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A Nordhaus-Gaddum-type result is a (tight) lower or upper bound on the sum or product of a parameter of a graph
and its complement. In this paper we study Nordhaus-Gaddum-type results for total domination. We examine the
sum and product of γt(G1) and γt(G2) where G1 ⊕G2 = K(s, s), and γt is the total domination number. We show
that the maximum value of the sum of the total domination numbers ofG1 andG2 is 2s+4, with equality if and only
if G1 = sK2 or G2 = sK2, while the maximum value of the product of the total domination numbers of G1 and G2

is max{8s, b(s+ 6)2/4c}.
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1 Introduction
In this paper, we continue the study of total domination in graphs which was introduced by Cockayne,
Dawes, and Hedetniemi Cockayne et al. (1980). A total dominating set, abbreviated TDS, of a graph
G is a set S of vertices of G such that every vertex is adjacent to a vertex in S. Every graph without
isolated vertices has a TDS, since S = V (G) is such a set. The total domination number ofG, denoted by
γt(G), is the minimum cardinality of a TDS. A TDS of G of cardinality γt(G) is called a γt(G)-set. Total
domination in graphs is now well studied in graph theory. The literature on this subject has been surveyed
and detailed in the two books by Haynes, Hedetniemi, and Slater Haynes et al. (1998a,b). A recent survey
of total domination in graphs can be found in Henning (2009).

In 1956 the original paper Nordhaus and Gaddum (1956) by Nordhaus and Gaddum appeared. In it
they gave sharp bounds on the sum and product of the chromatic numbers of a graph and its complement.
Since then such results have been given for several parameters; see, for example, Chartrand and Mitchem
(1971); Füredi et al. (2005). Nordhaus-Gaddum inequalities involving domination parameters in graphs
have been studied in several papers; see, for example, Arumugan and Thuraiswamy (1996); Cockayne
et al. (1980); Erfang et al. (2004); Favaron et al. (2010); Goddard and Henning (2003); Goddard et al.
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(1992); Harary and Haynes (1996); Hattingh et al. (2008); Jaeger and Payan (1972); Joseph and Aru-
mugam (1995); Payan and Xuong (1982) and elsewhere. In particular, we remark that in the introductory
paper on total domination, Cockayne, Dawes, and Hedetniemi Cockayne et al. (1980) proved a Nordhaus-
Gaddum bound for the sum of the total domination numbers of a graph and its complement, while the
authors Henning et al. (2011) gave a bound for their product.

Theorem 1 (Cockayne et al. (1980); Henning et al. (2011)) Let G be a graph of order n such that neither
G nor G contains isolated vertices. Then the following holds.

(a) γt(G) + γt(G) ≤ n+ 2.
(b) γt(G)γt(G) ≤ 2n.

In both inequalities, equality holds if and only if G or G consists of disjoint copies of K2.

For an overview of Nordhaus-Gaddum inequalities for domination-related parameters we refer the
reader to Chapter 10 in the domination book by Haynes, Hedetniemi, and Slater Haynes et al. (1998a).

Plesnı́k k (1978) was the first to extend Nordhaus and Gaddum’s results to the case where the complete
graph is factored into several factors. Goddard, Henning and Swart Goddard et al. (1992) continued
this approach and considered the domination number and G1 ⊕ G2 ⊕ G3 = Kn. They also looked at
another variation on Nordhaus-Gaddum type results in which they extended the concept by considering
G1 ⊕G2 = K(s, s) rather than G1 ⊕G2 = Kn. (If G and H are graphs on the same vertex set but with
disjoint edge sets, then G⊕H denotes the graph whose edge set is the union of their edge sets.)

In this paper, we focus our attention on Nordhaus-Gaddum type results for the total domination number.
In particular, we establish upper bounds on the sums and products of the total domination numbers of G1

and G2, where G1 ⊕G2 = K(s, s), and neither G1 nor G2 contains isolated vertices.

1.1 Notation

For notation and graph theory terminology we in general follow Haynes et al. (1998a). Specifically, let
G = (V,E) be a graph with vertex set V of order n = |V | and edge set E of size m = |E|, and let v be a
vertex in V . The open neighborhood of v is N(v) = {u ∈ V |uv ∈ E} and the closed neighborhood of
v is N [v] = {v} ∪N(v). For a set S ⊆ V , its open neighborhood is the set N(S) = ∪v∈SN(v) and its
closed neighborhood is the setN [S] = N(S)∪S. For a set S ⊆ V , the subgraph induced by S is denoted
by G[S]. For subsets S, T ⊆ V , the set S totally dominates the set T if T ⊆ N(S), while S dominates
T if T ⊆ N [S]. In particular, if S dominates V , then S is called a dominating set in G. The minimum
degree among the vertices of G is denoted by δ(G). A cycle on n vertices is denoted by Cn and a path
on n vertices by Pn, while a complete graph on n vertices is denoted by Kn. If G is a disjoint union of k
copies of a graph F , we write G = kF . For disjoint subsets X and Y of V , we let G[X,Y ] denote the set
of all edges of G between X and Y .

2 Total Domination Number and Relative Complement
IfG is a subgraph ofH , then the graphH−E(G) is called the complement ofG relative toH . In Goddard
et al. (1992), the authors determined the graphs H with respect to which complements are always unique
in the following sense: if G1 and G2 are isomorphic subgraphs of H , then their complements H−E(G1)
and H − E(G2) are isomorphic.
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Theorem 2 (Goddard et al. (1992)) Let H be a graph without isolated vertices with respect to which
complements are always unique. Then H is one of the following: (a) rK(1, s), (b) rK3, (c) Ks, (d) C5,
or (e) K(s, s), for some integers r and/or s.

The above results suggest that the complete bipartite graph K(s, s) is an obvious alternate to Kn in
Nordhaus-Gaddum results. In Goddard et al. (1992), the sums and products of ψ(G1) and ψ(G2) are
examined where G1⊕G2 = K(s, s), and ψ is the independence, domination, or independent domination
number, inter alia. In this section we take ψ to be the total domination number.

2.1 Notation
For the rest of the section we shall assume that K(s, s) has partite sets L and R (standing for “left” and
“right”), and that G1⊕G2 = K(s, s) where neither G1 nor G2 have an isolated vertex. For G ⊂ K(s, s),
let δL(G) denote the minimum degree of a vertex of L. Define δR(G), ∆L(G) and ∆R(G) similarly.
Further we shall abbreviate parameters by writing γit for γt(Gi), ψi for ψ(Gi) for parameters ψ 6= γt,
Ni(v) for NGi

(v), Ei for E(Gi), Vi for V (Gi), and mi for the size of Gi, for i ∈ {1, 2}.
Recall that for subsets S, T ⊆ V , the set S totally dominates the set T if T ⊆ N(S). Let G ⊂ K(s, s).

A left total dominating set, abbreviated left TDS, of G is a set of vertices that totally dominates L; that
is, a left TDS is a set S of vertices of G such that L ⊆ N(S). Necessarily a left TDS of G belongs to
R. The minimum cardinality of a left TDS in G is called the left domination number, denoted `(G), of
G. Similarly, a right total dominating set, abbreviated right TDS, of G is a set of vertices that totally
dominates R and the minimum cardinality of a right TDS in G is the right domination number, denoted
r(G), of G. We note that a right TDS of G belongs to L.

2.2 Preliminary Results
Cockayne et al. Cockayne et al. (1980) obtained the following upper bound on the total domination num-
ber of a connected graph in terms of the order of the graph.

Theorem 3 (Cockayne et al. (1980)) If G is a connected graph of order n ≥ 3, then γt(G) ≤ 2n/3.

We shall need the following observation.

Observation 4 Let G1 ⊕G2 = K(s, s), and let i ∈ {1, 2}. Then the following hold.
(a) δLi + ∆L

3−i = δRi + ∆R
3−i = s.

(b) δLi + δR3−i ≤ s.
Proof. Part (a) is immediate. Counting edges in G1 and G2, we have mi ≥ sδLi and m3−i ≥ sδR3−i, and
so s2 = mi +m3−i ≥ s(δLi + δR3−i), or, equivalently, δLi + δR3−i ≤ s. 2

The following lemma will prove to be useful.

Lemma 5 Let G1 ⊕G2 = K(s, s), where neither G1 nor G2 have an isolated vertex, and let i ∈ {1, 2}.
Then the following hold.

(a) 2 ≤ `i, ri ≤ s.
(b) γit = `i + ri.
(c) `i ≤ 1 + δR3−i and ri ≤ 1 + δL3−i.
(d) (`i − 2)(r3−i − 1) ≤ δR3−i − 1 and (ri − 2)(`3−i − 1) ≤ δL3−i − 1.
(e) γit ≤ 2 + 2 min{∆R

3−i,∆
L
3−i}.
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Proof. (a) Part (a) follows from the observation that 1 ≤ δi ≤ ∆i ≤ s− 1.
(b) Part (b) follows from the observation that every TDS of G1 can be partitioned into two sets, one
contained in L that totally dominatesR and the other contained inR that totally dominates L.
(c) Let v ∈ R be a vertex of degree ∆R

1 inG1. We now consider the setN2(v) and note that |N2(v)| = δR2 .
For each vertex u ∈ N2(v), select an arbitrary neighbor u′ inG1. LetU = ∪{u′}, where the union is taken
over all vertices u ∈ N2(v). Then,U∪{v} is a left TDS inG1, and so `1 ≤ |U |+1 ≤ |N2(v)|+1 = 1+δR2 .
The other results follow by symmetry.
(d) Let v ∈ R have degree ∆R

1 inG1 and letX = L\N1(v). We now partitionX into subsetsX1, . . . , Xk

of size at most r2 − 1 such that k is as small as possible. For each i = 1, . . . , k, the set Xi does not
dominate R in G2, and so there exists a yi ∈ R \ N2(Xi) which therefore totally dominates Xi in G1.
Hence, {v, y1, . . . , yk} totally dominates L inG1. Since k = d|X|/(r2−1)e and |X| = s−∆R

1 = δR2 , we
deduce that `1 ≤ 1+dδR2 /(r2−1)e ≤ 2+(δR2 −1)/(r2−1), or, equivalently, (`1−2)(r2−1) ≤ δR2 −1.
The other results follow by symmetry.
(e) Let v ∈ R have degree ∆R

1 inG1. LetX = N1(v), and let u ∈ L\X . Further let Y = N1(u) and Z =
R \ (Y ∪ {v}). If some vertex y ∈ Y dominates X in G1, then the degree of y in G1 exceeds that of v, a
contradiction. Hence every y ∈ Y is adjacent to at least one vertex ofX inG2, and soX totally dominates
Y in G2. For each vertex x ∈ X , select an arbitrary neighbor x′ in G2. Let X ′ = ∪x∈X{x′} and note
that X ′ totally dominates X in G2 and |X ′| ≤ |X|. Moreover, {u, v} totally dominates V \ (X ∪ Y ) in
G2. Thus, X ∪X ′ ∪ {u, v} is a TDS in G2, and so γ2t ≤ 2 + 2|X| = 2 + 2∆R

1 . Similarly by choosing
v ∈ L to have degree ∆L

1 inG1, we have that γ2t ≤ 2+2∆L
1 . Thus, γ2t ≤ 2+2 min{∆R

1 ,∆
L
1 }. Similarly,

γ1t ≤ 2 + 2 min{∆R
2 ,∆

L
2 }. 2

2.3 The Sum
In this section, we look at G1 ⊕ G2 = K(s, s) and the upper bound on γt(G1) + γt(G2), where neither
G1 nor G2 have an isolated vertex. We shall establish:

Theorem 6 If G1 ⊕ G2 = K(s, s) where neither G1 nor G2 has an isolated vertex, then γt(G1) +
γt(G2) ≤ 2s+ 4, with equality if and only if G1 = sK2 or G2 = sK2.

Proof. That the upper bound of 2s+ 4 on the sum γ1t + γ2t is sharp, may be seen by taking G1 = sK2, in
which case γ1t = 2s and γ2t = 4, or, by symmetry, taking G2 = sK2.

We now prove the upper bound holds. Renaming sets, if necessary, we may assume without loss of
generality that r1 = min{`1, r1, `2, r2}. By Lemma 5(a), r1 ≥ 2. If r1 = 2, then we have that

γ1t + γ2t = r1 + `1 + γ2t (by Lemma 5(b))
≤ 2 + (1 + δR2 ) + (2 + 2∆R

1 ) (by Lemma 5(c) and 5(e))
= 5 + s+ ∆R

1 (by Observation 4)
≤ 2s+ 4 (since ∆R

1 ≤ s− 1).

Suppose, further, that γ1t + γ2t = 2s+ 4 (and still r1 = 2). Then equality occurs throughout the above
inequality chain. In particular, this requires that γ2t = 2 + 2∆R

1 and that ∆R
1 = s− 1. But then γ2t = 2s.

This is only possible if G2 = sK2.
Hence we may assume that r1 ≥ 3, for otherwise the desired result follows. By Lemma 5(c), r1 ≤

1 + δL2 , implying that δL2 ≥ 2. Similarly, since `1 ≥ r1 ≥ 3, we note that δR2 ≥ 2. Since r2 ≥ r1 ≥ 3,
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Lemma 5(d) implies that `1 ≤ 2 + (δR2 − 1)/(r2 − 1) ≤ 2 + (δR2 − 1)/2. Similarly, r1 ≤ 2 + (δL2 −
1)/(`2 − 1) ≤ 2 + (δL2 − 1)/2. By Lemma 5(b), γ1t = `1 + r1, and so

γ1t ≤ 3 + (δR2 + δL2 )/2. (1)

By Lemma 5(e), γ2t ≤ 2 + 2 min{∆R
1 ,∆

L
1 } ≤ 2 + ∆R

1 + ∆L
1 . By Observation 4, we note that

∆R
1 = s− δR2 and ∆L

1 = s− δL2 . Hence,

γ2t ≤ 2 + 2s− δR2 − δL2 . (2)

Adding Equation (1) and Equation (2), we have that γ1t + γ2t ≤ 2s + 5 − (δR2 + δL2 )/2. However as
observed earlier, r1 ≥ 3 implies that δL2 ≥ 2 and δR2 ≥ 2. Hence, γ1t + γ2t ≤ 2s+ 5− 2 < 2s+ 4. 2

2.4 The Product
In this section, we look at G1 ⊕G2 = K(s, s) and the upper bound on γt(G1)γt(G2), where neither G1

nor G2 has an isolated vertex. We shall establish:

Theorem 7 IfG1⊕G2 = K(s, s) where neitherG1 norG2 have an isolated vertex, then γt(G1)γt(G2) ≤
max{8s, b(s+ 6)2/4c}.

Proof. That the upper bound of 8s on the product γ1t γ
2
t is achievable, may be seen by taking G1 = sK2

or G2 = sK2. We remark that if G1
∼= B12, where B12 is the bipartite cubic graph of order n = 12

shown in Figure 1, then G2
∼= B12 and γ1t γ

2
t = 36 = b(s + 6)2/4c. This shows that the upper bound of

b(s+ 6)2/4c on the product γ1t γ
2
t is achievable.
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Fig. 1: The bipartite cubic graph B12.

If γ1t = 4, then since γ2t ≤ 2s, we have that γ1t γ
2
t ≤ 8s. Further if γ1t γ

2
t = 8s, then γ2t = 2s which is

only possible if G2 = sK2. Similarly, if γ2t = 4, then γ1t γ
2
t ≤ 8s, with equality if and only if G1 = sK2.

Hence we may assume that γ1t ≥ 5 and γ2t ≥ 5, for otherwise the desired result follows. In particular, this
implies that both G1 and G2 are connected. Renaming sets, if necessary, we may assume without loss of
generality that r1 = min{`1, r1, `2, r2}. By Lemma 5(a), r1 ≥ 2.

We proceed further with the following claim.
CLAIM A: If r1 ≥ 3, then γ1t γ

2
t ≤ b(s+ 6)2/4c.

PROOF. An identical argument as in the proof of Theorem 6, shows that Equation (1) holds; that is, γ1t ≤
3 + (δR2 + δL2 )/2. By a symmetric argument, γ2t ≤ 3 + (δR1 + δL1 )/2. Adding these two inequalities yields
γ1t +γ2t ≤ 6+(δL1 +δL2 +δR1 +δR2 )/2. Hence, by Observation 4(b), γ1t +γ2t ≤ s+6. Since the geometric
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mean is at most the arithmetic mean, we note that
√
γ1t γ

2
t ≤ (γ1t + γ2t )/2, and so γ1t γ

2
t ≤ b(s+ 6)2/4c.

This completes the proof of Claim A. (2)

By Claim A we may assume that r1 = 2. We now let `1 = k+1 and continue with the following claim.
CLAIM B: We may assume that the following hold.

(a) `2 ≤ s− k.
(b) 4 ≤ r2 < s/k + 1.
(c) 4 ≤ k < s/3.

PROOF. (a) Let X be a minimum left TDS of G1 and note that X ⊆ R and |X| = `1. Let X =
{x1, . . . , x`1}. By the minimality of X , every vertex x ∈ X has at least one neighbor in G1 which has no
other neighbor in X except for x. For each xi ∈ X , let yi be such a neighbor, and so N1(yi)∩X = {xi}.
Let Y = {y1, . . . , y`1} and note that Y ⊆ L and that |X| = |Y | = `1. Furthermore, Y \ {yi} ⊆ N2(xi)
for all i ∈ {1, . . . , `1}. Let Y ′ = L \ Y = {y′1, . . . , y′s−`1}.

Suppose there are no edges between X and Y ′ in G2, that is G2[X,Y ′] = ∅. Since G2 is connected,
there must exist vertices yj1 ∈ Y and y′j2 in Y ′ with a common neighbor, x′ say, in G2. Necessarily,
x′ ∈ R \X . Now, for each i ∈ {1, . . . , s− `1} \ {j2}, we let x′i ∈ N2(y′i), and let x′j2 = x′. Let

X ′ =

s−`1⋃
i=1

{x′i}

and note that |X ′| ≤ s− `1. But now Y \{yj1} ⊆ N2(xj1) and Y ′∪{yj1} ⊆ N2(X ′), and so X ′∪{xj1}
is a left TDS of G2. Hence, `2 ≤ |X ′ ∪ {xj1}| ≤ s− `1 + 1 = s− k, as desired.

Hence we may assume thatG2[X,Y ′] 6= ∅. Thus for some k1 ∈ {1, . . . , `1} and some k2 ∈ {1, . . . , s−
`1}, we have xk1y

′
k2
∈ E2. For each i ∈ {1, . . . , s− `1} \ {k2}, we let x′′i ∈ N2(y′i), and let x′′k2

= xk1 .
Let

X ′′ =

s−`1⋃
i=1

{x′′i }

and note that |X ′′| ≤ s− `1. Let k3 ∈ {1, . . . , `1} \ {k1}. Then, Y \ {yk3} ⊆ N2(xk3) and Y ′ ∪{yk3} ⊆
N2(X ′′), and so X ′′ ∪ {xk3

} is a left TDS of G2. Hence, `2 ≤ |X ′′ ∪ {xk3
}| ≤ s− `1 + 1 = s− k, as

desired.

(b) Suppose r2 ≤ 3. Recall that `1 = k + 1, r1 = 2, and by part (a), `2 ≤ s − k. Therefore, γ1t γ
2
t =

(`1 + r1)(`2 + r2) ≤ (k + 3)(s − k + 3). Since the geometric mean is at most the arithmetic mean, we
have that

√
(k + 3)(s− k + 3) ≤ (s + 6)/2, and so γ1t γ

2
t ≤ b(s + 6)2/4c. Hence we may assume that

r2 ≥ 4. We now partitionR into subsets X1, . . . , Xj of size at most k such that j is as small as possible.
Since `1 = k + 1, for each i = 1, . . . , j, the set Xi does not dominate L in G1, and so there exists a
yi ∈ L \ N1(Xi) which therefore totally dominates Xi in G2. Hence, {y1, . . . , yj} totally dominates R
in G2. Since j = d|R|/ke and |R| = s, we deduce that r2 ≤ ds/ke < s/k + 1.

(c) Suppose k ≤ 3. Then, γ1t = r1 + `1 ≤ 6. By Theorem 3, γ2t ≤ 2|V2|/3 = 4s/3. Hence, γ1t γ
2
t ≤

6(4s/3) = 8s. We may therefore assume that k ≥ 4. By Part (b), we may assume 4 < s/k + 1 and thus
k < s/3. This completes the proof of Claim B. (2)
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By Claims A and B we now have that r1 = 2, `1 = k + 1, r2 < s/k + 1, and `2 ≤ s − k. Hence, by
Lemma 5(b), we have

γ1t γ
2
t < (k + 3)(s/k + s− k + 1). (3)

We proceed with the following claim which introduces an assumption we can make on the size of s and
improves the bounds in Claim B(b) and Claim B(c).

CLAIM C: We may assume that the following hold.
(a) s ≥ 20.
(b) 5 ≤ r2 < s/k + 1.
(c) 4 ≤ k < s/4.

PROOF. (a) Suppose s = 19. Then by Claim B(c) we have k ∈ {4, 5, 6}. Substituting these values
into Equation (3) we get γ1t γ

2
t < 145.25, γ1t γ

2
t < 150.4, and γ1t γ

2
t < 154.5, respectively. In each case

γ1t γ
2
t < 156 = b(s+ 6)2/4c, and thus we may assume s 6= 19. Suppose now that s ≤ 18. By Claim B(c)

we have k ∈ {4, 5}. If k = 4 then

γ1t γ
2
t < (7)(s/4 + s− 3) (substituting into Equation (3))

= 8s+ 3s/4− 21
< 8s (since 3s/4 ≤ 3(18)/4 < 21).

Hence we may assume that k = 5. But now we have

γ1t γ
2
t < (8)(s/5 + s− 4) (substituting into Equation (3))

< 8s (since s/5 ≤ 18/5 < 4).

Hence we may assume that s ≥ 20.

(b) By Claim B(b) we have 4 ≤ r2 < s/k + 1. If r2 = 4 then

γ1t γ
2
t = (`1 + r1)(`2 + r2) (by Lemma 5(b))
≤ (k + 3)(s− k + 4) (by Claim B(a)).

We note that (k+3)(s−k+4) is a parabola as a function of k which achieves its maximum at k = (s+1)/2
and is therefore strictly increasing on the interval [4, s/3]. Therefore, since 4 ≤ k < s/3 (by Claim B(c)),
we have

γ1t γ
2
t < (s/3 + 3)(s− s/3 + 4)

= 2s2/9 + 10s/3 + 12
= (s+ 6)2/4− s2/36 + s/3 + 3.

But by Part (a) we have s > 18, and so s2/36 > 18s/36 = s/2 = s/3 + s/6 > s/3 + 3. Thus,
−s2/36 + s/3 + 3 < 0 and the above inequality chain reduces to γ1t γ

2
t < (s + 6)2/4, and hence

γ1t γ
2
t ≤ b(s+ 6)2/4c. We may therefore assume that r2 6= 4, and so 5 ≤ r2 < s/k + 1.

(c) By Claim B(c) we have k ≥ 4. By Part (b), we may assume 5 < s/k + 1 and thus k < s/4. This
completes the proof of Claim C. (2)

We return to the proof of Theorem 7. Multiplying out Equation (3) yields

γ1t γ
2
t < s+ 3s/k + (k + 3)(s− k + 1). (4)
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We note that since k ≥ 4 we have that 3s/k ≤ 3s/4. Furthermore, (k + 3)(s − k + 1) is a parabola as
a function of k which achieves its maximum at k = (s − 2)/2 and is therefore strictly increasing on the
interval [4, s/4]. Using this information and the fact that 4 ≤ k < s/4 (by Claim C(c)) in Equation (4),
we get

γ1t γ
2
t < s+ 3s/4 + (s/4 + 3)(3s/4 + 1)

= 3s2/16 + 17s/4 + 3
= (s+ 6)2/4− s2/16 + 5s/4− 6.

But by Claim C(a) we have s ≥ 20 and so s2/16 ≥ 20s/16 = 5s/4. Thus, −s2/16 + 5s/4− 6 < 0 and
the above inequality chain reduces to γ1t γ

2
t < (s + 6)2/4. We conclude that γ1t γ

2
t ≤ b(s + 6)2/4c. This

completes the proof of Theorem 7. 2

That the bound of Theorem 7 is essentially best possible, may be seen as follows. For s ≥ 2, by taking
G1 = sK2 we note that γt(G1) = 2s and γt(G2) = 4, whence γt(G1)γt(G2) = 8s. Let s ≥ 4 and let
K(s, s) have partite sets A and B. Partition A (B) into two sets, one of size bs/2c, say A1 (B1), and
one of size ds/2e, say A2 (B2). Form the edge set of G1 from the set of all edges between A and B1

by removing (the edges of) a matching between A1 and B1 and inserting a matching between A2 and
B2. If S is a TDS of G1, then A2 ⊂ S in order to totally dominate B2, while |S ∩ B1| ≥ 2 in order
to totally dominate A1. Hence, γt(G1) ≥ ds/2e + 2. However adding any two vertices of B1 to the set
A2 produces a TDS of G1. Consequently, γt(G1) = ds/2e + 2. Similarly, γt(G2) = bs/2c + 2. Thus,
γt(G1)γt(G2) = (ds/2e+ 2)(bs/2c+ 2) = b(s/2 + 2)2c = b(s+ 4)2/4c.

We remark that b(s+ 6)2/4c ≥ 8s for s ≥ 18.
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