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We study expansions in non-integer negative base−β introduced by Ito and Sadahiro. Using countable automata
associated with(−β)-expansions, we characterize the case where the(−β)-shift is a system of finite type. We prove
that, ifβ is a Pisot number, then the(−β)-shift is a sofic system. In that case, addition (and more generally normal-
ization on any alphabet) is realizable by a finite transducer. We then give an on-line algorithm for the conversion from
positive baseβ to negative base−β. Whenβ is a Pisot number, the conversion can be realized by a finite on-line
transducer.
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1 Introduction
Expansions in integer negative base−b, whereb > 2, seem to have been introduced by Grünwald in [8],
and rediscovered by several authors, see the historical comments given by Knuth [12]. The choice of a neg-
ative base−b and of the alphabet{0, . . . , b−1} is interesting, because it provides a signless representation
for every number (positive or negative). In this case it is easy to distinguish the sequences representing a
positive integer from the ones representing a negative integer: denoting(w.)−b :=

∑k

i=0 wi(−b)i for any
w = wk · · ·w0 in{0, . . . , b − 1}∗ with no leading0’s, we haveN = {(w.)−b | |w| is odd}. The classical
monotonicity between the lexicographical ordering on words and the represented numerical values does
not hold anymore in negative base, for instance3 = (111.)−2, 4 = (100.)−2 and111 >lex 100. Never-
theless it is possible to restore such a correspondence by introducing an appropriate ordering on words, in
the sequel denoted by≺alt, and called thealternate order.

Representations in negative base also appear in some complex base number systems, for instance base
β = 2i sinceβ2 = −4 (see [5] for a study of their properties from an automata theoretic point of view).
Thus, beyond the interest in the problem in itself, the authors also wish the study of negative bases to be
a useful preliminar step to better understanding the complex case.

Ito and Sadahiro recently introduced expansions in non-integer negative base−β in [10]. They have
given a characterization of admissible sequences, and shown that the(−β)-shift is sofic if and only if the
(−β)-expansion of the number− β

β+1 is eventually periodic.
In this paper we pursue their work. The purpose of this contribution is to show that many properties of

the positive base (integer or not) numeration systems extend to the negative base case, the main difference
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being the sets of numbers that are representable in the two different cases. The results could seem not
surprising, but this study put into light the important roleplayed by the order on words: the lexicographic
order for the positive bases, the alternate order for the negative bases.

Very recently there have been several contributions to the study of numbers having only positive powers
of the base in their expansion, the so-called(−β)-integers, in [1], [16], and [23]. Dynamical properties of
the(−β)-transformation are studied in [13].

We first establish some properties of the negative integer base−b, that are more or less folklore. This
allows us to introduce the definitions of alternate order andof short-alternate order, that make possible to
order numbers by their(−β)-expansions.

We then prove a general result which is not related to numeration systems but to the alternate order,
and which is of interest in itself. We define a symbolic dynamical system associated with a given infinite
word s satisfying some properties with respect to the alternate order on infinite words. We design an
infinite countable automaton recognizing it. We then are able to characterize the case when the symbolic
dynamical system is sofic (resp. of finite type). Using this general construction we can prove that the
(−β)-shift is a symbolic dynamical system of finite type if and only if the (−β)-expansion of− β

β+1 is
purely periodic. We also show that the entropy of the(−β)-shift is equal tolog β.

We then focus on the case whereβ is a Pisot number, that is to say, an algebraic integer greater than 1
such that the modulus of its Galois conjugates is less than 1.The natural integers and the Golden Mean
are Pisot numbers. We extend all the results known to hold true in the Pisot case forβ-expansions to the
(−β)-expansions. In particular we prove that, ifβ is a Pisot number, then every number fromQ(β) has
an eventually periodic(−β)-expansion, and thus that the(−β)-shift is a sofic system.

Whenβ is a Pisot number, it is known that addition in baseβ — and more generally normalization in
baseβ on an arbitrary alphabet — is realizable by a finite transducer [4]. We show that this is still the
case in base−β.

The conversion from positive integer base to negative integer base is realizable by a finite right sequen-
tial transducer. Whenβ is not an integer, we give an on-line algorithm for the conversion from baseβ to
base−β, where the result is not admissible in general. Whenβ is a Pisot number, the conversion can be
realized by a finite on-line transducer.

A preliminary version of Sections 4 and 5 has been presented in [6].

2 Definitions and preliminaries

2.1 Words and automata

An alphabetis a totally ordered set. In this paper the alphabets are always finite. A finite sequence of
elements of an alphabetA is called aword, and the set of words overA is the free monoidA∗. The
empty word is denoted byε. The set of infinite (resp. bi-infinite) words overA is denoted byAN (resp.
AZ). Let v be a word ofA∗, denote byvn the concatenation ofv to itselfn times, and byvω the infinite
concatenationvvv · · · . A word of the formuvω is said to beeventually periodic. A (purely) periodic
word is an eventually periodic word of the formvω.

A finite word v is a factor of a (finite, infinite or bi-infinite) wordx if there existsu andw such that
x = uvw. Whenu is the empty word,v is aprefixof x. The prefixv is strict if v 6= x. Whenw is empty,
v is said to be asuffixof x.

We recall some definitions on automata, see [3] and [20] for instance. Anautomaton overA, A =
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(Q,A,E, I, T ), is a directed graph labelled by elements ofA. The set of vertices, traditionally called
states, is denoted byQ, I ⊂ Q is the set ofinitial states,T ⊂ Q is the set ofterminal states and
E ⊂ Q ×A ×Q is the set of labellededges. If (p, a, q) ∈ E, we writep

a
→ q. The automaton isfinite if

Q is finite. The automatonA is deterministicif E is the graph of a (partial) function fromQ ×A intoQ,
and if there is a unique initial state. A subsetH of A∗ is said to berecognizable by a finite automaton, or
regular, if there exists a finite automatonA such thatH is equal to the set of labels of paths starting in an
initial state and ending in a terminal state.

Recall that two wordsu andv are said to beright congruent moduloH if, for everyw, uw is in H if
and only ifvw is in H . It is well known thatH is recognizable by a finite automaton if and only if the
congruence moduloH has finite index.

Let A andA′ be two alphabets. Atransduceris an automatonT = (Q,A∗ × A′∗, E, I, T ) where the
edges ofE are labelled by pairs inA∗ × A′∗. It is said to befinite if the setQ of states and the setE of

edges are finite. If(p, (u, v), q) ∈ E, we writep
u|v
−→ q. Theinput automaton(resp.output automaton) of

such a transducer is obtained by taking the projection of edges on the first (resp. second) component. A
transducer is said to besequentialif its input automaton is deterministic.

An on-line transducer is a particular kind of sequential transducer. Anon-line transducerwith delay
δ, A = (Q,A × (A′ ∪ ε), E, {q0}), is a sequential automaton composed of a transient part and of a
synchronous part, see [17]. The set of states is equal toQ = Qt ∪ Qs, whereQt is the set of transient
states andQs is the set of synchronous states. In the transient part, every path of lengthδ starting in the
initial stateq0 is of the form

q0
x1|ε
−→ q1

x2|ε
−→ · · ·

xδ|ε
−→ qδ

whereq0, . . . , qδ−1 are inQt, xj in A, for 1 6 j 6 δ, and the only edge arriving in a state ofQt is as
above. In the synchronous part, edges are labelled by elements ofA×A′. This means that the transducer
starts reading words of length6 δ and outputting nothing, and after that delay, outputs serially one digit
for each input digit. If the set of statesQ and the set of edgesE are finite, the on-line automaton is said
to be finite.

The same notions can be defined for automata and transducer processing words from right to left : they
are calledright automata or transducers.

2.2 Symbolic dynamics
Let us recall some definitions on symbolic dynamical systemsor subshifts (see [15, Chapter 1] or [14]).
The setAZ is endowed with the lexicographic order, denoted<lex, the product topology, and the shift
σ, defined byσ((xi)i∈Z) = (xi+1)i∈Z. A setS ⊆ AZ is asymbolic dynamical system, or subshift, if it
is shift-invariant and closed for the product topology onAZ. A bi-infinite word z avoidsa set of word
X ⊂ A∗ if no factor ofz is in X . The set of all words which avoidX is denotedSX . A setS ⊆ AZ is a
subshift if and only ifS is of the formSX for someX .

The same notion can be defined for a one-sided subshift ofAN.
Let F (S) be the set of factors of elements ofS, let I(S) = A+ \ F (S) be the set of words avoided

by S, and letX(S) be the set of elements ofI(S) which have no proper factor inI(S). The subshiftS
is soficif and only if F (S) is recognizable by a finite automaton, or equivalently ifX(S) is recognizable
by a finite automaton. The subshiftS is of finite typeif S = SX for some finite setX , or equivalently if
X(S) is finite. We will say that the subshiftS is recognizableby an automatonA (finite or infinite) when
the setF (S) is recognizable byA.
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The topological entropy of a subshiftS is

h(S) = lim
n→∞

1

n
log(Bn(S))

whereBn(S) is the number of elements ofF (S) of lengthn. WhenS is sofic, the entropy ofS is equal
to the logarithm of the spectral radius of the adjacency matrix of the finite automaton recognizingF (S).

2.3 Numeration systems
The reader is referred to [15, Chapter 7] and to [7] for a detailed presentation of these topics. Represen-
tations of real numbers in a non-integer baseβ > 1 were introduced by Rényi [19] under the name ofβ-
expansions. Letx be a real number in the interval[0, 1]. A representation in baseβ (or aβ-representation)
of x is an infinite word(xi)i>1 such that

x =
∑

i>1

xiβ
−i.

Let x = (xi)i>1. Thenumerical valuein baseβ is the functionπβ defined byπβ(x) =
∑∞

i=1 xiβ
−i.

A particularβ-representation — called theβ-expansion— of a real numberx in [0, 1] can be computed
by the “greedy algorithm” : denote by⌊y⌋, ⌈y⌉ and{y} the lower integer part, the upper integer part and
the fractional part of a numbery. Setr0 = x and let fori > 1, xi = ⌊βri−1⌋, ri = {βri−1}. Then
x =

∑
i>1 xiβ

−i. Theβ-expansion ofx will be denoted bydβ(x) = (xi)i>1.
The digitsxi are elements of the canonical alphabetAβ = {0, . . . , ⌈β⌉ − 1}, excepted whenβ is an

integer andx = 1, in which casedβ(1) = β000 . . ..
If x > 1, there exists somek > 1 such thatx/βk belongs to[0, 1). If dβ(x/βk) = (yi)i>1 then, by

shifting, theβ-expansion ofx is 〈x〉β = y1 · · · yk.yk+1yk+2 · · · .
An equivalent definition is obtained by using theβ-transformationof the unit interval which is the

mapping
Tβ : x 7→ βx− ⌊βx⌋.

Thendβ(x) = (xi)i>1 if and only if xi = ⌊βT i−1
β (x)⌋.

If a representation ends in infinitely many zeros, likev0ω, the ending zeros are omitted and the repre-
sentation is said to befinite.

In the case where theβ-expansion of 1 is finite, there is a special representation playing an important
role. Letdβ(1) = (ti)i>1 and setd∗β(1) = dβ(1) if dβ(1) is infinite andd∗β(1) = (t1 · · · tm−1(tm − 1))ω

if dβ(1) = t1 · · · tm−1tm is finite.
A word (xi)i>1 is said to beβ-admissibleif there exists a real numberx ∈ [0, 1) such thatdβ(x) =

(xi)i>1. Denote byDβ the set ofβ-expansions of numbers of[0, 1). It is a shift-invariant subset ofAN

β .
Theβ-shiftSβ is the closure ofDβ and it is a subshift ofAZ

β . Whenβ is an integer,Sβ is the fullβ-shift
AZ

β .

Theorem 2.1 (Parry[18]) Letβ > 1 be a real number. A word(wi)i>1 belongs toDβ if and only if for
all n > 1

wnwn+1 · · · <lex d
∗
β(1).

A word(wi)i∈Z belongs toSβ if and only if for alln

wnwn+1 · · · 6lex d
∗
β(1).
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The following results are well-known (see [15, Chapt. 7]).

Theorem 2.2 1. Theβ-shift is sofic if and only ifdβ(1) is eventually periodic.

2. Theβ-shift is of finite type if and only ifdβ(1) is finite.

It is known that the entropy of theβ-shift is equal tolog β, [11].

If β is a Pisot number, then every element ofQ(β)∩ [0, 1] has an eventually periodicβ-expansion, and
theβ-shift Sβ is a sofic system [2, 21].

LetC be an arbitrary finite alphabet of integer digits. Thenormalization functionin baseβ onC

νβ,C : CN → AN

β

is the partial function which maps an infinite wordy = (yi)i>1 overC, such that0 6 y =
∑

i>1 yiβ
−i 6

1, onto theβ-expansion ofy. It is known [4] that, whenβ is a Pisot number, normalization is computable
by a finite transducer on any alphabetC. Note that addition is a particular case of normalization, with
C = {0, . . . , 2(⌈β⌉ − 1)}.

3 Negative integer base
Let b > 1 be an integer. It is well known, see Knuth [12] for instance, that every integer (positive or
negative) has a unique(−b)-expansion with digits inAb = {0, 1, . . . , b− 1}. Every real number (positive
or negative) has a(−b)-representation, not necessarily unique, since

π−b(1((b− 1)0)ω) = π−b(0(0(b− 1))ω) = −
1

b(b+ 1)

for instance.
We recall some well-known facts.

Proposition 3.1 The set of(−b)-expansions of the positive integers is{u ∈ {0, 1, . . . , b − 1}∗ | u does
not begin with0 and|u| is odd}. The set of(−b)-expansions of the negative integers is{u ∈ {0, 1, . . . , b−
1}∗ | u does not begin with0 and|u| is even}.

LetA be a finite alphabet totally ordered, and letminA be its smallest element.

Definition 3.2 Thealternate order≺alt on infinite words or finite words with same length overA is defined
by:

u1u2u3 · · · ≺alt v1v2v3 · · ·

if and only if there existsk > 1 such that

ui = vi for 1 6 i < k and (−1)k(uk − vk) < 0.

This order was implicitely defined in [8].

Definition 3.3 On the set of finite words, we define theshort-alternate order, denoted≺sa, by: if u =
u1 · · ·uℓ andv = v1 · · · vm are inA∗, thenu ≺sa v if and only if

• ℓ andm are odd, andℓ < m, or ℓ = m and(minA)u ≺alt (minA)v
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• ℓ andm are even, andℓ > m, or ℓ = m andu ≺alt v

• ℓ < m and(minA)m−ℓu ≺sa v

• ℓ > m andu ≺sa (minA)ℓ−mv.

The short-alt order is analogous to the short-lex or radix order relatively to the lexicographical order.
Denote〈x〉−b the(−b)-expansion ofx. We have the following result.

Proposition 3.4 If x andy are integers,x < y if and only if〈x〉−b ≺sa 〈y〉−b.

Example 3.5 In base−2, 〈3〉−2 = 111, 〈4〉−2 = 100, 〈6〉−2 = 11010, and111 ≺sa 100 ≺sa 11010.

Proposition 3.6 The function that maps theb-expansion of a positive integer to its(−b)-expansion can
be realized by a finite right sequential transducer.

Proof: In Fig. 1,0 6 c 6 b− 1, 1 6 d 6 b− 1, and0 6 e 6 b− 2. The processing is done from right to
left by 2-letter blocks. A finite word of the formx2k−1 · · ·x0 which is theb-expansion ofx prefixed by
enough0’s is transformed by the transducer into a finite wordy2k−1 · · · y0 which is the(−b)-expansion
of x, maybe prefixed by0’s. It is straightforward to transform this transducer intoa finite right sequential
transducer.

1 0

dc|(b− d)c

0e|0(e+ 1)
dc |(b − d− 1)(b− c− 1)

0(b− 1) |(b− 1)0
0c|0c

Fig. 1: Finite right sequential transducer realizing conversion from baseb to base−b

2

Example 3.7 Conversion from base2 to base−2.

1 0

10|10, 11|11

00|01

01|10, 10|11, 11|00 00|00, 01|01

Fig. 2: Finite right sequential transducer realizing conversion from base2 to base−2

4 Symbolic dynamical systems and the alternate order
We have seen in the previous section that the alternate orderis the tool to compare numbers written
in a negative base. In this section we give general results onsymbolic dynamical systems defined by the
alternate order. This is analogous to the symbolic dynamical systems defined by the lexicographical order,
see [7]. LetA be a totally ordered finite alphabet.
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Definition 4.1 A words = s1s2 · · · in AN is said to be analternately shift minimalword (asmin-word for
short) if s1 = maxA ands is smaller than, or equal to, any of its shifted images in the alternate order:
for eachn > 1, s �alt snsn+1 · · · .

Let
S(s) = {w = (wi)i∈Z ∈ AZ | ∀n, s �alt wnwn+1 · · · }

be the subshift defined by the alternately shift minimal words. We construct a countable infinite automa-
tonAS(s) as follows (see Fig. 3, where[a, b] denotes the set{a, a + 1, . . . , b} if a 6 b, ε otherwise. It
is assumed in Fig. 3 thats1 > sj for j > 2.) The set of states isN, the initial state is0 and every state

is terminal. For each statei > 0, there is an edgei
si+1

−→ i + 1. If i is even, then for eacha such that
0 6 a 6 si+1 − 1, there is an edgei

a
−→ j, wherej is such thats1 · · · sj is the suffix of maximal length

of s1 · · · sia. If i is odd, then for eachb such thatsi+1 + 1 6 b 6 s1 − 1, there is an edgei
b

−→ j where
j is maximal such thats1 · · · sj is a suffix ofs1 · · · sib; and if si+1 < s1 there is one edgei

s1−→ 1. By
contruction, the deterministic automatonAS(s) recognizes exactly the wordsw such that every suffixy of
w is �alt s1 · · · s|y| and the result below follows.

0 1 2 3
s1 s2 s3

[0, s1 − 1] s1

[s2 + 1, s1 − 1]

[0, s3 − 1]

s1

[s4 + 1, s1 − 1]

s4

Fig. 3: The automatonAS(s)

Proposition 4.2 The subshiftS(s) = {w = (wi)i∈Z ∈ AZ | ∀n, s �alt wnwn+1 · · · } is recognizable by
the countable infinite automatonAS(s).

Proposition 4.3 The subshiftS(s) = {w = (wi)i∈Z ∈ AZ | ∀n, s �alt wnwn+1 · · · } is sofic if and only
if s is eventually periodic.

Proof: The subshiftS(s) is sofic if and only if the set of its finite factorsF (S(s)) is recognizable by a
finite automaton. Given a wordu of A∗, denote by[u] the right class ofu moduloF (S(s)). Then in the
automatonAS(s), for each statei > 1, i = [s1 · · · si], and0 = [ε]. Suppose thats is eventually periodic,
s = s1 · · · sm(sm+1 · · · sm+p)

ω , with m andp minimal. Thus, for eachk > 0 and each0 6 i 6 p − 1,
sm+pk+i = sm+i.
Case 1: p is even. Then for everyk > 0 and0 6 i 6 p − 1, [s1 · · · sm+i] = [s1 · · · sm+pk+i], thus the
statesm+ i andm+ pk + i can be merged. Then the set of states ofAS(s) is {0, 1, . . . ,m+ p− 1}.
Case 2: p is odd. Thenm+ i = [s1 · · · sm+i] = [s1 · · · sm+2pk+i] for everyk > 0 and0 6 i 6 2p− 1,
thus the statesm+i andm+2pk+i can be merged, and the set of states ofAS(s) is{0, 1, . . . ,m+2p−1}.
Conversely, suppose thats is not eventually periodic. Then there exists an infinite sequence of indices
i1 < i2 < · · · such that the sequencessiksik+1 · · · are all different for allk > 1. Take any pair(ij, iℓ),
j, ℓ > 1. If ij andiℓ do not have the same parity, thens1 · · · sij ands1 · · · siℓ are not right congruent



82 Christiane Frougny and Anna Chiara Lai

moduloF (S(s)). If ij and iℓ have the same parity, there existsq > 0 such thatsij · · · sij+q−1 =
siℓ · · · siℓ+q−1 = v and, for instance,(−1)ij+q(sij+q−siℓ+q) > 0 (with the convention that, ifq = 0 then
v = ε). Thens1 · · · sij−1vsij+q ands1 · · · siℓ−1vsiℓ+q both belong toF (S(s)), but s1 · · · sij−1vsiℓ+q

does not belong toF (S(s)). Hences1 · · · sij ands1 · · · siℓ are not right congruent moduloF (S(s)),
so the number of right congruence classes is infinite andF (S(s)) is thus not recognizable by a finite
automaton. 2

Proposition 4.4 The subshiftS(s) = {w = (wi)i∈Z ∈ AZ | ∀n, s �alt wnwn+1 · · · } is a subshift of
finite type if and only ifs is purely periodic.

Proof: Suppose thats = (s1 · · · sp)ω. Consider the finite setX = {s1 · · · sn−1b | b ∈ A, (−1)n(b −
sn) < 0, 1 6 n 6 p}. We show thatS(s) = S(s)X . If w is in S(s), thenw avoidsX , and con-
versely. Now, suppose thatS(s) is of finite type. It is thus sofic, and by Proposition 4.3s is even-
tually periodic. If it is not purely periodic, thens = s1 · · · sm(sm+1 · · · sm+p)

ω , with m andp min-
imal, ands1 · · · sm 6= ε. Let I = {s1 · · · sn−1b | b ∈ A, (−1)n(b − sn) < 0, 1 6 n 6 m} ∪
{s1 · · · sm(sm+1 · · · sm+p)

2k sm+1 · · · sm+n−1b | b ∈ A, k > 0, (−1)m+2kp+n(b − sm+n) < 0, 1 6

n 6 2p}. ThenI ⊂ A+ \F (S(s)). First, suppose there exists1 6 j 6 p such that(−1)j(sj−sm+j) < 0
ands1 · · · sj−1 = sm+1 · · · sm+j−1. Fork > 0 fixed, letw(2k) = s1 · · · sm(sm+1 · · · sm+p)

2ks1 · · · sj ∈
I. We haves1 · · · sm(sm+1 · · · sm+p)

2ksm+1 · · · sm+j−1 ∈ F (S(s)). On the other hand, forn > 2,
sn · · · sm(sm+1 · · · sm+p)

2k is greater in the alternate order than the prefix ofs of same length, thus
sn · · · sm(sm+1 · · · sm+p)

2ks1 · · · sj belongs toF (S(s)). Hence any strict factor ofw(2k) is in F (S(s)).
Therefore for anyk > 0, w(2k) ∈ X(S(s)), andX(S(s)) is thus infinite:S(s) is not of finite type. Now,
if such aj does not exist, then for every1 6 j 6 p, sj = sm+j , ands = (s1 · · · sm)ω is purely periodic.
2

Remark 4.5 Lets′ = s′1s
′
2 · · · be a word inAN such thats′1 = minA and, for eachn > 1, s′ns

′
n+1 · · · �alt

s′. Such a word is said to be analternately shift maximalword. LetS′(s′) = {w = (wi)i∈Z ∈ AZ |
∀n, wnwn+1 · · · �alt s

′}. The statements in Propositions 4.2, 4.3 and 4.4 are also valid for the subshift
S′(s′) (with the automatonAS′(s′) constructed accordingly).

5 Negative real base
5.1 The (−β)-shift
Ito and Sadahiro introduced in [10] a greedy algorithm to represent any real number in real base−β,
β > 1, and with digits inA−β = {0, 1, . . . , ⌊β⌋}. Remark that, whenβ is not an integer,A−β = Aβ .

A transformation onI−β =
[
− β

β+1 ,
1

β+1

)
is defined as follows:

T−β(x) = −βx− ⌊−βx+
β

β + 1
⌋.

For every real numberx ∈ I−β we will denote the(−β)-expansion ofx by d−β(x). It is defined by
d−β(x) = (xi)i>1 if and only if xi = ⌊−βT i−1

−β (x) + β
β+1⌋, andx =

∑
i>1 xi(−β)−i. When this last

equality holds, we may also write:
x = (.x1x2 · · · )−β .
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We show that the alternate order≺alt on (−β)-expansions gives the numerical order.

Proposition 5.1 Letx andy be inI−β . Then

x < y ⇐⇒ d−β(x) ≺alt d−β(y).

Proof: Suppose thatd−β(x) ≺alt d−β(y). Then there existsk > 1 such thatxi = yi for 1 6 i < k and
(−1)k(xk − yk) < 0. Suppose thatk is even,k = 2q. Thenx2q 6 y2q − 1. Thusx − y 6 −β−2q +∑

i>2q+1 xi(−β)−i−
∑

i>2q+1 yi(−β)−i < 0, since
∑

i>1 x2q+i(−β)−i and
∑

i>1 y2q+i(−β)−i are in
I−β . The casek = 2q + 1 is similar. The converse is immediate. 2

Definition 5.2 A word(xi)i>1 is said to be(−β)-admissibleif there exists a real numberx ∈ I−β such
thatd−β(x) = (xi)i>1. The(−β)-shift S−β is the closure of the set of(−β)-admissible words, and it is
a subshift ofAZ

β .

Define the sequenced∗−β(
1

β+1 ) as follows:

• if d−β(−
β

β+1 ) = d1d2 · · · is not a periodic sequence with odd period,

d
∗
−β(

1

β + 1
) = d−β(

1

β + 1
) = 0d1d2 · · ·

• otherwise ifd−β(−
β

β+1 ) = (d1 · · · d2p+1)
ω,

d
∗
−β(

1

β + 1
) = (0d1 · · · d2p(d2p+1 − 1))ω.

Theorem 5.3 (Ito-Sadahiro [10]) A word(wi)i>1 is (−β)-admissible if and only if for eachn > 1

d−β(−
β

β + 1
) �alt wnwn+1 · · · ≺alt d

∗
−β(

1

β + 1
).

A word(wi)i∈Z is an element of the(−β)-shift if and only if for eachn

d−β(−
β

β + 1
) �alt wnwn+1 · · · �alt d

∗
−β(

1

β + 1
).

Putd = d−β(−
β

β+1 ) = d1d2 · · · andd∗ = d
∗
−β(

1
β+1 ). Theorem 5.3 shows in particular thatd is an

alternately shift minimal word, and the result can be restated as follows.

Lemma 5.4 If d = d−β(−
β

β+1) is not a periodic sequence with odd period, then

S−β = S(d) = {(wi)i∈Z ∈ AZ

β | ∀n, d �alt wnwn+1 · · · }.

If d = d−β(−
β

β+1) is a periodic sequence of odd period, thend∗ = (0d1 · · · d2p(d2p+1 − 1))ω and

S−β = S(d) ∩ S′(d∗)

where
S′(d∗) = {(wi)i∈Z ∈ AZ

β | ∀n, wnwn+1 · · · �alt d
∗}.
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Theorem 5.5 The(−β)-shift is a system of finite type if and only ifd−β(−
β

β+1 ) is purely periodic.

Proof: If d−β(−
β

β+1 ) is purely periodic with an even period, the result follows from Theorem 5.3,

Lemma 5.4 and Proposition 4.4. Ifd−β(−
β

β+1 ) is purely periodic with an odd period, the result fol-
lows from Theorem 5.3, Lemma 5.4, Proposition 4.4, Remark 4.5, and the fact that the intersection of two
finite sets is finite. 2

By Theorem 5.3, Lemma 5.4, Proposition 4.3, Remark 4.5, and the fact that the intersection of two
regular sets is again regular the following result follows.

Theorem 5.6 (Ito-Sadahiro [10]) The(−β)-shift is a sofic system if and only ifd−β(−
β

β+1 ) is eventually
periodic.

Example 5.7 LetG = 1+
√
5

2 ; thendG(1) = 11 and theG-shift is of finite type. Sinced−G(−
G

G+1 ) = 10ω

the(−G)-shift is a sofic system which is not of finite type.
The automaton in Fig. 4 (right) recognizing the(−G)-shift is obtained by minimizing the result of the
construction of Proposition 4.2. Remark that it is the automaton that recognizes the celebrated even shift
(see [14]).

1

0

0

0

0

1

Fig. 4: Finite automata for theG-shift (left) and for the(−G)-shift (right)

Example 5.8 Let β = G2 = 3+
√
5

2 ; then dβ(1) = 21ω and theβ-shift is sofic, but not of finite type.

Now,d−β(−
β

β+1 ) = (21)ω and the(−β)-shift is of finite type: the set of minimal forbidden factorsis
X(S−β) = {20}.

2

0

0, 1 1

2

1

0, 1 2

Fig. 5: Finite automata for theG2-shift (left) and for the(−G2)-shift (right)

5.2 Entropy of the −β-shift
Examples 5.7 and 5.8 suggest that the entropy of the(−β)-shift is the same as the entropy of theβ-shift
because the adjacency matrices of the automata are the same.This is what we show in this section.

A standard technique for computing the entropy of a subshiftS is to construct a (not necessarily finite)
automaton recognizingF (S). Then the submatrices of the adjacency matrix are taken intoaccount and
for everyn the greatest eigenvalueλn of the submatrix of ordern is computed. A result proved in [9]
ensures that the limitλ of the sequenceλn exists and it satisfiesh(S) = logλ. Unfortunately the explicit
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computation of theλn’s in the general case turns out to be very complicated, so we use tools from the
theory of dynamical systems:

– the notion of topological entropy for one-dimensional dynamical systems, a one-dimensional dy-
namical system being a couple(I, T ) consisting in a bounded intervalI and a piecewise continuous
transformationT : I → I;

– a result by Takahashi [24] establishing the relation between topological entropies of one-dimensional
dynamical systems and symbolic dynamical systems;

– a result by Shultz [22] on the topological entropy of some one-dimensional dynamical systems.

Let us begin with the definition of topological entropy for one-dimensional dynamical systems.

Definition 5.9 Let (I, T ) be a dynamical system. For every finite cover ofI, sayC, set:

H(T, C) := lim sup
1

n
logN

(
n−1∨

m=0

T−mC

)

with
∨

denoting the finest common refinement andN = N(C) denoting the number of elements of the
smallest subcover ofC, a subcover ofC being a subfamily ofC still coveringI.

Thetopological entropyof (I, T ) is given by the formula

h(I, T ) := supH(T, C). (1)

In [24] Takahashi proved the equality between the topological entropy of a piecewise continuous dy-
namical system and the topological entropy of an appropriate subshift. Before stating such a result we
need a definition.

Definition 5.10 LetT : I → I be a piecewise continuous map on the intervalI. Lap intervalsare closed
intervalsI0, . . . , Iℓ of T satisfying the following conditions:

(a) I0 ∪ · · · ∪ Iℓ = I;

(b) T is monotone on each intervalIi, i = 0, . . . , ℓ;

(c) the numberℓ is minimal under the conditions (a) and (b).

The numberℓ is calledlap numberand it is denotedlap(T ).

Remark 5.11 If the mapT is piecewise linear then the lap intervals are unique and they coincide with
the intervals of continuity ofT .

Theorem 5.12 (Takahashi [24])Let (I, T ) be a dynamical system such thatT is a piecewise continuous
transformation over the closed intervalI on itself. LetA be an alphabet and letγT : I → AN be the
map defined byx 7→ x1x2 · · · with xn in A such thatT n(x) belongs to the lap intervalIxn

. Define the
subshiftXT := γT (I) in AN.

If lap(T ) is finite then
h(XT ) = h(I, T ). (2)



86 Christiane Frougny and Anna Chiara Lai

The entropy in the very particular case of a piecewise linearmap with constant slope is explicitely given
in the following result.

Proposition 5.13 (Shultz [22, Proposition 3.7])Let(I, T ) be a dynamical system such thatT is a piece-
wise linear map with slope±β. Then the topological entropy of(I, T ) is equal tolog β.

We now prove our result.

Theorem 5.14 The topological entropy ofS−β is equal tolog β.

Proof: Consider the dynamical system(I−β , T−β). We extend the mapT−β to the closure ofI−β to
fullfill the conditions of Theorem 5.12. By definition of the(−β)-expansion, the subshiftXT−β

coincides
with the closure of the set of the(−β)-expansions inAN

−β , whose entropy is the same asS−β ⊂ AZ

−β . As
T−β is piecewise linear, the lap intervals coincide with the (finite) number of continuity intervals. Then,
by Theorem 5.12 and Proposition 5.13,h(S−β) = h(I−β , T−β) = log β. 2

5.3 The Pisot case
We first prove that the classical result saying that ifβ is a Pisot number, then every element ofQ(β)∩[0, 1]
has an eventually periodicβ-expansion is still valid for the base−β.

Theorem 5.15 If β is a Pisot number, then every element ofQ(β) ∩ I−β has an eventually periodic
(−β)-expansion.

Proof: Let Mβ(X) = Xd − a1X
d−1 − · · · − ad be the minimal polynomial ofβ and denote byβ =

β1, . . . , βd the conjugates ofβ. Let x be arbitrarily fixed inQ(β) ∩ I−β . SinceQ(β) = Q(−β), x can
be expressed asx = q−1

∑d−1
i=0 pi(−β)i with q andpi in Z, q > 0 as small as possible in order to have

uniqueness.
Let (xi)i>1 be the(−β)-expansion ofx, and write

rn = r(1)n = r(1)n (x) =
xn+1

−β
+

xn+2

(−β)2
+ · · · = (−β)n

(
x−

n∑

k=1

xk(−β)−k

)
.

Sincern = T n
−β(x) belongs toI−β then|rn| 6

β
β+1 < 1. For2 6 j 6 d, let

r(j)n = r(j)n (x) = (−βj)
n

(
q−1

d−1∑

i=0

pi(−βj)
i −

n∑

k=1

xk(−βj)
−k

)
.

Let η = max{|βj| | 2 6 j 6 d}: sinceβ is a Pisot number,η < 1. Sincexk 6 ⌊β⌋ we get

|r(j)n | 6 q−1
d−1∑

i=0

|pi|η
n+i + ⌊β⌋

n−1∑

k=0

ηk

and sinceη < 1, max16j6d{supn{|r
(j)
n |}} < ∞.

We need a technical result. SetRn = (r
(1)
n , . . . , r

(d)
n ) and letB the matrixB = ((−βj)

−i)16i,j6d.
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Lemma 5.16 Letx = q−1
∑d−1

i=0 pi(−β)i. For everyn > 0 there exists a uniqued-upleZn = (z
(1)
n , . . . , z

(d)
n )

in Zd such thatRn = q−1ZnB.

Proof: By induction onn. First,r1 = −βx− x1, thus

r1 = q−1

(
d−1∑

i=0

pi(−β)i+1 − qx1

)
= q−1

(
z
(1)
1

−β
+ · · ·+

z
(d)
1

(−β)d

)

using the fact that(−β)d = −a1(−β)d−1 + a2(−β)d−2 + · · ·+ (−1)dad. Now,rn+1 = −βrn − xn+1,
hence

rn+1 = q−1

(
z(1)n +

z
(2)
n

−β
+ · · ·+

z
(d)
n

(−β)d−1
− qxn+1

)
= q−1

(
z
(1)
n+1

−β
+ · · ·+

z
(d)
n+1

(−β)d

)

sincez(1)n − qxn+1 ∈ Z. Thus for everyn there exists(z(1)n , . . . , z
(d)
n ) in Zd such that

rn = q−1
d∑

k=1

z(k)n (−β)−k.

Since the latter equation has integral coefficients and is satisfied by−β, it is also satisfied by−βj, 2 6

j 6 d, and

r(j)n = (−βj)
n

(
q−1

d−1∑

i=0

pi(−βj)
i −

n∑

k=1

xk(−βj)
−k

)
= q−1

d∑

k=1

z(k)n (−βj)
−k.

2

Let us go back to the proof of Theorem 5.15. LetVn = qRn. The(Vn)n>1 have bounded norm, since

max16j6d{supn{|r
(j)
n |}} < ∞. As the matrixB is invertible, for everyn > 1,

‖Zn‖ = ‖(z(1)n , . . . , z(d)n )‖ = max{|z(j)n | : 1 6 j 6 d} < ∞

so there existp andm > 1 such thatZm+p = Zp, hencerm+p = rp and the(−β)-expansion ofx is
eventually periodic. 2

As a corollary we get the following result.

Theorem 5.17 If β is a Pisot number then the(−β)-shift is a sofic system.

Thenormalizationin base−β is the function which maps any(−β)-representation over an alphabetC
of digits of a given number ofI−β onto the admissible(−β)-expansion of that number.

LetC = {−c, . . . , c}, wherec > ⌊β⌋ is an integer. Denote

Z−β(2c) =
{
(zi)i>0 ∈ {−2c, . . . , 2c}N

∣∣∣
∑

i>0

zi(−β)−i = 0
}
.
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The setZ−β(2c) is recognized by a countable infinite automatonA−β(2c): the set of statesQ(2c)

consists of alls ∈ Z[β] ∩ [− 2c
β−1 ,

2c
β−1 ]. Transitions are of the forms

e
→ s′ with e ∈ {−c, . . . , c} such

thats′ = −βs+ e. The state0 is initial; every state is terminal.
Let Mβ(X) be the minimal polynomial ofβ, and denote byβ = β1, β2, . . . ,βd the roots ofMβ. We

define a norm on the discrete lattice of rankd, Z[X ]/(Mβ), as

||P (X)|| = max
16i6d

|P (βi)|.

Proposition 5.18 If β is a Pisot number then the automatonA−β(2c) is finite for everyc > ⌊β⌋.

Proof: Every states in Q(2c) is associated with the label of the shortest pathf0f1 · · · fn from 0 to s in
the automaton. Thuss = f0(−β)n + f1(−β)n−1 + · · ·+ fn = P (β), with P (X) in Z[X ]/(Mβ). Since
f0f1 · · · fn is a prefix of a word ofZ−β(2c), there existsfn+1fn+2 · · · such that(fi)i>0 is in Z−β(2c).
Thuss = |P (β)| < 2c

β−1 . For every conjugateβi, 2 6 i 6 d, |βi| < 1, and|P (βi)| <
2c

1−|βi| . Thus every
state ofQ(2c) is bounded in norm, and so there is only a finite number of them. 2

The redundancy transducerR−β(c) is similar toA−β(2c). Each transitions
e
→ s′ of A−β(2c) is

replaced inR−β(c) by a set of transitionss
a|b
−→ s′, with a, b ∈ {−c, . . . , c} anda − b = e. Thus one

obtains the following proposition.

Proposition 5.19 The redundancy transducerR−β(c) recognizes the set

{
(x1x2 · · · , y1y2 · · · ) ∈ CN × CN

∣∣ ∑

i>1

xi(−β)−i =
∑

i>1

yi(−β)−i
}
.

If β is a Pisot number, thenR−β(c) is finite.

Theorem 5.20 If β is a Pisot number, then normalization in base−β on any alphabetC is realizable by
a finite transducer.

Proof: The normalization is obtained by keeping inR−β(c) only the outputsy that are(−β)-admissible.
By Theorem 5.17 the set of admissible words is recognizable by a finite automatonD−β . The finite
transducerN−β(c) doing the normalization is obtained by making the intersection of the output automaton
of R−β(c) with D−β. 2

Proposition 5.21 If β is a Pisot number, then the conversion from base−β to baseβ is realizable by a
finite transducer. The result isβ-admissible.

Proof: Let x ∈ I−β , x > 0, such thatd−β(x) = x1x2x3 · · · . Denoteā the signed digit(−a). Then
x1x2x3 · · · is a β-representation ofx on the alphabet̃A−β = {−⌊β⌋, . . . , ⌊β⌋}. Thus the conversion
is equivalent to the normalization in baseβ on the alphabet̃A−β , and whenβ is a Pisot number, it is
realizable by a finite transducer by [4]. 2
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6 On-line conversion from positive to negative base
Proposition 5.21 shows the actability of the conversion from negative to positive base with a finite trans-
ducer for a particular class of bases,i.e., the Pisot numbers. The result is admissible, but this transducer
is not sequential.

In the case where the base is a negative integer, we have seen in Section 3 that the conversion from base
b to base−b is realizable by a finite right sequential transducer.

6.1 On-line conversion in the general case
An on-line algorithm is such that, after a certain delay of latencyδ during which the data are read without
writing, a digit of the output is produced for each digit of the input, see [17] for on-line arithmetic in
integer base.

Theorem 6.1 There exists a conversion from baseβ to base−β which is computable by an on-line algo-
rithm with delayδ, whereδ is the smallest positive integer such that

⌊β⌋

βδ−1
+

⌊β⌋

βδ
6 1− {β}. (3)

In general the result is not(−β)-admissible.

On-line algorithm

Input: a word(xj)j>1 of AN

β such thatx =
∑

j>1 xjβ
−j and0 6 x < 1

β+1 .

Output: a word(yj)j>1 of AN

β such thatx =
∑

j>1 yj(−β)−j .

begin
q0 := 0
for j := 1 to δ do

qj := qj−1 +
xj

βj

j := 1
while j > 1 do

zδ+j := −βqδ+j−1 + (−1)j
xδ+j

βδ

if − β
β+1 6 zδ+j 6

β2

β+1 then yj := ⌊zδ+j +
β

β+1⌋

if zδ+j >
β2

β+1 then yj := ⌊β⌋

if zδ+j < − β
β+1 then yj := 0

qδ+j := zδ+j − yj
j := j + 1

end

Proof: Claim 1. For eachj > 1

x1

β
+

x2

β2
+ · · ·+

xδ+j

βδ+j
= −

y1
β

+
y2
β2

− · · ·+ (−1)j
yj
βj

+ (−1)j
qδ+j

βj
.

Claim 2. If − β
β+1 6 zδ+j 6

β2

β+1 thenyj belongs toAβ andqδ+j belongs toI−β = [− β
β+1 ,

1
β+1).

Proof of Claim 2: Clearly0 6 yj 6
β2

β+1 +
β

β+1 = β. Moreover,zδ+j +
β

β+1 = yj + {zδ+j +
β

β+1}, thus
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qδ+j := zδ+j − yj = {zδ+j +
β

β+1} −
β

β+1 , and the claim is proved.

Claim 3. If zδ+j >
β2

β+1 thenqδ+j > − β
β+1 .

Proof of Claim 3: We have thatqδ+j = zδ+j − ⌊β⌋ > β2

β+1 − ⌊β⌋ > − β
β+1 .

Claim 4. If zδ+j >
β2

β+1 andqδ+j−1 > − β
β+1 thenqδ+j <

1
β+1 .

Proof of Claim 4: Sinceqδ+j = −βqδ+j−1 + (−1)j
xδ+j

βδ − ⌊β⌋ 6 β2

β+1 +
⌊β⌋
βδ − ⌊β⌋, the claim is proved

if, and only if, ⌊β⌋
βδ − ⌊β⌋ < 1 − β, that is to say, if, and only if,⌊β⌋

βδ < 1 − {β}, which is true thanks
to (3).
Claim 5. If zδ+j < − β

β+1 andqδ+j−1 ∈ I−β thenj is odd,− β
β+1 − ⌊β⌋

βδ 6 qδ+j < − β
β+1 , andqδ+j+1

belongs toI−β .
Proof of Claim 5: Ifj is even thenzδ+j := −βqδ+j−1+

xδ+j

βδ > − β
β+1 +

xδ+j

βδ > − β
β+1 , hencej must be

odd. Setj = 2k+1. We havey2k+1 = 0 andqδ+2k+1 = zδ+2k+1 = −βqδ+2k −
xδ+2k+1

βδ > − β
β+1 −

⌊β⌋
βδ

sinceqδ+j−1 ∈ I−β .

Thenzδ+2k+2 = −βqδ+2k+1 +
xδ+2k+2

βδ > β2

β+1 . Hencey2k+2 = ⌊β⌋. By Claim 3,qδ+2k+2 > − β
β+1 .

On the other handqδ+2k+2 = zδ+2k+2 − ⌊β⌋ = −βqδ+2k+1 +
xδ+2k+2

βδ − ⌊β⌋ = β2qδ+2k +
xδ+2k+1

βδ−1 +
xδ+2k+2

βδ − ⌊β⌋ < β2

β+1 + ⌊β⌋
βδ−1 + ⌊β⌋

βδ − ⌊β⌋ 6 1
β+1 by (3), thusqδ+2k+2 belongs toI−β .

By hypothesis,qδ is in I−β . By the previous claims, for everyk > 0, qδ+2k belongs toI−β and

− β
β+1 − ⌊β⌋

βδ 6 qδ+2k+1 < 1
β+1 . Thus, for everyj > 1,

x1

β
+ · · ·+

xδ+j

βδ+j
=

y1
(−β)

+ · · ·+
yj

(−β)j
+

qδ+j

(−β)j

with qδ+j bounded. Therefore the algorithm converges, and

∑

j>1

xjβ
−j =

∑

j>1

yj(−β)−j .

2

6.2 Conversion in the Pisot case

We now show that, whenβ is a Pisot number, there is a finite on-line transducer realizing the conversion.

Theorem 6.2 If β is a Pisot number, the conversion from baseβ to base−β is realizable by a finite
on-line transducer.

Proof: Following the on-line algorithm of Section 6.1 we constructan on-line transducerC as follows.
The set of states isQ = Qt ∪ Qs, with the set of transient statesQt = {qj | 0 6 j 6 δ − 1}, and the set
of synchronous statesQs = {qδ+j | j > 0}. The initial state isq0. For 1 6 j 6 δ, transient edges are
defined by

qj−1
xj|ε
−→ qj .



Negative bases and automata 91

Synchronous edges are defined by

qδ+j−1
xδ+j |yj

−→ qδ+j

for j > 1. There is an infinite path in the automatonC starting inq0 and labelled by

q0
x1|ε
−→ q1 · · ·

xδ|ε
−→ qδ

xδ+1|y1

−→ qδ+1
xδ+2|y2

−→ qδ+2 · · ·

if, and only if,
∑

j>1 xjβ
−j =

∑
j>1 yj(−β)−j .

LetMβ(X) be the minimal polynomial ofβ and letβ = β1, β2, . . . , βd be the roots ofMβ. Recall that
Z[X ]/(Mβ(X)) ∼ Z[β] is a discrete lattice of rankd. Sinceβ is a Pisot number,|βi| < 1 for 2 6 i 6 d.

For eachj > 1, qj is an element ofZ[β, β−1]. For1 6 i 6 d let qj(βi) be the element ofZ[βi, β
−1
i ]

obtained by replacingβ by βi in qj . Thenqj = qj(β).

First of all, for everyj > 1, − β
β+1 − ⌊β⌋

βδ 6 qj(β) <
1

β+1 by the on-line algorithm.
Secondly, for everyj > 1 and2 6 i 6 d,

qδ+j(βi) = −βiqδ+j−1(βi) + (−1)j
xδ+j

βδ
i

− yj . (4)

For2 6 i 6 d let

Mi =
⌊β⌋

(1− |βi|)

(
1 +

1

|βi|δ
)
.

Then, if |qδ+j−1(βi)| 6 Mi, then|qδ+j(βi)| 6 Mi by (4).
Now, for 0 6 j 6 δ and2 6 i 6 d,

|qj(βi)| < ⌊β⌋(
1

|βi|
+ · · ·+

1

|βi|δ
) < Mi.

Define a norm onZ[X ]/(Mβ(X)) by ‖q‖ = max16i6d |q(βi)|. Thus the elements ofQ are all bounded
in norm, and soQ is finite. 2

In the particular case thatβ2 = aβ + 1, a integer> 1 (β is thus a Pisot number), we can construct
directly a simpler finite left sequential transducer realizing the conversion.

Proposition 6.3 If β2 = aβ + 1, a > 1, then the conversion from baseβ to base−β is realizable by the
finite left sequential transducer of Fig. 6.

Proof: The left sequential transducer in Fig. 6 converts aβ-expansion of a real numberx in [0, β) of the
form x0.x1x2 · · · into a (−β)-representation ofx of the formy0.y1y2 · · · . The processing is done from
left to right by 2-letter blocks. We take0 6 d 6 a, 0 6 c 6 a − 1, 1 6 e 6 a. Since the input is
admissible, no factorae, with 1 6 e 6 a can occur in an input word.

2
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0 1̄

e0|(e− 1)0

ce|(c+ 1)(a− e)

d0|d0 00|0a, de|d(a− e)

Fig. 6: Finite left sequential transducer realizing conversion from baseβ to base−β, β2 = aβ + 1
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[1] P. Ambrož, D. Dombek, Z. Masáková, E. Pelantová, Numbers with integer expansion in the numer-

ation system with negative base, preprint 2009, 13pp.http://arxiv.org/abs/0912.4597.
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