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It is proved that the moments of the width of Galton-Watson trees of rsiaed with offspring variance? are
asymptotically given bya/n)Pmy, wherem, are the moments of the maximum of the local time of a standard scaled
Brownian excursion. This is done by combining a weak limit theorem and a tightness estimate. The method is quite
general and we state some further applications.
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1 Introduction

In this paper we are considering rooted trees which are family trees of a Galton-Watson branching process
conditioned to have total progeny These trees are also called simply generated trees (See [35]). Without
loss of generality we may assume that the offspring distribigisngiven by
™0k

PEE=K =30 (1)
where (¢x; k > 0) is a sequence of non-negative numbers suchdibat 0 andd(t) = ¥y-o Pkt has a
positive or infinite radius of convergenétandt is an arbitrary positive number within the circle of
convergence af(t). These conditions in particular imply that all momentg eiist and that < R. Due
to conditioning on the total progeny and finiteness of moments it is no restriction if we confine ourselves
to studying only the critical case, that B§ = 1 which equivalently means thasatisfiestd’ (1) = ¢(1).
The variance o€ can also be expressed in termspgf) and is given by

2 24" (1)
7T e

Note that the offspring distributiof (1) can be interpreted as assigning weights to all trees defined by

T) = n(T)
w(T) kl;Lq)k

)
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for a treeT havingn nodesng of which have out-degrele k > 0. Denote by T| the number of nodes of
such a tree and let, be the (weighted) number of all trees withnodes, i.e.

an= Y ).
T:T|=n

Then the corresponding generating functagn) = 3 ,-oanz" satisfies the functional equation
a(2) = zp(a(2)). @)

Denote by(Ln(t),t > 0) the sequence of the generation sizes of a Galton-Watson tree the total progeny
of which isn. For non-integet we defineL(t) by linear interpolation:

Ln(t) = ([t) +1=t)Ln([t]) + (= [t)La([t] +1), t>0.
We are interested in the width of such a tree which is defined by

Wh = maxLn(t).
"0 n(®)

This quantity attracted the interest of many authors. First, Odlyzko and(Wilf [37] became interested in
this tree parameter when studying the bandwidth

B(T)= min< max_ |f(u)— f(v)|>

f (uv)eE(T)

of atreeT, wheref is an assignment of distinct integers to the vertices of the tree. They showed for a tree
with n vertices and height(T) and widthw(T) that

n-1
2h(T)

<B(T)<2w(T)-1

and furthermore they showed that there exist positive constaiatsdc, such that the estimate

c1v/n < Ewy < c24/nlogn 4)

holds. The exact order of magnitude was left as an open problem. Aldous conjeCtured [1, ConjL4] that
(suitably normalized) converges to Brownian excursion local time. This was first proved in [15], later by
different methods by Kersting [29] and Pitman|[38]. More precisely, set

- (2

and
1 1
I(t) = lim 0/ e (W(9) s

where(W(s),0 < s< 1) is the standard scaled Brownian excursibf) is the local time (at time 1 and
levelt) of the normalized Brownian excursion. Then the above described limit theorem reads as follows:
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Theorem 1 ([15]). Let(t) be the GF of a family of random trees. Assume th@j has a positive or
infinite radius of convergence R. Furthermore suppose that the equdti@n £ ¢(t) has a minimal
positive solutiort < R. Then we have

(In(t),t > 0) == (I(t),t > 0)

in C[0, ), as h— oo,

Partial results go back t01[9, 2,127,134 41]. The density of the finite dimensional distributidbns of
was computed iri [25]. A consequence of Theofém 1 is the following result which was proved directly by
Takacs [40].

Corollary 1 ([15]). Under the assumptions of Theorgm 1 we have

supla(t) = supl (t).
t>0 t>0

Thus this suggests (but does not imp{y} as correct order of magnitude [n (4).
Note that the maximum of local time is well studied (¢f./[28, 8,[18, 3, 34]). We have

supl(t) 2 2 supwi(t),
t>0 0<t<1

moreover it is theta-distributed, i.e.,

P{ sup I (t) < x} =1-2% (4K - 1) /2 x>0,
o<t<1 &

and 0
E Ksupl (t)> ] =22p(p—1)r (£)2(p).
t>0 2
The purpose of this paper is to show that, in addition to the weak limit theorem above, we have a
moment convergence theorem of sygin(t) to sup-ol(t), too. We formulate it in terms of the width
Wn = max>oLn(t) = (0/2)v/nsupsoln(t).
Theorem 2. Suppose that there exists a minimal positive solutienR of t’(t) = ¢(t). Then the width

W, satisfies
E (w8) =0*2 P2p(p—1)r (£)2(p)-nP/2- (1+0(2))
as N— oo,

It should be further mentioned that Chassaing and Marckert [7] used the relation of parking functions
and rooted trees as well as the strong convergence theorem of Komlos, Major and Tushady [33] to derive
tight bounds for the moments of the width for Cayley trees. They showed (here and throughout the whole
papera < b denotesa < Cbfor some positive consta)

Theorem 3 ([7]). If ¢(t) = € and p> 1, then

= (avm) = (G2p0)

_ wh )\ p —p/4
_‘E<o\m) E(f;(?N(t)) < n P%logn.
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Remark. In fact, Chassaing and Marckelt [7] showed an even stronger result: In some probability space
there exist a sequence of copiesmgfand a sequence of theta-distributed random varidbjesuch that
foranyp>1

2Whn

oy/n

Dn

o4y or)

p
where theD-constant depends gn

Recently, Chassaing, Marckert, and Yor [6] have used Thedréms [I] and 3 in conjunction with results
of Aldous [1] to obtain a weak limit theorem (without moments) for the joint law of height and width of
simply generated trees. (For binary trees they present an elementary proof, too.)

2 Plan of the Proof of Theorem

In view of Corollary[1 the result of Theordn 2 is not unexpected. Nevertheless, it does not follow directly
from Corollary[] since convergence of moments is not automatically transfered via weak convergence
(from Theorenfi]L).

In order to prove Theorefr] 2 we actually use the result of Thepfem 1, that is, the normalized profile of
Galton-Watson trees converges weakly to Brownian excursion local i)t > 0) —— (I(t),t > 0).
However, we need some additional considerations: In [17] (se€ also [14]) Drmota and Marckert introduced
the notion of so-callegholynomial convergencghat is inspired by the notion of uniform integrability).

The key property for our purposes is the following one. It generalizes the results| of [17] (sele_also [14,
Theorem 3.7]) that only apply for processes with compact support.

Theorem 4. Let x, be a sequence of stochastic processe§M«) which converges weakly to x. Assume
that for any choice of fixed positive integers p and d there exist positive consgatitscg, ¢z such that

SUPE |Xn(t)|P < coe™%! for all t >0, (5)
n>0
and
SUPE [Xn(t +3) — Xn(1)]?? < coe %< for all s,t > 0. (6)

n>0
Then x is polynomially convergent to x, that is, for every continuous functionalCfd, ) — R of
polynomial growth (i.e|F (y)| < (1+|]y||«)" for some r> 0) we have

lim EF(x,) = EF(X).

n—oo

We will show thatl, satisfies the assumptiorid (5) ahfl (6) of Thedrém 4 and thus t&kijg= |||\,
yields immediately Theorefr] 2.

The next section is devoted to the proof of Theofgém 4. In secfipns [4 and 5 we[grove (5) and (6). Finally
in sectior] § we provide some further applications of Thedrem 4.

3 Proof of Theorem

Let us start with the following two observations.
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Lemma 1. Suppose thatxsatisfies|(p). Then for every>p0 we have

E supx(j)|P < 1
JeEN

uniformly for all n.

Proof. SinceE |x,(t)|P+1 < e, uniformly inn, we have

P (1) > A <5 P{Ixa(j)| > A}
{SUIOXnJ } J; Xn(]

jeN

1 . . .
< el j;E %a(j)|P+* by Markov's inequality

< 1 el « 1
Ap+lJZO Ap+l

Thus it follows that

© 1
N p-1
E (J_seljl\?|xn(1)| ) <1+ p/l A AP dA< 1.

Lemma 2. Suppose thatxsatisfies[(). Then, for fixed p we have

E < sup |xn(s)xn(t)|p> < 8P/2,

|s—t|<8
uniformly ford with 0 < & < 1 and for all n.

Proof. First we prove that for every integelr> 1 there exists a constaKt> 0 such that foe > 0 and
0<d<«1

d—1
P{ SUp [Xn(S) —Xn(t)| > 8} < K%. )

|s—t|<d
Arguing as in[[4, pp. 95] guarantees that there exists a consiant0 such that for alm> 0

d—1

1)
P sup Xn(S) = Xn(t)] > € p < Ky BM—-.
|s—t|<3,m<st<mi2 €

Thus
d—1 6dfl

hd o
PS osup [Xn(S) —xn(t)|>€ 5 < Kie M <K—+
{stlgél (&) =(0) } n;o g g«

for some constarK > 0.
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Set
Z= sup [X\(s) —xa(t)|-

|s—t|<d

Then by applying[(7) it follows that (if@ > p+ 1)
EZP :p/ 1Pz > 7dz
0

(Ka)(dfl)/d I
:p/ Pz > 7dz+ p/ 2Pz > Zdz
0 (K8)(d-D)/d
<(K§)PE-D/d 4 pK&')"*l/oo P12y,
- (K3)(d-1)/d

<<6p<d*1)/d < 6[’/27
which proves the Lemma. O

The proof of Theorerfi]4 is now an easy task. Note that the results of L¢inma[1 and 2 in conjunction
with the triangular inequality imply

SupE (supxn(t)|r) < oo forallr > 0.

n>0 \t>0

Thus, ifF is a continuous functional of polynomial growth we have for any 0

SUPE |F (Xn) |} < co.

n>0

By continuity ofF we also obtaif (x,) — F (x) and finally, by Billingsley[[5, p. 338] it directly follows
that
lim EF(x,) = EF(x)

n—oo

as desired. O

4 Moments for the Profile of Galton-Watson Trees
We start with a lemma on the growth of coefficients of powers of certain generating functions.

Lemma3. Letz # 0andA={z: |7 <z+n, |arg(z—2)| > 9}, wheren > 0and0 < 9 < 1/2. Suppose
that f(z) and gz) are analytic functions i\ which satisfy

z

f(z)| <exp| —C4/|1——| ], ze€A,
()] < p( ] ZO)

9(z) =1- D, /1—Zzo+o(‘1—zz ) zeh,
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for some positive constantsB. Then for any fixed there exists a constant & 0 such that

f(z)l’ —C'r /N (-
[ﬂm :o(e Clr/yV/An(¢ 2)/2)

uniformly for all r,n > 0 (where[Z"|F (z) denotes the coefficient df af the function Kz)).

Proof. The only difference td [23, Lemma 3.5] is the factoi{1— g(2))’, but since its behavior in is
known and[[20, Theorem 3] is applicable, the proof is analogous to thatlof [23, Lemma 3.5]. O

By means of this lemma we can show
Lemma 4. For every fixed integer p- 0 there exist positive constantg and ¢ such that

SUPE In(t)P < coe™® )

n>0
forallt > 0.

Proof. For technical simplicity we assume thiat ged{i > 1: ¢; > 0} = 1. This assumption ensures that
the tree functiora(z) defined by') has only one singularity= 1/¢’(1) on the circle of convergence.
If g=gcd{i > 0:¢; >0} > 1 then we can use the substitutine= z%/9 to geta(z) = xb(x) whereb(x)
is analytic with only one singularity on the circle of convergence. Thus this case reduces to the case
g= 1. The other possibility is to deal with thesingularitieszoe®/9, j = 0,1,...,g— 1, on the circle of
convergence and add all contributions.

In particular, it is also well known that (i = 1) a(z) admits a representation of the following kind

a(z=1- T\of 1ZO+O<‘1

)

that is valid for|z] < zp+n and argz— zy) # O, wheren > 0 is suitably small, compare with [35] and
[13].
In what follows we will need the local expansion®fz) = z$'(a(z)). From [9) we immediately get

z
10
:) o
for |z < Zg+n and argz— z) # 0.
Due to ) there exists a constaht> 0 such thaja(z)| < exp( Cy/|1—2/z| ) for ze A (with A
from Lemmg B). Furthermore, it follows that

a(z) =1-0v2 1;+O<‘

supla(z)| =1, (12)

zeA

where we have to choosg> 0 and 0< 9 < 11/2 in a proper way. First, since the power series () has
only positive coefficients, we have max,, [a(z)| = 1. If we assume that = gcd{i > 1:¢; >0} =11t
also follows that

max |a(z)] <1
|4 <z0,|2-20|>¢
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for everye > 0. Now, in the vicinity of the singularityo, that is, for|z— z| < € we can again us¢ (1L0)
and get foz= zp(1+t€®)

‘cx (1+té9)‘ - ‘1—0\/Zeii<“-9>/2+0(t) , 12)
where@ > 11/2. Hence we havi(z)| < 1 for |z— 2| < € and|arg(z— zp)| > 8. Finally, for|z] < zp+n
and|z— 2| > € we obtain the same inequality frofn {12) by a continuity argument (for some sufficiently
smalln > 0). This proves[(T]1).

Now observe that by substituting= |t\/n] in (8) we get
ELn(r)P < cope~&"/VnP/2, (13)
Furthermore note that it suffices to shgw](13) for pile factorial moment
E [Ln(r)]p =ELna(r)(Ln(r) =1)--- (La(r) = p+1)

instead of thepth moment, which we can easily express in terms of the proper coefficient of a generating
function. Indeed we have

1 a\P
£ Ll = 5,21 () wlzva)|
where
Yo(z,u) =u
yi+l(zv U) = Z¢ (yl (Za U)), i>0. (14)

In order to evaluate this coefficient we use Lenttha 3 which translates the local behavior of the function
near its singularity into an asymptotic estimate for the coefficients.
By [24, p. 287, equ. (22)] we have

p _ rip-1
(5u) wtevae| =0<a<z>p|a<z>f| Lo ) 15)
From [11) we get
Ty 11_0;((22) = (16)

Moreovera(z)P behaves like a constant near the singularity a(@' meets the condition in Lemnja 3.
Hence the last factor iff (15) is bounded iy and hence contributes a facta® /2 to the order of
magnitude of thepth factorial momenE [Ln(r)],. Applying Lemm:ﬂs, which yields exp-cir /y/n), and

normalizing bya, ~ 1/07v/2mm? we get the desired resullt. O
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5 Quantitative Tightness Estimates

With help of Lemma B we can prove the following quantitatightness estimate
Lemma 5. For every fixed positive integer d there exist constaptszcsuch that for every, > 0

E[In(t+8) — In(t)[2 < coe s, 17)
Proof(Sketch)Observe that we can rewrife {17) as
E |Ln(r) — Ln(r + h)[2 < cpe7¢8"/Vipdnd/2 (18)
which is quite similar to[[15, Theorem 6.1]. From [15] it follows that
1
E |Ln(r) — La(r +h)[* = a[z”}Hr’h(z),
in which
@ = (uzy ) w2 un(z 0 tala)

andy(z u) is given by [(14).
Evaluation of this coefficient is again done by Lemna 3. By [15, Proposition 6.1] it is easy to show
that

u=1

; d 1— hy j
(e = 0(2 3 Gin(a) g g e (19

whereG; rh(z) satisfy
max|Gjm(2)| = O(1).

Eventually, an application of (16), withinstead ofr, and Lemma[3 td (39) yields

hdn(d-3)/2
4

and, thus, by, ~ 1/07v' 23 the proof is complete. O

[Z'|Hin(2) =0 (

6 Extensions

6.1 Nodes of given degree

In [12] the number of nodes with fixed degréén layers of random trees was investigated. In this case
also limit theorems like Theoreft) 1 and Corollafy 1 hold. In fact, we have

Theorem 5. Let Lﬁd)(k) denote the number of nodes with degree d in layer k in a random tree of total
progeny n. Furthermore, set for anyt0

2 2t
00 = gt (Gﬁ),

where g = ¢4_1191/¢(1). Then we have
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1Y 5 1 and supli® (t) - supl(t)

>0 >0

E ((w@)p) —E (supl(t)) p(1+0(1)),

t>0
where v = max(zol,gd)(k).

Proof(Sketch).
Part 1 was proved iri [12]. The proof of part 2 runs similarly to the proof of Thefjem 2. The only
crucial point is to get estimates as in Lemma 4 and Leifima 5, namely

ELY (r)P < cye%2'/Vinp/2

and

2d
ELY ) L@+ h)‘ < cre % /Vipdnd/2, (20)

Both inequalities can be proved in a similar manner, so let us look at the second one (the first is the easier
one). The results in[12] imply

E

d d a2 d
L0 () L0 ()| = a[z”}Hér}(,_Zh/o(z)

with

@ _ (1,9 . -1 d-1
Hin (@ ={uss ) %(Z22U=1)dd-1yn-1(z 2(u™" ~ 1)éa-1a(2)" " +a(2))

Yh(zZ(u ™t —1)dg-1a(2)* * +a(2)))

u=1

and since the right-hand side of this equation can be expressed in a form sinfilar to (19), we can easily

prove [20). O

6.2 Strata of random mappings

A random mapping of sizeis an element of the s&, of all mappings of a set with elements into itself,
whereF, is equipped with the uniform distribution. These mappings can be represented by functional
digraphs consisting of components which are cycles of trees, i.e., each component of this graph contains
exactly one cycle and each vertex in this cycle is the root of a tree in which each edge is directed towards
the root.

The set of points in distance from a cycle is called theth stratum of a random mapping. This
parameter was previously studied in [2] 11} [16,[36, 39]. For general results on random mappings and
literature see[[32, 21]. Le¥l,(r) denote the number of nodes in ttth stratum of a random mapping of
sizen. Then in [16] we proved
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Theorem 6. Let B(t) denote reflecting Brownian bridge, i.e., a process on the intef¢d] which is
identical in law to|W(s) — SW(1)| (W(t) is the standard Brownian motion), an®(t) its local time, i.e.,

1
1) = lim > [ 1.q(B())ds

E—
0

Then we have

()42 0) = (oM (2vA)£20) - (©(0,420
in C[0, ), as n— . Thus we also have
supmy (t) —% supl B)(t). (21)
t>0 t>0

Here again the corresponding moment convergence theorem is not a consequerice of (21). However, as
before we can show

Theorem 7. We have

p p
E <<supmn(t)) ) = (supl(B) (t)> (1+0(1)). (22)
t>0 t>0
Proof(Sketch)Again the crucial point is to get proper estimates. From [16] it is an easy exercise to get
2d 2n!
E [Mn(r) —Mqn(r +h)|~ = W[Zn]HZr,Zh(Z)a

in which 2d
0 1
r,h( ) ( 0U> 1-yi(z uy(z u—la(Z))) u=1

This function can be written in a form similar fo {19) and thus we can easily prove

E [Mn(r) — Mn(r +h)[% < ¢;e~%"/Vihdnd/2

and then[(ZR). The corresponding bound for the moments, obtained in the same way, carries out even
easier. O

6.3 Height of random trees

The same method can be used to re-derive the analogue for the heigfigimply generated trees (see
Flajolet and Odlyzka [19]).

Theorem 8. Suppose that there exists a minimal positive solutienR of t’(t) = ¢(t). Then

p
E (hf) = (f”) p(P— 1T (5) 2UP)(L+0(1))

as N— oo,
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hn is equal to the maximum of the traversal procégs), defined to be the distance between the root
and therth node during preorder traversal of the tree. Obviously, the same holds when we only traverse
leaves (call the corresponding procd@gs§)). It is well known (seel[1]) that
o).t = 0) = (=Ta@nt=0) % (2wt =0
[ - \/ﬁ n - o =
The height of leaves was investigated by several authors((see [30.131/26] 10, 23]. Here a similar limit
theorem holds: With,(t) = Ta(tn)/+/n we have (see [23])

(1)) = (o).

In addition, in [23] the tightness estimate

- ~ 1 €
PIR(S) (V)] 2 e} < C e exp( D m)
for some positive constan@ andD was shown. This can be used to derive moment estimates like in
Lemmd % and then one proceeds as in the previous section to re-derive Flajolet and Odlyzko’s [19] result
on the moments of the height.

Finally, we want to mention that it is also possible to obtain the moments of the height of a random
mapping (this was done by Flajolet and Odlyzkol[21]) by our method. One has to use the weak limit
theorem by Aldous and Pitmahn [2] and derive a tightness estimate in a similar fashion as has been done in
[16].
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