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We study expansions in non-integer negative bageintroduced by Ito and Sadahiro. Using countable automata
associated witli—3)-expansions, we characterize the case wheré-tig-shift is a system of finite type. We prove
that, if 3 is a Pisot number, then the-3)-shift is a sofic system. In that case, addition (and more rgdigenormal-
ization on any alphabet) is realizable by a finite transdué&rthen give an on-line algorithm for the conversion from
positive bases to negative base-3. When g is a Pisot number, the conversion can be realized by a finHéen
transducer.
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1 Introduction

Expansions in integer negative basg, whereb > 2, seem to have been introduced by Griinwald in [8],
and rediscovered by several authors, see the historicahemts given by Knuth [12]. The choice of a neg-
ative base-b and of the alphabd®, . . ., b—1} is interesting, because it provides a signless represamtat
for every number (positive or negative). In this case it isyet@a distinguish the sequences representing a
positive integer from the ones representing a negativgantelenotinw.)_;, := Zf:o w; (—b)® for any

w = wg - wp IN{0,...,b — 1}* with no leadingd’s, we haveN = {(w.)_; | |w| is odd;. The classical
monotonicity between the lexicographical ordering on vgoadd the represented numerical values does
not hold anymore in negative base, for instaBce (111.)_5, 4 = (100.)_ and111 >;., 100. Never-
theless it is possible to restore such a correspondencérbgirting an appropriate ordering on words, in
the sequel denoted by,;;, and called thalternate order

Representations in negative base also appear in some cobgse number systems, for instance base
B = 2i since3? = —4 (see [5] for a study of their properties from an automatabgopoint of view).
Thus, beyond the interest in the problem in itself, the argtladso wish the study of negative bases to be
a useful preliminar step to better understanding the coxrgalse.

Ito and Sadahiro recently introduced expansions in noggirt negative base in [10]. They have
given a characterization of admissible sequences, andrsti@vthe(—3)-shift is sofic if and only if the
(—p)-expansion of the numba% is eventually periodic.

In this paper we pursue their work. The purpose of this cbatidn is to show that many properties of
the positive base (integer or not) numeration systems ebttetine negative base case, the main difference
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being the sets of nhumbers that are representable in the ffevedit cases. The results could seem not
surprising, but this study put into light the important rplayed by the order on words: the lexicographic
order for the positive bases, the alternate order for thathegbases.

Very recently there have been several contributions tottiayf numbers having only positive powers
of the base in their expansion, the so-called)-integers, in [1], [16], and [23]. Dynamical properties of
the (—3)-transformation are studied in [13].

We first establish some properties of the negative integes ba, that are more or less folklore. This
allows us to introduce the definitions of alternate orderafrshort-alternate order, that make possible to
order numbers by the{— 3)-expansions.

We then prove a general result which is not related to nunoeralystems but to the alternate order,
and which is of interest in itself. We define a symbolic dyneathsystem associated with a given infinite
word s satisfying some properties with respect to the alternaderoon infinite words. We design an
infinite countable automaton recognizing it. We then are &bkharacterize the case when the symbolic
dynamical system is sofic (resp. of finite type). Using thiaegal construction we can prove that the
(—pB)-shift is a symbolic dynamical system of finite type if andyoiflthe (—3)-expansion 0#% is
purely periodic. We also show that the entropy of the?)-shift is equal tdog S.

We then focus on the case whetés a Pisot number, that is to say, an algebraic integer gréaa 1
such that the modulus of its Galois conjugates is less tharh&.natural integers and the Golden Mean
are Pisot numbers. We extend all the results known to hotditrihe Pisot case fg#-expansions to the
(—pB)-expansions. In particular we prove thatgiis a Pisot number, then every number fr@s3) has
an eventually periodi¢—3)-expansion, and thus that tie 3)-shift is a sofic system.

Wheng is a Pisot number, it is known that addition in base— and more generally normalization in
bases on an arbitrary alphabet — is realizable by a finite transd{#le We show that this is still the
case in base 5.

The conversion from positive integer base to negative artbgse is realizable by a finite right sequen-
tial transducer. Whepgi is not an integer, we give an on-line algorithm for the cosigr from bases to
base—g, where the result is not admissible in general. Wheg a Pisot number, the conversion can be
realized by a finite on-line transducer.

A preliminary version of Sections 4 and 5 has been presentf].i

2 Definitions and preliminaries

2.1 Words and automata

An alphabetis a totally ordered set. In this paper the alphabets areyalfimite. A finite sequence of
elements of an alphabet is called aword, and the set of words ovet is the free monoid4*. The
empty word is denoted by. The set of infinite (resp. bi-infinite) words ovdris denoted byA™ (resp.
AZ). Letwv be a word of4*, denote byy™ the concatenation af to itself » times, and by* the infinite
concatenatiomvv - - -. A word of the formuv® is said to beeventually periodic A (purely) periodic
word is an eventually periodic word of the fort.

A finite word v is afactor of a (finite, infinite or bi-infinite) wordy if there existsu andw such that
x = uvw. Whenu is the empty wordy is aprefixof x. The prefixv is strict if v # . Whenw is empty,
v is said to be auffixof x.

We recall some definitions on automata, see [3] and [20] fstaimce. Anautomaton overd, A =
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(Q,A,E I,T), is a directed graph labelled by elementsAdf The set of vertices, traditionally called
states is denoted byQ, I C @Q is the set ofinitial states,7” C @ is the set ofterminal states and
E C Q x A x Qs the set of labelleédges If (p,a,q) € E, we writep % ¢. The automaton ifinite if

Q is finite. The automatou is deterministiaf E is the graph of a (partial) function fro@ x A into Q,
and if there is a unique initial state. A subgétof A* is said to beecognizable by a finite automatoor
regular, if there exists a finite automato# such that” is equal to the set of labels of paths starting in an
initial state and ending in a terminal state.

Recall that two words andv are said to beight congruent moduld{ if, for every w, uw is in H if
and only ifvw is in H. Itis well known thatH is recognizable by a finite automaton if and only if the
congruence modulé has finite index.

Let A and A’ be two alphabets. Aansduceiris an automatofl = (Q, A* x A™, E,I,T) where the
edges ofF are labelled by pairs idl* x A’™*. Itis said to befinite if the setQ of states and the séf of

edges are finite. Ifp, (u,v), q) € E, we writep le> q. Theinput automatorfresp.output automatoyof

such a transducer is obtained by taking the projection oégsda the first (resp. second) component. A
transducer is said to squentialf its input automaton is deterministic.

An on-line transducer is a particular kind of sequentiahdducer. Anon-line transducewith delay
0, A =(Q,Ax (A Ue),E ,{q}), is a sequential automaton composed of a transient part aad o
synchronous part, see [17]. The set of states is equal to Q; U Q,, whereQ), is the set of transient
states and); is the set of synchronous states. In the transient party @ath of lengthy starting in the
initial stateq is of the form

z1le zale zsle
o —>q1 —> —>4qs
whereqo, ...,qs—1 are inQy, z; in A, for1 < j < ¢, and the only edge arriving in a state @f is as
above. In the synchronous part, edges are labelled by eteroka x A’. This means that the transducer
starts reading words of lengtd § and outputting nothing, and after that delay, outputs Bgiiame digit
for each input digit. If the set of statég and the set of edges are finite, the on-line automaton is said
to be finite.
The same notions can be defined for automata and transdwoesging words from right to left : they
are calledight automata or transducers.

2.2 Symbolic dynamics

Let us recall some definitions on symbolic dynamical systemsibshifts (see [15, Chapter 1] or [14]).
The setA” is endowed with the lexicographic order, denoted,., the product topology, and the shift
o, defined byo ((2;)icz) = (ziy1)icz. A setS C A% is asymbolic dynamical systerar subshift if it
is shift-invariant and closed for the product topology4f. A bi-infinite word ~ avoidsa set of word
X C A*if no factor of z is in X. The set of all words which avoi is denotedSx. A setS C A% isa
subshift if and only ifS is of the formSx for someX.

The same notion can be defined for a one-sided subshift'of

Let F'(S) be the set of factors of elements 8f let I(S) = AT \ F(S) be the set of words avoided
by S, and letX (S) be the set of elements @fS) which have no proper factor if{.S). The subshifts
is soficif and only if F'(.S) is recognizable by a finite automaton, or equivalentl¥( {fS) is recognizable
by a finite automaton. The subshfftis of finite typeif S = Sx for some finite sef(, or equivalently if
X (9) is finite. We will say that the subshift is recognizabléy an automatom (finite or infinite) when
the setF'(S) is recognizable by.
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The topological entropy of a subsh#tis
. 1
h(S) = lim —log(Bn(S5))

whereB,,(5) is the number of elements &f(S) of lengthn. WhensS is sofic, the entropy of is equal
to the logarithm of the spectral radius of the adjacency imafrthe finite automaton recognizing(.s).

2.3 Numeration systems

The reader is referred to [15, Chapter 7] and to [7] for a tedgiresentation of these topics. Represen-
tations of real numbers in a non-integer bdse 1 were introduced by Rényi [19] under the namesef
expansionsLetx be a real number in the intervél 1]. A representation in basg (or as-representation)
of z is an infinite word(z;);>1 such that

T = Z z;BC

i>1

Letx = (z;);>1. Thenumerical valuén baseg is the functionr; defined byrg(x) = > 2 ;87"

A particularS-representation — called thieexpansior— of a real numbet in [0, 1] can be computed
by the “greedy algorithm” : denote by |, [y] and{y} the lower integer part, the upper integer part and
the fractional part of a number. Setro = « and let fori > 1, x; = |Bri—1], r: = {Bri—1}. Then
x =Y, i7" The-expansion of: will be denoted byds(z) = (2)i>1.

The digitsz; are elements of the canonical alphadgt= {0, ..., [5] — 1}, excepted whef is an
integer andr = 1, in which casels(1) = £000.. ..

If x > 1, there exists somk > 1 such thatr/3* belongs t00, 1). If dg(z/8%) = (yi)i>1 then, by
shifting, thes-expansion ofc is (z)s = y1 - - - Y- Yb+1Ykt2 - - - -

An equivalent definition is obtained by using tReransformationof the unit interval which is the
mapping

Ts:x— px— |fx].
Thends(z) = (2:)i>1 ifand only if z; = (BT (z) ).

If a representation ends in infinitely many zeros, lik#, the ending zeros are omitted and the repre-
sentation is said to binite.

In the case where thé-expansion of 1 is finite, there is a special representatiayinqg an important
role. Letdg(1) = (t;)i>1 and setl; (1) = dg(1) if d(1) is infinite andd; (1) = (t1 -« - tm—1(tm — 1))*
if dg(1) =11+ tm—1tn, is finite.

A word (z;);>1 is said to bes-admissibldf there exists a real number € [0, 1) such thaidg(z) =
(x:)i>1. Denote byDg the set ofg-expansions of numbers @, 1). It is a shift-invariant subset o&%.
The §-shift S is the closure o and it is a subshift oft. Whenj is an integerS; is the full 5-shift
AZ.

Theorem 2.1 (Parry[18]) Let 8 > 1 be a real number. A worthw;);>1 belongs taDg if and only if for
aln>1

WnWnt1 -+ <pew dj(1).
A word (w;);ez belongs taSg if and only if for alln

WpWp+1 - <lew djé(l)
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The following results are well-known (see [15, Chapt. 7]).
Theorem2.2 1. Theg-shiftis sofic if and only ifiz(1) is eventually periodic.

2. Theg-shift is of finite type if and only Hz(1) is finite.
It is known that the entropy of the-shift is equal tdog 3, [11].

If 5 is a Pisot number, then every elemenQf3) N [0, 1] has an eventually periodj¢-expansion, and
the 8-shift S is a sofic system [2, 21].
Let C be an arbitrary finite alphabet of integer digits. Tieemalization functiorin baseg on C

vg,C : CN — Ag

is the partial function which maps an infinite wayd= (y;);>1 overC, suchthad <y =>_,-, Bt <
1, onto theS-expansion of;. It is known [4] that, wherg is a Pisot number, normalization is computable
by a finite transducer on any alphaléét Note that addition is a particular case of normalizatioithw

C=1{0,....2([8] - 1)}.

3 Negative integer base

Letb > 1 be an integer. It is well known, see Knuth [12] for instandgttevery integer (positive or
negative) has a unigue-b)-expansion with digits i, = {0,1,...,b— 1}. Every real number (positive
or negative) has &-b)-representation, not necessarily unique, since

1

w10 = 10)%) = 750000~ 1)*) = ~g5=s

for instance.
We recall some well-known facts.

Proposition 3.1 The set of —b)-expansions of the positive integers{is € {0,1,...,b — 1}* | u does
not begin withD and|«| is odd}. The set of—b)-expansions of the negative integergise {0,1,...,b—
1}* | u does not begin with and|u| is ever}.

Let A be afinite alphabet totally ordered, anddeih A be its smallest element.

Definition 3.2 Thealternate ordex,;; on infinite words or finite words with same length ovieis defined
by:

ULUUZ * ++ <qlt V1V2V3 -+~
if and only if there exist& > 1 such that
w; =v; for 1<i<k and (—1)k(uk —vg) < 0.

This order was implicitely defined in [8].

Definition 3.3 On the set of finite words, we define steort-alternate ordedenoted<,, by: if u =
uy -+ -ug andv = vy - - - v, are in A*, thenu <, v if and only if

e /andm are odd, and’ < m, or £ = m and(min A)u <4 (min A)v



80 Christiane Frougny and Anna Chiara Lai

e /andm are even, and > m, or { = m andu <q;; v
e /< mand(min A)" u <4, v
e (> mandu <, (min A)"™v.

The short-alt order is analogous to the short-lex or radibeorelatively to the lexicographical order.
Denote(z)_, the (—b)-expansion ofc. We have the following result.

Proposition 3.4 If z andy are integersg < y if and only if (x) _p <sa (y)—b.

Example 3.5 In base—2, (3)_o = 111, (4) _» = 100, (6) _» = 11010, and111 <, 100 <, 11010.

Proposition 3.6 The function that maps theexpansion of a positive integer to ifs-b)-expansion can
be realized by a finite right sequential transducer.

Proof: InFig. 1,0 < e <b—1,1 <d <b—1,and0 < e < b — 2. The processing is done from right to
left by 2-letter blocks. A finite word of the forms,_; - - - 29 Which is theb-expansion ofr prefixed by
enough0’s is transformed by the transducer into a finite wged_1 - - - yo which is the(—b)-expansion
of z, maybe prefixed b@’s. It is straightforward to transform this transducer iatéinite right sequential
transducer.

Oclo(e+1) |
de|(b—d—1)(b—c—1) 0c|0c
0(b—1)|(b—1)0
de|(b —d)c

Fig. 1: Finite right sequential transducer realizing conversiamfbasé to base—b

Example 3.7 Conversion from basgto base—2.

00[01 1

01]10, 1011, 11|00 00]00, 01]01
10[10, 11|11

Fig. 2: Finite right sequential transducer realizing conversiomfbase2 to base—2

4 Symbolic dynamical systems and the alternate order

We have seen in the previous section that the alternate ggdbe tool to compare numbers written

in a negative base. In this section we give general resulsyorbolic dynamical systems defined by the
alternate order. This is analogous to the symbolic dyndmeysiems defined by the lexicographical order,
see [7]. LetA be a totally ordered finite alphabet.
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Definition 4.1 Awords = s;s5 - - - in AV is said to be aralternately shift minimalvord (asmin-word for
short) if s; = max A ands is smaller than, or equal to, any of its shifted images in theraate order:
foreachn > 1, s <4t SnSnt1 -+ -

Let
S(s) ={w = (w;)iez € A” | Vn, s Sait WpWpg1 -}

be the subshift defined by the alternately shift minimal war@/e construct a countable infinite automa-

ton Ag(, as follows (see Fig. 3, wherfe, b] denotes the s€fta, a + 1,...,b} if a < b, € otherwise. It
is assumed in Fig. 3 that > s; for j > 2.) The set of states i, the initial state i€) and every state
Sit1

is terminal. For each state> 0, there is an edgé — i + 1. If ¢ is even, then for each such that
0<a<sit1— 1,thereis an edge—-+ j, wherej is such thak, - - - s; is the suffix of maximal length
of s1 -+ - s;a. If i is odd, then for eachsuch thats;1; + 1 < b < 57 — 1, thereis an edgei> j where
J is maximal such tha; - - - s; is a suffix ofs; - - - s;b; and if s;11 < s; there is one edgfei> 1. By
contruction, the deterministic automatdy,y recognizes exactly the wordssuch that every suffiy of
wiS =44 51 - - - 5|y @nd the result below follows.

0,51 — 1] S1 51

[sa+ 1,81 — 1]
Fig. 3: The automatomd g ,)

Proposition 4.2 The subshif§(s) = {w = (w;)icz € A% | ¥n, s <ait Wpw, i1 --- } is recognizable by
the countable infinite automatody).

Proposition 4.3 The subshif6(s) = {w = (w;)icz € A% | Vn, 5 <1t Wpw,yy - -+ }is sofic if and only
if s is eventually periodic.

Proof: The subshiftS(s) is sofic if and only if the set of its finite factos(S(s)) is recognizable by a
finite automaton. Given a word of A*, denote byju] the right class of: moduloF'(S(s)). Then in the
automatondg,), for each staté > 1, i = [s; - - - 5;], and0 = [¢]. Suppose that is eventually periodic,
§ =51 Sm(Sm41 - Sm+p)*, With m andp minimal. Thus, for eaclt > 0 and eacl) < ¢ < p—1,
Sm+pk+i = Sm+i-

Case 1piseven. Thenforevery > 0and0 < i < p—1,[s1-* Smti] = [$1- " Sm+pk+4), thus the
statesn + i andm + pk + i can be merged. Then the set of stateslef;) is {0,1,...,m +p —1}.
Case 2pisodd. Thenn + i = [s1 - Symyi] = [S1 - - Smt2pk+4] fOr everyk > 0 and0 < ¢ < 2p — 1,
thus the states:+i andm+2pk+i can be merged, and the set of statedgf) is {0, 1,...,m+2p—1}.
Conversely, suppose thatis not eventually periodic. Then there exists an infiniteusege of indices
i1 < i < --- such that the sequencess;,+1 - - - are all different for allk > 1. Take any paifi;, i¢),
J,¢ > 1. If i; andi, do not have the same parity, thep---s;; ands; - - - s;, are not right congruent
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modulo F'(S(s)). If i; andi, have the same parity, there exigts> 0 such thats;, ---s;, 141 =
iy *** Sig+q—1 = v and, for instance(,fl)iﬁq(siﬁqfsl-ﬁq) > 0 (with the convention that, if = 0then
v = ¢). Thens; ---s;; _1vs;; 4 andsy --- 55, _1v8;,44 both belong toF'(S(s)), buts; - - - s, 184,44
does not belong td&'(S(s)). Hences; ---s;; ands; ---s;, are not right congruent modulb(S(s)),
so the number of right congruence classes is infinite B(fl(s)) is thus not recognizable by a finite
automaton. O

Proposition 4.4 The subshiftS(s) = {w = (w;)icz € AZ | ¥n, s <o Wpwpy1--- } iS a subshift of
finite type if and only ik is purely periodic.

Proof: Suppose that = (s1 - --s,)“. Consider the finite seX = {s1---s,-10 | b € A, (=1)"(b—
sn) < 0, 1 < n < p}. We show thatS(s) = S(s)y. If wisin S(s), thenw avoidsX, and con-
versely. Now, suppose th&f(s) is of finite type. It is thus sofic, and by Proposition 4.3s even-
tually periodic. If it is not purely periodic, thesi = s1 - - ;. (Smt1 - - - Sm4p)”, With m andp min-
imal, andsy --- s, # . Letl = {s1---sp—1b | b € A, (-1)"(b—s,) <0, 1 <n < m}U
{51 Sm(Sme1 - Smip)®® Sma1 - Sman—1b | b€ A, k >0, (=1)m+2ketn(p — g ) <0, 1<
n < 2p}. Thenl C A+ \ F(S(s)). First, suppose there exists< j < psuch that—1)7(s; — s;,45) <0
andsy -+ 8j—1 = Sm41 - Sm4j—1. FOrk > 0 fixed, letw k) = gy .- Sm(Smt1 - sm+p)2ksl 85 €
I. We haves; - - i (Sm+1 - ~~sm+p)2’“sm+1 -~ Sm4j—1 € F(S(s)). On the other hand, for > 2,
Sn v Sm(Smag1 e smﬂg)% is greater in the alternate order than the prefixsalf same length, thus
Sn o Sm(Sma1 - Smap)?Fs1 -+ - s; belongs toF' (S(s)). Hence any strict factor af(?*) is in F(S(s)).
Therefore for any: > 0, w?*) € X (S(s)), andX (S(s)) is thus infinite:S(s) is not of finite type. Now,
if such a;j does not exist, then for evety< j < p, s; = Sm+;, ands = (s1 - - - s,,)* is purely periodic.
|

Remark 4.5 Lets’ = s}s} - -- be aword in4" such that) = min A and, foreachw > 1, s),s/, 1 -+ <t
s’. Such a word is said to be aiternately shift maximalord. LetS’(s') = {w = (w;)icz € A% |
Vn, wpwni1 -+ Sa §' . The statements in Propositions 4.2, 4.3 and 4.4 are alsd f@d the subshift
S'(s") (with the automatotd s () constructed accordingly).

5 Negative real base
5.1 The (—p)-shift

Ito and Sadabhiro introduced in [10] a greedy algorithm torespnt any real number in real basg,
B > 1, and with digitsinA_z = {0,1,..., 5] }. Remark that, whegf is not an integerd_z = Ag.

A transformation orf_g = [—%, ﬁ) is defined as follows:

For every real numbet € I_z we will denote the—j3)-expansion ofc by d_g(z). Itis defined by
d_p(z) = (x:)iz1 ifand only ifz; = |-BT ;! (z) + %J, andz = )., z;(—B)~". When this last
equality holds, we may also write:

xr = (-$1.1’2 s )—B'
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We show that the alternate ordey,;; on (—3)-expansions gives the numerical order.
Proposition 5.1 Letz andy be in/_g. Then

<y <= d_g(x) <u d_p(y).

Proof: Suppose thad_g(x) <qu: d_g(y). Then there existd > 1 such thate; = y; for 1 < i < k and
(—=1)*(z — yr) < 0. Suppose that is evenk = 2g. Thenzy, < y2q — 1. Thusz —y < 5 29 4

D isagr Til— B)~' - Disagr Yi(=B)7" <0, S'nceZm Tagri(—0)7"andd ;s y2e4i(—5) " arein
I_g. The casé = 2¢ + 1 is similar. The converse is immediate. O

Definition 5.2 A word (x;);>1 is said to be(—3)-admissibléf there exists a real number € I_z such
thatd_g(x) = (x;)i>1. The(—p)-shift S_gz is the closure of the set ¢f/5)-admissible words, and it is
a subshift ofA%.

Define the sequenc ; () as follows:

B+1

o ifd_g(— ﬁ+1) dids - - - is not a periodic sequence with odd period,
. 1 1
—B(m) = d_ﬂ(ﬁ) = Odydy - --

e otherwise ifd,g(f%) = (dy - dop+1)”,

1

Y

) = (0dy - - - dop(dap1 — 1))*.

Theorem 5.3 (Ito-Sadahiro [10]) A word (w;);>1 is (—5)-admissible if and only if for each > 1

1
d* —a n n a d*_ - 4 )
a(— ﬁ—l—l) It WnWn41 " <alt ﬂ(ﬁ+1)
A word (w;);ez is an element of the—3)-shift if and only if for each
Jé] 1
d* a n n <(l d
s(— ﬁ+1)_ltww+1 it (ﬁ-i-l)
Putd = d_g(— B+1) didy -+ - andd* = diﬁ(ﬁ). Theorem 5.3 shows in particular thé&is an

alternately shift minimal word, and the result can be restats follows.

Lemma5.41fd =d_g(— is not a periodic sequence with odd period, then

551
S_g=5(d) = {(wi)icz € A5 | Yn, d Za1 wnwpi1---}.

Ifd= d_B(—%) is a periodic sequence of odd period, thé&h= (0d; - - - d2p(d2p+1 — 1))* and

S_pg=25(d)n S’ (d¥)

where
§'(d*) = {(wi)iez € A% | Vn, wpwptq - <au d*}.
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Theorem 5.5 The(—g)-shift is a system of finite type if and onlyif 5(— is purely periodic.

)
Proof: If d_g(— %) is purely periodic With an even period, the result followsrr Theorem 5.3,

Lemma 5.4 and Proposition 4.4. df g(— Ean) ) is purely periodic with an odd period, the result fol-
lows from Theorem 5.3, Lemma 5.4, Proposmon 4.4, Remaskahd the fact that the intersection of two
finite sets is finite. O

By Theorem 5.3, Lemma 5.4, Proposition 4.3, Remark 4.5, haddct that the intersection of two
regular sets is again regular the following result follows.

Theorem 5.6 (Ito-Sadahiro [10]) The(—3)-shift is a sofic system if and onlydif g (—
periodic.

,8+1) is eventually

Example 5.7 LetG = 1*—2‘/5; thendg(1) = 11 and theG-shift is of finite type. Sina¢_¢(—
the (—G)-shift is a sofic system which is not of finite type.

The automaton in Fig. 4 (right) recognizing tlie-G)-shift is obtained by minimizing the result of the
construction of Proposition 4.2. Remark that it is the auaton that recognizes the celebrated even shift

(see [14)).

Fig. 4: Finite automata for thé&/-shift (left) and for the( G)-shift (right)

G+1> =10¥

Example 5.8 Let 3 = G2 = 3*—2‘/5; thends(1) = 21¥ and thes-shift is sofic, but not of finite type.
Now,d_B(—%) = (21)¥ and the(—73)-shift is of finite type: the set of minimal forbidden factés

BeEEsI sl

Fig. 5: Finite automata for th&-shift (left) and for the(—G?)-shift (right)

5.2 Entropy of the —j3-shift

Examples 5.7 and 5.8 suggest that the entropy of the)-shift is the same as the entropy of theshift
because the adjacency matrices of the automata are the Shimés what we show in this section.

A standard technique for computing the entropy of a subshigtto construct a (not necessarily finite)
automaton recognizing'(S). Then the submatrices of the adjacency matrix are takeraictount and
for everyn the greatest eigenvalug, of the submatrix of order is computed. A result proved in [9]
ensures that the limik of the sequencg,, exists and it satisfies(S) = log A. Unfortunately the explicit
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computation of the\,,’s in the general case turns out to be very complicated, soseeapls from the
theory of dynamical systems:

— the notion of topological entropy for one-dimensional ayrical systems, a one-dimensional dy-
namical system being a couglg 7") consisting in a bounded intervAlnd a piecewise continuous
transformatior?” : I — I;

— aresult by Takahashi[24] establishing the relation betvtepological entropies of one-dimensional
dynamical systems and symbolic dynamical systems;

— aresult by Shultz [22] on the topological entropy of some-dimensional dynamical systems.

Let us begin with the definition of topological entropy foresdimensional dynamical systems.

Definition 5.9 Let(I,T) be a dynamical system. For every finite covef afayC, set:

m=0

n—1
1
H(T,C) :=1i —log N ™
(T,C) imsup - log (\/ C)

with \/ denoting the finest common refinement @d= N (C) denoting the number of elements of the
smallest subcover @f, a subcover of being a subfamily of still covering!.
Thetopological entropyf (I, T') is given by the formula

h(I,T) :=sup H(T,C). 1)

In [24] Takahashi proved the equality between the topoligéntropy of a piecewise continuous dy-
namical system and the topological entropy of an apprapsabshift. Before stating such a result we
need a definition.

Definition 5.10 LetT : I — I be a piecewise continuous map on the inteivdlap intervalsare closed
intervalsly, ..., I, of T satisfying the following conditions:

(a) IpoU---Ul, =1,
(b) T is monotone on each interva), i =0,...,¢;
(c) the number is minimal under the conditions (a) and (b).

The numbef is calledlap numbeiand it is denotedap(T').

Remark 5.11 If the mapT' is piecewise linear then the lap intervals are unique ang tt@ncide with
the intervals of continuity df".

Theorem 5.12 (Takahashi [24])Let (I, T') be a dynamical system such tiTats a piecewise continuous
transformation over the closed intervalon itself. LetA be an alphabet and lety : I — A" be the
map defined by — x;25 - -+ with z,, in A such thatl™(x) belongs to the lap interval,. . Define the
subshiftXr := yr(I) in AN,

If lap(T) is finite then

h(Xr) = h(I,T). @)
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The entropy in the very particular case of a piecewise linggp with constant slope is explicitely given
in the following result.

Proposition 5.13 (Shultz [22, Proposition 3.7])Let (1, T') be a dynamical system such tfais a piece-
wise linear map with slopg-53. Then the topological entropy 6f, T') is equal tolog 3.

We now prove our result.

Theorem 5.14 The topological entropy d§_ 3 is equal tolog 5.

Proof: Consider the dynamical systeffi_z,7_5). We extend the mafi_z to the closure of _g to
fullfill the conditions of Theorem 5.12. By definition of tiie- 3)-expansion, the subshiir_, coincides
with the closure of the set of tHe-3)-expansions im%, whose entropy is the same &isg C AZ_B. As
T_4 is piecewise linear, the lap intervals coincide with theif@nhnumber of continuity intervals. Then,
by Theorem 5.12 and Proposition 5.135_3) = h(I_3,T-5) = log . m

5.3 The Pisot case

We first prove that the classical result saying thati a Pisot number, then every elemen@f3) N[0, 1]
has an eventually periodig-expansion is still valid for the basegs.

Theorem 5.15If 3 is a Pisot number, then every element@(f3) N I_g has an eventually periodic
(—B)-expansion.

Proof: Let Ms(X) = X4 — a3 X471 — ... — a,4 be the minimal polynomial o and denote by =
b1, ..., Bq the conjugates of. Letx be arbitrarily fixed inQ(8) N I_g. SinceQ(8) = Q(—4), x can
be expressed as= ¢! Zf;ol pi(—B)* with ¢ andp; in Z, ¢ > 0 as small as possible in order to have
uniqueness.

Let (x;);>1 be the(—5)-expansion of;, and write

Pp = ,r7(ll) — T»Sll)(m) _ Tn+1 + Tn4-2 b= (_ﬁ)n (j; B n . (_6)k> )
-8 " (-B)? ; *

Sincer,, = Tfﬁ(x) belongs tal_s then|r,,| < % <1.For2 <j<d,let

d—1 n
r =) (x) = (—B;)" (ql S opi(=By) - Zu(—m’“) :
i=0 k=1

Letn = max{|8;] | 2 < j < d}: sinceg is a Pisot number; < 1. Sincez;, < |3] we get

d—1 n—1
rPI<a™ Y il 18] )
=0 k=0

and since; < 1, max; < j<q{sup, {|r$’|}} < cc.
We need a technical result. S&f, = (", ..., ") and letB the matrixB = ((—5;)~)1<i.j<d-
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Lemma 5.16 Letz = ¢+ Z 0 ' pi(—3)". Foreveryn > 0 there exists a uniqué-upleZ,, = (zr(l ), z,({i))

in Z¢ such thatR,, = ¢~ Z,,B.

Proof: By induction onn. First,r; = —fx — x1, thus

i+1 1 (1) §d)
Di Z = qi —— + -+
(S A
using the fact that—3)? = —a1(—B8)4 1 + ag(—B)2 + - + (=1)ag. NOW, 741 = — 7 — Tpi1,
hence
o <2> () <1+>1 29
Tni1 =q o e g | = (2

o 5T gy -8 (~B)

sincez!” — qTn+1 € Z. Thus for every: there exists{zf}), e (d)) in Z< such that

d
_ q—l er(zk)(_ﬁ)_k
k=1

Since the latter equation has integral coefficients andtisfigal by —/, it is also satisfied by-5;, 2 <
j <d,and

d—1 n d
rd) = (=8;)" (wzpi(ﬁj)ix W(—B5)” )glzzﬁ)(ﬁj)’“-
1=0 k=1 k=1

Let us go back to the proof of Theorem 5.15. Lgt= ¢R,. The(V,,),>1 have bounded norm, since
max1<j<d{supn{|r(])|}} < oo. As the matrixB is invertible, for everyn > 1,

1Zall = (=D, 2 i) = max{]2)] 1< <d} < oo
so there exisp andm > 1 such thatZ,,,, = Z,, hencer,,,, = r, and the(—3)-expansion of: is
eventually periodic. O

As a corollary we get the following result.
Theorem 5.17 If 8 is a Pisot number then thie-3)-shift is a sofic system.

Thenormalizationin base— g is the function which maps ar(y- 3)-representation over an alphalgét
of digits of a given number of_ 3 onto the admissiblé—3)-expansion of that number.
LetC = {—¢,...,c}, wherec > | 3] is an integer. Denote

Z_5(2¢) = {(zi)i>0 e {~2¢,...,2c}" } Y w8 = o}.

i>0
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The setZ_g(2c¢) is recognized by a countable infinite automaténg(2c): the set of state§)(2¢)
consists of alls € Z[8] N [~ 7, 75| Transitions are of the form = &' with ¢ € {—¢,...,c} such
thats’ = — s + e. The statd is initial; every state is terminal.

Let M3(X) be the minimal polynomial of, and denote by = f1, Ba, ..., B4 the roots ofMz. We

define a norm on the discrete lattice of rahkZ[ X |/(M3), as

1P| = max, [P(8).
Proposition 5.18 If § is a Pisot number then the automatdn g(2c) is finite for every > | 3].

Proof: Every states in Q(2c¢) is associated with the label of the shortest patf - - - f,, from 0 to s in
the automaton. Thus= fo(—8)" + f1(—=8)""' + - + f, = P(B), with P(X) in Z[X]/(Mp). Since
fofi--- fnis a prefix of a word ofZ_g(2c¢), there existsf,, 41 fnt2 - - - such thatl f;);>o is in Z_z(2¢).
Thuss = |P(8)] < 52761- For every conjugaté;, 2 < i < d, |8;] < 1,and|P(5;)| < % Thus every
state of@Q(2¢) is bounded in norm, and so there is only a finite number of them. O

The redundancy transduceR _s(c) is similar to.A_s(2c). Each transitions % s’ of A_5(2¢) is

replaced inR_z(c) by a set of transitions alb, s, witha,b € {—c¢,...,c} anda — b = e. Thus one
obtains the following proposition.

Proposition 5.19 The redundancy transduc®_g(c) recognizes the set

{(zrz2-- ,y1ya--) € OV x OV | Zmi(—ﬁ)_i = Zyi(—ﬁ)_i}.

i>1 i>1
If 8 is a Pisot number, theR _z(c) is finite.

Theorem 5.20If 5 is a Pisot number, then normalization in bas@g on any alphabe€ is realizable by
a finite transducer.

Proof: The normalization is obtained by keeping/h 5(c) only the outputg that are(—3)-admissible.
By Theorem 5.17 the set of admissible words is recognizaypla finite automatorD_g. The finite
transduceN_ (c) doing the normalization is obtained by making the interiseatf the output automaton
of R_z(c) with D_g. O

Proposition 5.21 If g is a Pisot number, then the conversion from basgto bases is realizable by a
finite transducer. The result j$-admissible.

Proof: Letz € I_g, > 0, such thad_g(z) = z1z223---. Denotea the signed digi{—a). Then
T1x2T3 - -+ IS a fS-representation of on the alphabetl_z = {—|3],...,|8]}. Thus the conversion

is equivalent to the normalization in bageon the alphabeﬁA_/B, and whengs is a Pisot number, it is
realizable by a finite transducer by [4]. O
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6 On-line conversion from positive to negative base

Proposition 5.21 shows the actability of the conversiomfreegative to positive base with a finite trans-
ducer for a particular class of basés,, the Pisot numbers. The result is admissible, but this thacer
is not sequential.

In the case where the base is a negative integer, we haves8ention 3 that the conversion from base
b to base-b is realizable by a finite right sequential transducer.

6.1 On-line conversion in the general case

An on-line algorithm is such that, after a certain delay ¢dfecyé during which the data are read without
writing, a digit of the output is produced for each digit oktmput, see [17] for on-line arithmetic in
integer base.

Theorem 6.1 There exists a conversion from basé base—/ which is computable by an on-line algo-
rithm with delayd, whered is the smallest positive integer such that

<1 @

In general the result is nat—3)-admissible.

On-line algorithm

Input aword(z;);>1 of Ajj suchthat: = 3=, z;677 ando <« < B
Output a word(y;);>1 of Ajj such thate = 3=, y;(—5) 7.

begin
q0:=0
for j:=11to § do
(inij'—1+%
j=1
while j>1 do
= —Basj—1 + (1)) 5
if -2 < zs < Lotheny; = |25y, + -2 |
B+l X 20+ N BT Yi - o+3 T Bl
. 2
i f 2545 > 7 theny; := 8]
i f 2515 < —z47 theny; :=0
45+j *= Z5+5 — Yj
Ji=J+1
end

2643 ¢

Proof: Claim 1. Foreachj > 1

X1 X2 L§+ 5 Y1 Y2 i Yj i45+j
e e R ity (i £ Ay Gy D el
B B2 Bo+i g B ( pI ( pI

Claim 2. If —%5 < z51; < #57 theny; belongs tad s andg; . ; belongs tol_s = [~ 347, 747).

Proof of Claim 2: Clearly) < y; < ﬂ‘fl + % = S. Moreoverzs. ; + % =y + {zs15 + %}, thus
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Q545 = 2545 — {zgﬂ + B+1} ,6+1’ and the claim is proved.
Claim 3. If z51; > # thengs; > — 555

. 2
Proof of Claim 3: Wezhave that; = z5+j - 18] > ﬂB_H - Lﬂj > f%.
Claim 4. If z51; > #5 andgs ;1 > — 547 thengsy; < 537

Proof of Claim 4: Sinces; = —8¢s+;-1 +( 1)”‘5—“ 18] < BBT % — | 8], the claim is proved
if, and only if, L;%J — 8] < 1— g, thatis to say, if, and only i % 1 — {p}, which is true thanks
to (3).
Claim 5. If z54; < — ,6+1 andgs+j—1 € I_g theny is odd,— ,6+1 - Lﬂi} < gsyj < —%, andgs4j+1
belongs tal_g.
Proof of Claim 5: Ifj is even thens; := —Bgs1j—1+ = “ > *m + Z““ > B+1' hencej must be
odd. Setj = 2k + 1. We haveys,+1 = 0 andgsox+1 = z5+2k+1 = —ﬁq5+2k “*;S’““ > —% — LB’%J
sincegs4;—1 € I_g

Thenzsogyo = *5Q5+2k+1 + T > 5+1 Henceyay 12 = [ 8]. By Claim 3,qs 40542 > — 557
On the other hangs o2 = 26+2k+2 — 18] = —ﬁqa+2k+1 + B — |B] = BPasion + THE +

mear 5] < o4 AL+ B 5] < S by (3), thUSqa+2k+2 belongs tal

By hypothesisgs is in I_g. By the previous claims, for every > 0, g5+21 belongs to/_g and

7% - f—} < gspont1 < ﬁ. Thus, for everyj > 1

_1_|_..._|_ i _ Y1 4+ .+ Yi + 9o5+j

B B+ (=P) (=B (=B)

with ¢5+; bounded. Therefore the algorithm converges, and

doaB = y(-

j>1 j>1

6.2 Conversion in the Pisot case

We now show that, whefi is a Pisot number, there is a finite on-line transducer rieglithe conversion.

Theorem 6.2 If 3 is a Pisot number, the conversion from bas¢o base— 5 is realizable by a finite
on-line transducer.

Proof: Following the on-line algorithm of Section 6.1 we constranton-line transducef as follows.
The set of states i = Q: U @, with the set of transient stat€} = {¢; | 0 < j < § — 1}, and the set
of synchronous state?, = {¢s+, | 7 > 0}. The initial state isy. Forl < j < ¢, transient edges are
defined by

zjle

qj—1 — qj-
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Synchronous edges are defined by

15+j\yj
qs+j—1 — Q545

for j > 1. There is an infinite path in the automat@istarting ingy and labelled by

z1le z5le T5+1|y1 Tsy2|y2
q0 q1 - qs qs5+1 qs+2 -

if,and only if, 3= 2677 = 3", y;(—6) 7.

Let M3(X) be the minimal polynomial of and let3 = 34, B2, . . ., Bq be the roots of/z. Recall that
Z1X]/(Mg(X)) ~ Z[B] is a discrete lattice of rank Sinceg is a Pisot numbefs;| < 1 for2 < i < d.

For eachj > 1, ¢; is an element oZ[3, 37!]. For1l < i < d letg;(53;) be the element c%[ﬁi,ﬁjl]
obtained by replacing by g; in ¢;. Theng; = ¢;(8).

First of all, for every; > 1, —% — L;%J <gi(B) < ﬁ by the on-line algorithm.
Secondly, for every > 1 and2 < i < d,
- 5 Lo+j
45+ (Bi) = —Pigs+j—1(Bi) + (—1) 5 Ui (4)
For2 <i<dlet
18] 1

M; =

Ty e

Then, if|gs+;—1(8:)| < M;, then|gsy;(B:)] < M; by (4).
Now, for0 < j < d and2 <7 < d,

1 1
;B < [Bl(757 4+ 7275) < M
! |Bi] |Bil°
Define a norm otZ[X]/(Ms(X)) by ||g|| = maxi<i<a|¢(5i)|- Thus the elements @ are all bounded
in norm, and sd) is finite. O

In the particular case tha@t®> = a3 + 1, a integer> 1 (3 is thus a Pisot number), we can construct
directly a simpler finite left sequential transducer raatizhe conversion.

Proposition 6.3 If 32 = a3 + 1, a > 1, then the conversion from bageo base—3 is realizable by the
finite left sequential transducer of Fig. 6.

Proof: The left sequential transducer in Fig. 6 convertsaxpansion of a real numberin [0, 8) of the
form zg.z122 - - - into a(—p)-representation af of the formyg.y1y2 - - -. The processing is done from
left to right by 2-letter blocks. We tak® < d < ¢, 0 < ¢ < a—1,1 < e < a. Since the input is
admissible, no factate, with 1 < e < a can occur in an input word.

O
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cel(c+1)(a—e)

d0|do C@<\_/®O 00|0a, deld(a — e)

T e0|(e —1)0
Fig. 6: Finite left sequential transducer realizing conversiamfibase3 to base—3, 82 = a8 + 1
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