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The Ackermann function is a fascinating and well studied paradigm for a function which eventually dominates all
primitive recursive functions. By a classical result from the theory of recursive functions it is known that the Ack-
ermann function can be defined by an unnested or descent recursion along the segment of ordinals belowωω (or
equivalently along the order type of the polynomials under eventual domination). In this article we give a fine struc-
ture analysis of such a Ackermann type descent recursion in the case that the ordinals belowωω are represented via a
Hardy Ramanujan style coding. This paper combines number-theoretic results by Hardy and Ramanujan, Karamata’s
celebrated Tauberian theorem and techniques from the theory of computability in a perhaps surprising way.
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1 Introduction
This article is part of a general investigation on the relationships between enumerative combinatorics and
the theory of computability. (See, for example, Weiermann (2003, 2004) for further related material on
this topic.)

In this paper we focus on classifying a Friedman-style recursion schema for the Ackermann function
using ”asymptotic formulae for the distribution of integers of various types” in the spirit of Hardy and
Ramanujan (1916).

The Ackermann function emerges naturally from a given base function, like the successor function by it-
erated iteration and a final diagonalization. For example, letF0(n) := n+1 andFk+1(n) := Fk(. . .Fk︸ ︷︷ ︸

n+1−times

(n) . . .).

ThenA(n) := Fn(n) is a typical version of the Ackermann function. A common feature of these definitions
of such a function is that the resulting functionA eventually dominates every functionFk and henceA is
not primitive recursive (since every primitive recursive function can be computed with time boundFk for
somek). We consider all such functions as equivalent and call them Ackermannian for the rest of the
paper.
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Ackermannanian functions grow very rapidly, since for exampleF3 grows like the superexponential
function. Therefore they usually do not show up in mathematical textbooks on analytic number theory.
The deeper reason for this can be described briefly as follows. Usual analytic number theory can be for-
malized within a logical framework RCA0 (see, for example, Simpson (1985) for a definition) which has
only primitive recursive functions as provably total recursive functions by a standard result in foundations.
Thus Ackermannian functions are beyond the scope of analytic number theory.

Nevertheless this observation does not exclude that one can study the behaviour of Ackermannian
functions using results from analytic number theory and this will be carried out in this paper.

The link betweenA and the mathematics from the Hardy Ramanujan paper about asymptotic formulae
is provided by the (codes for) ordinals belowωω. Motivated by their study of highly composite numbers
Hardy and Ramanujan were interested in the asymptotic behaviour of products of the formpa1

1 · . . . · pan
n

wherea1 ≥ . . . ≥ an and pi denotes thei-th prime. From the logical viewpoint it is very natural to
consider such products as codes for ordinals belowωω. Simply associate topa1

1 · . . . · pan
n the ordinal

ωa1−1 + . . .+ωan−1 and vice versa.
To ordinals belowωω we may associate by recursion a hierarchy of number-theoretic functions as

follows. Let H0(n) := n, Hα+1(n) := Hα(n+ 1) andHλ(n) := Hλ[n](n) whereλ is a limit ordinal of the
form λ = ωa1 + . . .+ωam wherea1≥ . . .≥ am≥ 1 andλ[n] = ωa1 + . . .+ωam−1 ·(n+1) is then-th member
of the canonical fundamental sequence which converges toλ. A small calculation showsA(n) = Hωn(n)
for every natural numbern. Sinceωn is then-th member of the canonical fundamental sequence which
converges toωω we obtainA(n) = Hωω(n) in accordance to the definition above. ThusA can be defined
by an unnested recursion alongωω. (This result is a special case of a more general result by Tait about the
relationship between nested and unnested recursion.)

In this paper we investigate the fine structure of related recursions which lead to functions of similar
growth asA. In particular we focus on a Friedman-style description ofA via a descent recursion Friedman
and Sheard (1995); Simpson (1985); Smith (1985).

For describing this in some more detail we need some further terminology. Let HR be the set of numbers
considered by Hardy and Ramanujan. Fora,b∈ HR let a≺ b if the ordinal associated toa is less than
the ordinal associated tob. For a given binary number-theoretic functionf let Ff be defined as follows.
Ff (n) := max{K : (∃m1, . . . ,mK ∈ HR)[m1 � . . .�mK & (∀i ∈ {1, . . . ,K})mi ≤ f (n, i)]}.

Functions likeFf occur naturally in proof-theoretic investigations about provably recursive functions
of formal proof systems for arithmetic Friedman and Sheard (1995). Moreover they can be used as
scales for comparing hierarchies of number theoretic functions Buchholz et al. (1994). For example, the
Ackermannian functions can be described in terms of suitableFf as follows.

Let 20(i) := i and 2K+1(i) := 22K(i) and let fK(n, i) := 2K(n+ i). Then according to a theorem of Fried-
man and Sheard (1995) there is aK such thatA andFfK have the same growth rate in the sense that there
are elementary functions (primitive recursive functions which are bounded by a fixed number of iterates
of the exponential function)p andq such thatA(n)≤ FfK (p(n)) andFfK (n)≤ A(q(n)).

It seems quite natural to ask whether it is possible to classify those functionsf for which the induced
functionFf has the same growth rate asA. Our main theorem runs as follows. Forα ≤ ωω let gα(n, i) :=

n+2
H−1

α (i)√i whereH−1
α (i) := min{k : Hα(k)≥ i}. (These functions grow very slowly for largeα sinceHα

grows then rather fastly.) ThenFgα is primitive recursive iffα < ωω. MoreoverFgωω andA have the same
growth rate in the sense as indicated above.

These purely foundational investigations led us naturally to questions about the asymptotic behaviour
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of the number of products of the formpa1
1 · . . . · pan

n ≤ x whered ≥ a1 ≥ . . . ≥ an andd is a fixed natural
number. Such bounds are in the spirit of Hardy and Ramanujan (1916) but they do not follow from the
Hardy Ramanujan style Tauberian theorem. However they can be obtained by the celebrated Tauberian
theorem of Karamata. The result which is then obtained in this paper is that

#{pa1
1 · . . . · pan

n ≤ x : d≥ a1 ≥ . . .≥ an ≥ 1} ∼ 1
(d!)2

( ln(x)
ln(ln(x))

)d
asx→ ∞.

We believe that these number-theoretic investigations have their interest and beauty in their own and we
plan to push these further. Moreover we supply these number-theoretic results with a natural application
in the theory of recursive functions and we hope that number-theorists as well as logicians may find this
relationship between number theory and logic attractive.

2 The number-theoretic part
This section of the paper deals with purely number-theoretic problems about the asymptotics of Hardy
Ramanujan numbers. It can be read independently from the following section which provides the appli-
cations to Ackermannian functions.

As indicated before, letpi denote thei-th prime number. Let

HR = {pa1
1 · . . . · pan

n : a1 ≥ . . .≥ an ≥ 1}

be the set of integers which has been investigated by Hardy and Ramanujan. Fora,b ∈ HR let a≺ b
be defined as follows. Assumea = pa1

1 · . . . · pam
m andb = pb1

1 · . . . · pbn
n . Thena≺ b iff either m< n and

ai = bi for 1≤ i ≤ m or there is ani ≤ min{m,n} such thatai < bi anda j = b j for 1≤ j < i. This
ordering is quite natural since it is the order type of the polynomials under eventual domination. Indeed,
for a = pa1

1 · . . . · pam
m ∈ HR let fa(x) = xa1 + · · ·+ xam. Thena≺ b iff fa is eventually dominated byfb.

Readers familiar with ordinals will recognize that the order type of≺ is ωω.
Let

hr(x) := #{a∈ HR : a≤ x}

and let
hrd(x) := #{a∈ HR : a≤ x & a≺ pd+1

1 }.

In their paper Hardy and Ramanujan showed the following beautiful result.

Theorem 1 (Hardy and Ramanujan (1916))

ln(hr(x))∼ 2√
3

π

√
ln(x)

ln(ln(x))
as x→ ∞.

In this section we are going to show thathrd(x)∼ 1
(d!)2 ( ln(x)

ln(ln(x)) )
d asx→∞ and we draw an easy corollary

that is needed in the desired application.
Following Hardy and Ramanujan it is convenient to defineln := p1 · . . . · pn. LetLe(x) := #{l i1 · . . . · l ie ≤

x : 1≤ i1 ≤ . . .≤ ie}.
Lemma 1 hrd(x) = ∑d

e=1Le(x).
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Proof. It suffices to show

{a∈ HR : a≤ x & a≺ pd+1
1 }=

d[
e=1

{l i1 · . . . · l ie ≤ x : 1≤ i1 ≤ . . .≤ ie}.

This is more or less obvious by grouping the factors appropriately together. (In some sense this is similar
when one counts partitions and their conjugates. In terms of block diagrams this simply means that we
are counting blocks at one time via columns and at the other time via rows.) Nevertheless we give some
more formal details for the readers convenience.
” ⊆ ”. Assumea∈ HR,a≤ x anda≺ pd+1

1 . Thena = pa1
1 · . . . · pan

n whered≥ a1 ≥ . . .≥ an ≥ 1. Choose
i1 < .. . < ir for somer ≤ d such thata1 = . . . = ai1 > ai1+1 = . . . = ai2 > ai2+1 = . . . = air > air+1 = . . . =
an. Thena = l

ai1−ai1+1
i1

· l
ai1+1−ai2+1
i2

· . . . · lair
i1

and the number of factors is equal toa1 =: e≤ d.
” ⊇ ”. Let l = l i1 · . . . · l ie wherei1≤ . . .≤ ie. By grouping equal factors together we obtain a representation
l = la1

j1
· . . . · lad

jd
where j1 < .. . < jd anda1 + . . .+ ad ≤ e anda j ≥ 1. Thenl = (p1 · . . . · p j1)

a1+...+ad ·
(p j1+1 · . . . · p j2)

a2+...+ad · . . . · (p jd+1 · . . . · pn)ad ≺ pd+1
1 . 2

Let L(s) := ∑∞
n=1 l−s

n .

Theorem 2 (Hardy and Ramanujan (1916))L(s)∼ 1
sln( 1

s )
as s→ 0+.

Let Md(s) = ∑i1≥...≥id≥1(l i1 · . . . · l id)−s.

Lemma 2 Md(s)∼ 1
d! (

1
sln( 1

s )
)d as s→ 0+.

Proof. By induction ond. Ford = 1 the claim is Theorem 2. Let

L̃(s) = ∑
i1≥1

l−s
i1 ∑

i2≥...≥id≥1
(l i2 · . . . · l id)

−s.

The induction hypothesis and Theorem 2 yieldL̃(s) ∼ 1
sln( 1

s )
1

(d−1)! (
1

sln( 1
s )

)d−1 ass→ 0+. We have for

s> 0

L̃(s) = ∑
i1≥i2≥...≥id≥1

(l i1 · . . . · l id)
−s

+ ∑
i2≥i1≥...≥id≥1

(l i1 · . . . · l id)
−s

+ . . .

+ ∑
i2≥...≥id≥i1≥1

(l i1 · . . . · l id)
−s

− ∑
i1=i2≥...≥id≥1

(l i1 · . . . · l id)
−s−

− ∑
i2≥i1=i3≥...≥id≥1

(l i1 · . . . · l id)
−s

−·· ·
− ∑

i2≥i3≥...≥i1=id≥1
(l i1 · . . . · l id)

−s

= d ·Md(s)−R2(s)− . . .−Rd(s)
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whereRk(s) = ∑i2≥...≥ik=i1≥ik+1≥...≥id≥1(l i1 · . . . · l id)−s for 2≤ k ≤ d. For positives we haveRk(s) ≤
∑i2,i3,...,ik=i1,ik+1,...,id≥1(l i1 · . . . · l id)−s = L(s)d−2 · L(2s). ThusRk(s) = o(L̃(s)) ass→ 0+ and the result
follows. 2

A function f : R→ [0,∞[ is called slowly varying if

lim
t→∞

f (tx)
f (t)

= 1

for x > 0.

Theorem 3 (Karamata’s Tauberian Theorem, Bingham et al. (1987))Let U be a non decreasing right
continuous function on the real numbers with U(x) = 0 for all x < 0. Let LU(s) =

R ∞
0 exp(−sx)dU(x). If

f : R→ [0,∞[ varies slowly and c≥ 0, ρ≥ 0 the following are equivalent

1. U(x)∼ cxρ f (x)
Γ(1+ρ) as x→ ∞,

2. LU(s)∼ cs−ρ f (1
s) as s→ 0+.

As a nice application we obtain the following result.

Theorem 4 hrd(x)∼ 1
(d!)2 ( ln(x)

ln(ln(x)) )
d as x→ ∞.

Proof. Define natural numbersan by the equation

∞

∑
n=1

ann−s =
d

∑
e=1

Me(s).

Then∑n≤x an = hrd(x). Let U(x) = ∑ln(n)≤x an. Then, ass→ 0+,

LU(s) =
Z ∞

0
exp(−sx)dU(x) =

∞

∑
n=1

ann−s∼
d

∑
e=1

1
e!

(
1

sln(1
s)

)e∼ 1
d!

(
1

sln(1
s)

)d.

The functions 7→ 1
(ln(s))d is slowly varying. Theorem 3 yieldsU(x) ∼ 1

(d!)2 ( x
ln(x) )

d as x → ∞. Now

∑n≤x an = U(ln(x)) and the result follows. 2

With |i| we denote the binary length ofi which is the number of digits when we writei with respect to
base 2. Moreover letbxc be the least integer less than or equal tox. The following corollary is needed in
the desired applications in the next section. Informally speaking it says that the major part of the number
of prime number products under consideration is not seriously diminished when square root of log sized
initial parts are not taken into account.

Corollary 1 Let k: N2 → N such that k(n, i)≤ n+1+ b
√
|i|c for all n, i. Then for each natural number

n there is a constant K(n) such that

#{a∈ N : a≤ 2
n+1
√

2|i| & a = p
ak(n,i)+1

k(n,i)+1 · . . . · p
ar
r & n+3 > ak(n,i)+1 ≥ . . .≥ ar ≥ 1} ≥ 2|i|

for i ≥ K(n).
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Proof. Let

X(n, i) = {a∈ HR : a≺ pn+3
1 & a≤ 2

n+1
√

2|i|},
Y(n, i) = {a∈ HR : a≺ pn+3

1 & a = pa1
1 · . . . · paq

q : q≤ k(n, i)},

Z(n, i) = {a∈ N : a≤ 2
n+1
√

2|i| & a = p
ak(n,i)+1

k(n,i)+1 · . . . · p
ar
r

& n+3 > ak(n,i)+1 ≥ . . .≥ ar ≥ 1}.

Theorem 4 yields the existence of a constantsK1(n),K2(n) such that

#X(n, i)≥ K2(n)(2|i|)
n+2
n+1 · |i|−n−2 (1)

for i ≥ K1(n).
By the standard bounds on the number of ordered sequences of a fixed lengths (where repetitions are

allowed) we obtain
#Y(n, i)≤ ∑

r≤k(n,i)
(n+3)r ≤ (n+3)k(n,i)+1.

Every producta = pa1
1 · . . . · par

r ∈ X(n, i) yields by splitting up a unique productpa1
1 · . . . · par

k(n,i) ∈Y(n, i)

and an empty product ifr ≤ k(n, i) and a unique productpa1
1 · . . . · p

ak(n,i)
k(n,i) ∈Y(n, i) and a uniquep

ak(n,i)+1

k(n,i)+1 ·
. . . · par

r ∈ Z(n, i) if r > k(n, i) Thus #X(n, i)≤ #Y(n, i) · (#Z(n, i)+1). Now fix n. If #Z(n, i) < 2|i| would
hold for unboundedly manyi then we would have #X(n, i) ≤ (n+ 3)k(n,i) ·2|i| for unboundedly manyi.
This contradicts (1). Thus the existence ofK(n) follows. 2

In the next section we need some elementary result on the number of prime factors of elements of HR.
Thus, following Hardy’s notation, letΩ(a) for a∈ HR denote the number of prime factors ina counted
with multiplicities.

Lemma 3 m≤ 2Ω(m)2
for m∈ HR.

The proof requires only simple estimates on the functionj 7→ p j which may be found for example in
Apostol (1976).

3 The classification result for Ackermannian functions
We call a primitive recursive functionf : Nk → N elementary if there is aK such thatf (x1, . . . ,xk) ≤
2K(x1 + · · ·+xk) for all x1, . . . ,xk ∈ N.

For anyg : N2 → N let Fg(n) = max{K : (∃m1, . . . ,mK ∈ HR)[m1 � . . .�mK & ∀i ≤ K[mi ≤ g(n, i)]]}.
According to a general result of Friedman and Sheard (1995) there exists an elementary functiong :

N2 → N such thatHωω(n) ≤ Fg(n) since the coding ofωω via HR is elementary. A closer inspection of

the coding of the fundamental sequences forωω yields thatHωω(n)≤ Fg(n) for g(n, i) = 2((n+2)·i!)2
.

In this section we are going to classify as good as seems possible the functionsg for which Hωω(n) ≤
Fg(n) holds. For that purpose we use a result about special descent recursions where bounds onΩ are put.

For a functiong : N2→N let Gg(n) = max{K : (∃m1, . . . ,mK ∈HR)[m1� . . .�mK & ∀i ≤ K[Ω(mi)≤
g(n, i)]]}. Then according to an unpublished result due to Friedman forq(n, i) = n+ i there is a unary
elementary functionp(n) such thatHωω(n)≤Gq(p(n)) for everyn.
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This result is not sharp enough for our application. We use the following refinement which follows
from Weiermann (2003).

Theorem 5 Let q(n, i) := n+1+
√

i. Then there is a unary elementary function p(n) such that Hωω(n)≤
Gq(p(n)) for every n.

The main result of this paper is now as follows.

Theorem 6 Let h(i) := H−1
ωω (i) and g(n, i) = n+ 2

h(i)√i . Then there is an elementary recursive function
t(n) such that Hωω(n)≤ Fg(t(n)) for every n.

Proof. Let B(n) := Gq(n) whereq(n, i) := n+1+
√

i. Without loss of generality we may prove the result
for B instead ofHωω . Let C := B−1 be the inverse function ofB. Assume now thatn be given. Put
K := B(n). To showK ≤ Fg(t(n)) for some elementary functiont we now have to findn1, . . . ,nK in HR

such thatn1 � . . .� nK andni ≤ t(n)+2
C(i)√i for 1≤ i ≤ K.

According to Theorem 6 there arem1, . . . ,mK ∈ HR such thatm1 � . . .�mK and

Ω(mi)≤ n+1+
√

i (2)

for i ≤ K.
For 1≤ i ≤ K we haveC(i) ≤C(B(n)) = n, hence C(i)√i ≥ n

√
i for 1≤ i ≤ K. Ω(m1) ≤ n+ 2 yields

mi ≺ pn+2
1 for 2≤ i ≤ K. Assume that for some functionk(n, i)

mi = pai1
1 · . . . · p

aik(n,i)
k(n,i) (3)

Thenai1 ≤ n+1 for 2≤ i ≤ K andk(n, i)≤ n+1+
√

i by (2). Put

Z(n, i) = {a∈ N : a≤ 2
n+1
√

2|i| & a = p
ak(n,|i|)+1

k(n,|i|)+1 · . . . · p
ar
r & n+3 > ak(n,|i|)+1 ≥ . . .≥ ar ≥ 1}.

By Corollary 1 we obtain
#Z(n, i)≥ 2|i| ≥ i (4)

for i ≥ K(n). Put
ni := p2n+5

1 · p2 · . . . · pK(n)+1−i

for 1≤ i ≤ K(n) and

ni := p
n+3+a|i|1
1 · . . . · p

n+3+a|i|k(n,|i|)
k(n,|i|) ·enumZ(n,i)(2

|i|− i)

for K(n) < i ≤ K where enumZ(n,i) enumerates the elements ofZ(n, i) in increasing order with respect to
≺. This is well defined by (4). Moreover theni are indeed≺-decreasing.

Let h(n) = p2n+5
1 · p2 · . . . · pK(n)+1. Thenni ≤ h(n)+2

n√i for 1≤ i ≤ K(n).
A detailed investigation of the proof of Corollary 1 yields that the functionn 7→ K(n) can be chosen

elementary. This follows by inspection of the proof of Theorem 2 in Hardy and Ramanujan (1916), by
inspection of the proof of Lemma 2 and an application of the effective version of Theorem 3 (cf. Theorem
9 of paragraph 7.4 in Tenenbaum (1995) page 227).

Therefore the functionh is elementary.
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By elementary bounds on the functionj 7→ p j (see, for example, Apostol (1976)), we obtain a constant
D such thatl j ≤ exp(D j ln( j)) for all j. Thus forK(n)≤ i ≤ K we obtain using Lemma 3

ni ≤ ln+2
k(n,|i|) ·m|i| ·2

n+1
√

2|i|

≤ exp((n+2)Dk(n, |i|) ln(k(n, |i|))) ·2k(n,|i|)2 ·2
n+1
√

2|i|

≤ t ′(n) ·22
|i|
n −1

≤ t ′(n)2 +(22
|i|
n −1

)2

= t ′(n)2 +2
n
√

2|i|

≤ t ′(n)2 +2
C(i)√

2|i|

for some suitable elementary functiont ′. Note thatk(n, |i|) disappears in the calculation since for largei
we havek(n, |i|)2 ≤ (n+1+

√
|i|)2 which is (for largei) much smaller than

n+1
√

2|i|.
This yields the claim. 2

The following shows that our bound is sharp.

Theorem 7 Let gα(n, i) = n+2
H−1

α (i)√i . Let Fg(n) = max{K : (∃m1, . . . ,mK ∈HR)[m1 � . . .�mK & ∀i ≤
K[mi ≤ g(n, i)]]}. Then Fgα is primitive recursive for allα < ωω.

The proof is left as an exercise and can be extracted from Arai (2002) or Weiermann (2003) using Theorem
4.

Remarks: At first sight it seems that Theorems 6 and 7 are very special since they rely on the specific
representation of the Hardy Ramanujan numbers, i.e. the specific coding of the ordinals belowωω. It
turns out that they hold in much more general situations since the bounds from the Hardy Ramanujan,
i.e. Theorem 2, can be extended cum grano salis to more general contexts. For example, iff : N→ N is
linear, i.e. f (x) = k ·x for some fixedk∈ N and if we consider

HRf = {pa1
f (1) · . . . · p

an
f (n) : a1 ≥ . . .≥ an ≥ 1}

then Theorems 6 and 7 hold also with respect to HRf . Moreover we believe that it will be not too hard to
show that Theorems 6 and 7 hold also with respect to HRf if f : N→N is a strictly increasing polynomial
function. Moreover it seems plausible that it is possible to replace the data structure of primes by a suitable
system of Beurling primes.

In this paper we have confined ourselves for the sake of simplicity of presentation with one of the most
simplest choices of the coding. The coding seems to be a very natural one and it is in complete accordance
with the choice proposed by Hardy and Ramanujan.
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