$, so that $w^{\prime \prime}(x)$ is the larger of $2 a$ and $2 b$ and P is properly coloured.

Let w be the weighting obtained by combining w^{\prime} and $w^{\prime \prime}$. Then $w(x)>w\left(z_{1}\right), w\left(z_{2}\right)$ and x has the same parity under w as under w^{\prime}. Hence the weight of x is distinct from its neighbours in G. Since all other vertices are properly coloured by w^{\prime} or $w^{\prime \prime}$, w gives an $\{a, b\}$-weight colouring of G.

Theorem 3.6 If G is a 2-connected round graph which is not a cycle then G contains at least 2 even ears.

Proof:

We first claim that G contains no proper 2-connected subgraph which contains all even ears of G. Toward a contradiction suppose H is a 2-connected maximal proper subgraph of G that contains all even ears of G. There exist two vertices of H, say x and y, which are connected by a path P such that $H \cap P=\{x, y\}$. Since H is 2-connected, there are also 2 edge disjoint paths P^{\prime} and $P^{\prime \prime}$ in H between x and y. Thus $P \cup P^{\prime} \cup P^{\prime \prime}$ is a theta graph, and by Lemma $3.2 P$ must be of even length. Since H already contains all even ears of $G, H^{\prime}=H \cup P$ must be a proper subgraph of G but H^{\prime} is also 2-connected which contradicts the maximality of H.

Now, if G has no even ear, then any cycle of G is a 2-connected subgraph containing all the even ears and this is a contradiction as G is not a cycle. If G has only one ear, let T be the ear and let x and y be the two ends of T. Then there are 2 edge disjoint paths connecting x and y, one of which must be edge disjoint from T. This path together with T forms a cycle that contains all the even ears of G, a contradiction.

Corollary 3.7 If G is a round graph and all threads of G are odd, then G has at least two leaves.
We are now able to prove that round graphs can be edge-weight vertex-coloured with most sets of size 2.

Theorem 3.8 Every round graph is $\{a, b\}$-weight colourable for $\{a, b\} \notin \mathcal{E} \cup \mathcal{N}$.
Proof: Let G be a round graph. Let B be an end block with vertex of attachment v. If B is isomorphic to K_{2}, then G is a bipartite graph with a leaf and thus is $\{a, b\}$-weight colourable by Corollary 3.4. If B is a cycle, then B is an even thread and G is $\{a, b\}$-weight colourable by Theorem 3.5 . Otherwise, if B is a 2-connected graph which is not a cycle, then by Theorem 3.6, B has at least two even ears and thus B has at least one even ear, say P, which does not contain v as an internal vertex. Let U be the internal vertices of P. Since $G-U$ is connected, G is $\{a, b\}$-weight colourable by Theorem 3.5

Theorem 3.8, together with Proposition 2.9, gives a class of minimal subgraphs with respect to containment which cannot be $\{a, b\}$-weight coloured for the pairs $\{a, b\}$ on which we have focused.

Corollary 3.9 Let a and b be real numbers such that $\{a, b\} \notin \mathcal{E} \cup \mathcal{N}$. Any graph which is not $\{a, b\}$ weight colourable must contain a cycle of length 1,2 or $3 \bmod 4$.

We end this section with the following problem.
Problem 3 Is it true that all bipartite graphs except $C_{4 k+2}$ and $\Theta_{\left(1,4 k_{1}+1,4 k_{2}+1, \ldots, 4 k_{d}+1\right)}$ are 2-weight colourable?

4 More families of graphs with determined 2-weight colourability

We have given a number of examples of $\{a, b\}$-weight colourable graphs for values of a and b subject to particular restrictions. However we have seen few examples of graphs for which a and b can be any distinct real numbers. We note that the Petersen graph provides such an example of a 2 -weight colourable graph. One such edge-weighting is given in Figure 1. By Proposition 2.3, note that any 2 -weight colouring of the Petersen graph gives a 3 -colouring of it, which is also an optimal proper vertex colouring.

In the rest of this section we describe more families of 2 -weight colourable graphs as well as a class of nonbipartite graphs which are $\{a, b\}$-weight colourable when $a b>0$. In particular we show that all

Fig. 1: An $\{a, b\}$-weight colouring of the Petersen graph. Bold edges are to receive weight b.
unicyclic graphs except cycles of length $1,2,3 \bmod 4$ are 2 -weight colourable. We also provide a number of results on Cartesian products of graphs. Finally, we explore techniques for constructing graphs which do not admit $\{a, b\}$-weight colourings for any choice of a and b.

We begin with our result on unicyclic graphs.
Theorem 4.1 Every connected unicyclic graph except $C_{2 k+1}$ and $C_{4 m+2}$ is $\{a, b\}$-weight colourable, where a and b are real numbers with $a b>0$.

Proof: We may assume that $0<a<b$. By contradiction, let G be the smallest counterexample to our claim. Let C be the only cycle of G. We first note that by Lemma 2.6, we may assume that every vertex of G is either on C or is adjacent to a vertex of C. We may also assume that every vertex of G has degree at most 3 . Next, we claim that there are at least two vertices of degree at least 3 on C. If not, let v be the only vertex of degree at least 3 on C. Let x and y be the neighbours of v on C. It is easy to find an edge-weighting w of C which yields a proper colouring on $C-v$ and $w(v) \geq w(x), w(y)$. By assigning b to the other edge incident with v, we get an $\{a, b\}$-weight colouring of G, a contradiction.

Next, we claim that G has at most one ear of length at least 2 . If not, then we choose some maximal path of degree 3 vertices on C, x_{1}, \ldots, x_{k}, and remove all leaves of G adjacent to those vertices. Call this subgraph G^{\prime}. By minimality of our choice of G, we can assign an $\{a, b\}$-weight colouring w^{\prime} to G^{\prime}. Let w be the weighting of $E(G)$ given by $w(e)=w^{\prime}(e)$ if $e \in E\left(G^{\prime}\right)$ and $w(e)=b$ otherwise. The only possible conflicts are between x_{1} and its neighbour on C which is not x_{2}, say y (or, similarly, between x_{k} and it's neighbour on C which is not $\left.x_{k-1}\right)$. However, since $w\left(x_{1}\right) \geq a+b+w\left(x_{1} y\right)$ and $w(y) \leq w\left(x_{1} y\right)+b$ (similar for x_{k}), w is an $\{a, b\}$-weight colouring of G which contradicts our choice of G.

If G has exactly one ear of length at least 2 , let $e=r s$ and $e^{\prime}=r^{\prime} s^{\prime}$ be the two edges that have exactly one endpoint of degree 2. Specifically, let $\operatorname{deg}(r)=\operatorname{deg}\left(r^{\prime}\right)=2, \operatorname{deg}(s)=\operatorname{deg}\left(s^{\prime}\right)=3$. Note that r and r^{\prime} need not be distinct, but, since there are at least 2 vertices on C of degree $3, s$ and s^{\prime} are distinct. We construct an $\{a, b\}$-weight colouring of G based on the length of $C \bmod 4$.

- Suppose $|C|$ is odd. By Proposition 2.10, C has an $\{a, b\}$-edge weighting w^{\prime} which gives a proper vertex colouring except across $r s$. Let $w(e)=w^{\prime}(e)$ if $e \in E(C)$. If $w^{\prime}\left(r^{\prime}\right)-w^{\prime}\left(s^{\prime}\right)=a$, let $w(e)=b$ for all $e \in E(G) \backslash E(C)$. Otherwise, let $w(e)=a$ for all $e \in E(G) \backslash E(C)$. Clearly each leaf's neighbour has a weight strictly greater than its own. Since w^{\prime} gives a proper colouring of C except for r and s, the only adjacent vertices of G which might not be properly coloured are r
and s or r^{\prime} and s^{\prime}. However, our choice of weights for the leaves of G guarantees that $r, s, r^{\prime}, s^{\prime}$ are properly coloured as well. Thus w is an $\{a, b\}$-weight colouring of G.
- Suppose $|C| \equiv 0(\bmod 4)$. By Proposition 2.9. C has an $\{a, b\}$-weight colouring w^{\prime} such that $w(r)=2 a$ and $w(s)=a+b$. Let $w(e)=w^{\prime}(e)$ if $e \in E(C)$. If $w^{\prime}\left(r^{\prime}\right)-w^{\prime}\left(s^{\prime}\right)=a$, let $w(e)=b$ for all $e \in E(G) \backslash E(C)$. Otherwise, let $w(e)=a$ for all $e \in E(G) \backslash E(C)$. By the same argument as above, w is an $\{a, b\}$-weight colouring of G.
- Suppose $|C| \equiv 2(\bmod 4)$. Let t be the other neighbour of s on C and let t^{\prime} be the other neighbour of r^{\prime} on C. By Proposition 2.11 there is an $\{a, b\}$-edge weighting such that all vertices are properly coloured except r, s and t, and such that $w\left(t^{\prime} r^{\prime}\right)=w\left(r^{\prime} s^{\prime}\right)=a$. Let $w(e)=w^{\prime}(e)$ for all $e \in$ $E(C)$. Let f be the edge between s and its leaf, and let $w(f)=a$. For each $e \in E(G) \backslash E(C) \backslash\{f\}$, let $w(e)=b$. The only possible improperly coloured pairs of vertices are r and s, s and t or r^{\prime} and s^{\prime}. However,

$$
\begin{aligned}
w(r) & =w^{\prime}(r)=w^{\prime}(s)<w(s) \\
w(s) & =w^{\prime}(s)+a=w^{\prime}(t)+a<w^{\prime}(t)+b=w(t) \\
w\left(r^{\prime}\right) & =2 a<a+2 b=w\left(s^{\prime}\right)
\end{aligned}
$$

and so w is an $\{a, b\}$-weight colouring of G.
The only remaining case is that every vertex of C has degree 3 . If $|C|$ is even, assign the same weight to all the edges on the cycle and alternating weights to the leaf edges. The reader can verify that a solution for the cases when $|C|=3$ or $|C|=5$ exists. Each of these cases can be extended to larger odd cycle by making the replacement indicated in Figure 2 Note that the variables $\bar{\ell}$ and \bar{n} refer to the weights different from ℓ and n, respectively.

Fig. 2: Replacement operation to expand 2-weight colourings to larger cycles.
Thus, no minimal counterexample G exists.
Proposition 4.2 For $n \geq 4$, the graph $K_{2} \square K_{n}$ is 2-weight colourable.
Proof: Let K_{n} and K_{n}^{\prime} be the two copies of the complete graph. Denote the vertices of K_{n} and K_{n}^{\prime}, respectively by

$$
\begin{aligned}
& \left\{u_{1}, u_{2}, \ldots, u_{\lfloor n / 2\rfloor}, v_{\lfloor n / 2\rfloor}, v_{\lfloor n / 2\rfloor+1}, \ldots, v_{n-2}, v_{n-1}\right\}, \\
& \left\{u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{\lfloor n / 2\rfloor}^{\prime}, v_{\lfloor n / 2\rfloor}^{\prime}, v_{\lfloor n / 2\rfloor+1}^{\prime}, \ldots, v_{n-2}^{\prime}, v_{n-1}^{\prime}\right\} .
\end{aligned}
$$

Let p be a derangement (permutation with no fixed points) of $\{1,\lfloor n / 2\rfloor\}$ and π be a derangement of $\{\lfloor n / 2\rfloor, n-1\}$. Let u_{i} be adjacent to $u_{p(i)}^{\prime}$ for all $1 \leq i \leq\lfloor n / 2\rfloor$ and v_{i} be adjacent to $v_{\pi(i)}^{\prime}$ for $\lfloor n / 2\rfloor \leq i \leq n-1$.

Since the graph is n-regular, if adjacent vertices have distinct weights then they have distinct numbers of incident edges having weight b. Using Lemma 2.5, we may weight the edges of K_{n} and K_{n}^{\prime} so that the subscript of the vertex is precisely equal to the number of edges weighted b incident to that edge in K_{n}. Label $u_{i} u_{p(i)}^{\prime}$ with a for all $1 \leq i \leq\lfloor n / 2\rfloor$ and weight $v_{i} v_{\pi(i)}^{\prime}$ with b for $\lfloor n / 2\rfloor \leq i \leq n-1$. Then any two vertices that are adjacent have a distinct number of incident edges weighted b and thus $K_{2} \square K_{n}$ is 2 -weight colourable.

Figure 3 gives an illustration of this construction.

Fig. 3: An $\{a, b\}$-weight colouring of $K_{2} \square K_{n}$. Bold edges are to receive weight b.

Proposition 4.3 The graph $K_{2} \square C_{n}$ is 2 -weight colourable if and only if $n \geq 4$ and $n \neq 5$.
Proof: If n is even, then give every edge of one copy of C_{n} weight a and every edge of the other copy weight b. By alternating the weights of the images of K_{2} between a and b along the cycles, we have the desired $\{a, b\}$-weight colouring.

An example of an $\{a, b\}$-weight colouring of $K_{2} \square C_{7}$ is given in Figure 4. It can be extended to an $\{a, b\}$-weight colouring of $K_{2} \square C_{9}$ by replacing the left subgraph in Figure 5 with the right graph. Note that the right subgraph contains the left one, and thus this operation may be repeated as many times as needed to give an $\{a, b\}$-weight colouring for any $K_{2} \square C_{2 k+1}(k \geq 3)$ The reader may verify that no $\{a, b\}$-weight colouring of $K_{2} \square C_{3}$ or $K_{2} \square C_{5}$ exists.

Theorem 4.4 Let G be a graph and H be a regular bipartite graph. If $G \square K_{2}$ is 2-weight colourable, then $G \square H$ is 2-weight colourable.

Proof: Let w be an $\{a, b\}$-weight colouring of $G \square K_{2}$. Denote the two copies of G by G_{1} and G_{2} and denote the vertices of K_{2} by t_{1} and t_{2}. Since H is regular (say d-regular) and bipartite, Hall's Theorem guarantees a perfect matching M of H. Let X and Y be the parts of $V(H)$.

Fig. 4: An $\{a, b\}$-weight colouring of $K_{2} \square C_{7}$. Bold edges are to receive weight b.

Fig. 5: Replacement operation for obtaining an $\{a, b\}$-weight colouring of $K_{2} \square C_{2 k+1}$ for $k \geq 4$.
Define an edge-weighting of $G \square H$ as follows. For each edge $e=x y \in M$ where $x \in X$ and $y \in Y$, weight the edges of the subgraph $G \square e$ by w so that each vertex $\left(u_{G}, x\right) \in V(G \square H)$ has weight $w\left(u_{G}, t_{1}\right)$ and $\left(u_{G}, y\right) \in V(G \square H)$ has weight $w\left(u_{G}, t_{2}\right)$. Assign every other edge of $G \square H$ weight a. Call this weighting ϕ.

We have that $\phi(u)=w\left(u_{G}, t_{1}\right)+(d-1) a$ if $u_{H} \in X$ and $\phi(u)=w\left(u_{G}, t_{2}\right)+(d-1) a$ if $u_{H} \in Y$. Two vertices are adjacent if either their H-coordinates agree and they are adjacent in a copy of G or if their G-coordinates agree and they are adjacent in a copy of H. In the former case, their weights are distinct under ϕ since they are distinct under w. In the latter, consider two adjacent vertices $u=\left(u_{G}, u_{H}\right)$ and $u^{\prime}=\left(u_{G}, u_{H}^{\prime}\right)$ where $u_{H} \in X, u_{H}^{\prime} \in Y$. Then, $w\left(u_{G}, t_{1}\right) \neq w\left(u_{G}, t_{2}\right)$ by choice of w, which implies that $\phi(u) \neq \phi\left(u^{\prime}\right)$. Thus ϕ is an $\{a, b\}$-weight colouring of $G \square H$.

Corollary 4.5 If G and H are regular bipartite graphs, then the following graphs are 2-weight colourable:
(i) $K_{n} \square H$, if $n \geq 4$
(ii) $C_{n} \square H$ if $n \geq 4, n \neq 5$
(iii) $G \square H$

Proof: Applying Theorem 4.4 to Propositions 4.2 and 4.3 immediately gives results (i) and (ii) respectively. For (iii), since $K_{2} \square K_{2} \cong C_{4}, K_{2} \square K_{2}$ is 2-weight colourable by Proposition 2.9 By Theorem 4.4, $K_{2} \square H$ is 2-weight colourable; applying Theorem 4.4 again gives us that $G \square H$ is 2-weight colourable.

In order to construct non-2-weight colourable graphs below, we make use of a class of "gadget" graphs. These gadgets are themselves 2-weight colourable, but they have the property that in any of their 2-weight colourings, certain edges receive a predetermined weight.

Define the graph \widehat{K}_{n} to be the graph obtained from K_{n} by subdividing one edge exactly once.
Proposition 4.6 For $n \geq 4$, the graph \widehat{K}_{n} is 2-weight colourable. Moreover, in any 2-weight colouring of \widehat{K}_{n}, the edges incident to its degree 2 vertex must receive the same colour.

Proof: Let x be the vertex of \widehat{K}_{n} of degree 2 and let u, v be its neighbours. An $\{a, b\}$-weight colouring of \widehat{K}_{4} is given in Figure 6. So assume $n \geq 5$. Let K_{n} be obtained by adding the edge $u v$ to $\widehat{K}_{n}-x$. By Lemma 2.5 , there exists an edge-weighting w of K_{n} such that all the vertices have distinct weighted degrees except for u and v. Moreover, $w(u)=w(v)=r a+(n-1-r) b$, where $r \in\{\lfloor n / 2\rfloor,\lceil n / 2\rceil-1\}$. Assign the weight $w(u v)$ from K_{n} to the edges $x u$ and $x v$ in \widehat{K}_{n}. Note that w is an $\{a, b\}$-weight colouring as long as $w(u)=w(v) \neq w(x)$. We have $w(x) \in\{2 a, 2 b\}$. Since a and b may be swapped in Lemma 2.5, we assume that $w(x)=2 a$. If $w(u) \neq 2 a$, we are done. Suppose $w(u)=2 a$. We consider two cases:

- If n is odd, then the edge weighting w^{\prime} given by swapping every edge's weight gives $w^{\prime}(u)=$ $w(u)=2 a \neq 2 b=w^{\prime}(x)$.
- If n is even then, by the construction of the weighting in Lemma $2.5, w(u)=\frac{n}{2} a+\left(\frac{n}{2}-1\right) b$. So, $2 a=\frac{n}{2}(a+b)-b$. If the edge weighting w^{\prime} given by swapping every edge's weight gives a conflict between u and x, then $2 b=\frac{n}{2}(a+b)-a$. Together, these imply that $a=b$, a contradiction.

Thus \widehat{K}_{n} admits an $\{a, b\}$-weight colouring.
To prove the second part, toward a contradiction, suppose \widehat{K}_{n} is the smallest counterexample for which there exists an $\{a, b\}$-weight colouring w such that $w(x u) \neq w(x v)$. By inspection, we may check that \widehat{K}_{4} does not admit such edge-weighting. So assume $n \geq 5$. Note that there exists no vertex $y \neq u, v$ such that $w(y) \in\{(n-1) a,(n-1) b\}$, otherwise $\widehat{K}_{n}-y$ would be a smaller counterexample. Therefore, since w induces a vertex colouring and all the weighted degrees (except for x) are of the form $r a+(n-1-r) b$ for some $0 \leq r \leq n-1$, we must have $w(u), w(v) \in\{(n-1) a,(n-1) b\}$. But then by removing u, v, and x we get an $\{a, b\}$-weight colouring of K_{n-2}, a contradiction to Corollary 2.4 .

Corollary 4.7 Given a graph G, let G^{\prime} be obtained from identifying a vertex of G with the degree 2 vertex of \widehat{K}_{n}. Then in any 2-weight colouring of G^{\prime}, edges in \hat{K}_{n} incident to its degree 2 vertex must receive same colour.

Proof: Since the proof of Proposition 4.6 did not depend in any way on the accumulated weight at vertex x, then regardless of graph joined to \hat{K}_{n} at x, the two edges incident with x in \hat{K}_{n} must still receive the same weight.

An example is given on the left of Figure 6. In the case $G=K_{2}$ and $n=4$, the weight of the leaf's edge is forced to be equal to that of its incident edges; this is another useful gadget. It is shown on the right of Figure 6

Fig. 6: The graphs \hat{K}_{4} and \hat{K}_{4} with a leaf are 2-weight colourable. Bold edges represent one weight-class.
We use Proposition 4.6, which established the weight colourability of \hat{K}_{n}, to construct the following examples of non 2 -weight colourable graphs.
Example 4.8 The following graphs cannot be 2-weight coloured:
(i) Join two copies of \hat{K}_{4} by an edge attached at their vertices of degree 2.
(ii) Join $2 n+1$ copies of \hat{K}_{4} to a $C_{2 n+1}$ by an edge attaching the degree 2 vertex in each copy of \hat{K}_{4} to a distinct cycle vertex.

To see why the graph defined in (ii), which we denote H, cannot be S-weight coloured for any set S of size 2, consider the accumulated weight at one of the cycle vertices, say v. Since H is 3-regular graph, $w(v) \in\{3 a, 2 a+b, a+2 b, 3 b\}$. If $w(v)=3 a$, then the noncycle edge, e, incident with v must have weight a and, as shown in Figure 6 so must the two edges in the copy of \hat{K}_{4} joined to v by an edge. Thus both endpoints of e would have weight 3 . A similar argument shows that $w(v) \neq 3 b$. Thus the only possible accumulated weights on cycle vertices are $2 a+b$ and $2 b+a$. Since an odd cycle cannot be properly 2-coloured, we see that H cannot be 2-weight coloured.

Our next family of gadget graphs are described below.
Proposition 4.9 Let $0 \leq a \in \mathbb{Z}$ and $d \mid a$. Let H be a graph and G be a graph obtained from identifying a vertex u of H with a vertex of a K_{n} (all other vertices of H and K_{n} being disjoint). If

$$
\operatorname{deg}_{H}(u)<\left(\frac{d}{a+d}\right)\left\lfloor\frac{n-1}{2}\right\rfloor,
$$

then G is not $\{a, a+d\}$-weight colourable. Furthermore, if

$$
\operatorname{deg}_{H}(u)=\left(\frac{d}{a+d}\right)\left\lfloor\frac{n-1}{2}\right\rfloor
$$

then in any $\{a, a+d\}$-weight colouring of G, all edges in H incident to u must receive weight $a+d$.
Proof: We first prove the statement for $d=1$. Toward a contradiction, suppose w is an $\{a, a+1\}$ weighting colouring of G. Every vertex of $K_{n}-u$ has weighted degree $r a+(n-1-r)(a+1)=$ $(n-1)(a+1)-r$ for some $0 \leq r \leq n-1$ and both of the weights $(n-1) a$ and $(n-1)(a+1)$ cannot
appear simultaneously on $K_{n}-u$. If $w(u)<(n-1)(a+1)$ then there are only $n-1$ colours available for the vertices of K_{n}, a contradiction. So $w(u) \geq(n-1)(a+1)$.

Let $\left.w\right|_{K_{n}}$ be the edge-weighting of K_{n} induced by w. By Corollary 2.4 . K_{n} is not $\{a, a+1\}$-edgeweight colourable. Thus, there must be exactly two vertices of K_{n} with the same weight given by $\left.w\right|_{K_{n}}$ and u must be one such vertex. By Lemma 2.5, we get $\left.w\right|_{K_{n}}(u)=r a+(n-1-r)(a+1)=(n-$ 1) $(a+1)-r$, where $r \in\{\lfloor n / 2\rfloor,\lceil n / 2\rceil-1\}$. Note that $r \geq\lfloor(n-1) / 2\rfloor$. If u is incident with s edges of weight a in H, then we have

$$
(n-1)(a+1) \leq w(u)=r a+(n-1-r)(a+1)+s a+\left(\operatorname{deg}_{H}(u)-s\right)(a+1)
$$

which simplifies to $\operatorname{deg}_{H}(u) \geq\left(\frac{1}{a+1}\right)(r+s)$. Hence

$$
\operatorname{deg}_{H}(u) \geq\left(\frac{1}{a+1}\right)\left(\left\lfloor\frac{n-1}{2}\right\rfloor+s\right)
$$

This is a contradiction since $\operatorname{deg}_{H}(u)<\left(\frac{1}{a+1}\right)\left\lfloor\frac{n-1}{2}\right\rfloor$. Also, if $\operatorname{deg}_{H}(u)=\left(\frac{1}{a+1}\right)\left\lfloor\frac{n-1}{2}\right\rfloor$ then we must have $s=0$, proving the second claim.

Now, let d be any positive divisor of a. By Proposition 2.1. G has an $\{a, a+d\}$-weight colouring if and only if it has a $\left\{\frac{a}{d}, \frac{a}{d}+1\right\}$-weight colouring. If $\operatorname{deg}_{H}(u)<\left(\frac{1}{a / d+1}\right)\left\lfloor\frac{n-1}{2}\right\rfloor$ then G has no $\left\{\frac{a}{d}, \frac{a}{d}+1\right\}$-weight colouring by the above argument. Hence, if $\operatorname{deg}_{H}(u)<\left(\frac{d}{a+d}\right)\left\lfloor\frac{n-1}{2}\right\rfloor$ then G has no $\{a, a+d\}$-weight colouring. The second result follows similarly.
We may use Proposition 4.9 to construct many graphs which are not $\{a, a+1\}$-weight colourable and so, in particular, are not $\{1,2\}$-weight colourable. In fact, if H is any graph and u any vertex of H, then there is an n large enough so that attaching K_{n} to u (and only to u) gives a graph which is not $\{a, a+1\}$ weight colourable. We can also use the equality condition to construct graphs with no $\{a, a+1\}$-weight colouring (for a specific a). For example, the graph obtained by joining two copies of $K_{n}, n \geq 5$, with a path of length 3 , say e_{1}, e_{2}, e_{3}, is not $\{a, a+1\}$-weight colourable for $a=\left\lfloor\frac{n-1}{2}\right\rfloor-1$ since the weights of e_{1} and e_{3} are forced to be $a+1$, and thus the ends of e_{2} will receive the same weight.

We finish this section with a problem whose solution would be useful in the study of $\{1,2,3\}$-weight colourable graphs.
Problem 4 Does there exist a graph which is either

- uniquely $\{1,2,3\}$-weight colourable (up to isomorphism), or
- $\{1,2,3\}$-weight colourable where any such colouring forces certain edges of G to receive a particular weight?

Moreover, does there exist a graph with either of these properties which maintains that property when it is attached in some way to another graph?

References

[ABDM^{+}07] Louigi Addario-Berry, Ketan Dalal, Colin McDiarmid, Bruce A. Reed, and Andrew Thomason. Vertex-colouring edge-weightings. Combinatorica, 27(1):1-12, 2007.
[ABDR08] L. Addario-Berry, K. Dalal, and B. A. Reed. Degree constrained subgraphs. Discrete Appl. Math., 156(7):1168-1174, 2008.
[BM08] Adrian Bondy and U.S.R. Murty. "Graph Theory" Springer, 2008.
[CLWY10] Gerard Chang, Changhong Lu, Jiaojiao Wu, and Qinglin Yu Vertex-coloring edgeweightings of graphs. Taiwanese J. Math., 15(4):1807-1813, 2011
[KKP09] Maciej Kalkowski, Michal Karonski, and Florian Pfender. Vertex-coloring edgeweightings: Towards the 1-2-3-conjecture. J. Combin. Theory Ser. B, 100(3):347-349, 2010.
[KŁT04] Michał Karoński, Tomasz Łuczak, and Andrew Thomason. Edge weights and vertex colours. J. Combin. Theory Ser. B, 91(1):151-157, 2004.
[LYZ10] Hongliang Lu, Qinglin Yu and Cun-Quan Zhang. Vertex-Coloring 2-Edge-Weightings of Graphs. European J. Combin., 32(1):21-27, 2011.
[WY08] Tao Wang and Qinglin Yu. On vertex-coloring 13-edge-weighting. Front. Math. China, 3(4):581-587, 2008.

[^0]: * Partially supported by NSERC Canada.
 \dagger Partially supported by Fonds québécois de la recherche sur la nature et les technologies.
 \ddagger Emails: mahdad.khatirinejad@tkk.fi, \{bseamone, brett \}@math.carleton.ca, mnewman@uottawa.ca

