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Graphs with many Vertex-Disjoint Cycles
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We study graphs G in which the maximum number of vertex-disjoint cycles ν(G) is close to the cyclomatic number
µ(G), which is a natural upper bound for ν(G).

Our main result is the existence of a finite set P(k) of graphs for all k ∈ N0 such that every 2-connected graph G
with µ(G)−ν(G) = k arises by applying a simple extension rule to a graph in P(k). As an algorithmic consequence
we describe algorithms calculating min{µ(G)− ν(G), k + 1} in linear time for fixed k.
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1 Introduction
We consider finite and undirected graphs G with vertex set V (G) and edge set E(G) that may contain
multiple edges but no loops. We use standard terminology [15] and only recall a few notions. If an edge
e ∈ E(G) is incident with the two vertices u and v in V (G), then we write e = uv. The neighbourhood
NG(u) of a vertex u ∈ V (G) is the set of vertices v ∈ V (G) with e = uv for some e ∈ E(G). The
degree dG(u) of a vertex u ∈ V (G) is the number of edges incident with u. A cycle of G is a connected
2-regular subgraph ofG. A block ofG is a maximal 2-connected subgraph ofG. A block is an endblock if
it contains at most one cutvertex ofG. A cactus is a connected graph all cycles of which are edge-disjoint,
i.e. each of its blocks is a bridge or a cycle. An ear of G is a path in G whose internal vertices are all of
degree 2. An ear is maximal, if it is not properly contained in another ear of G. If P is an ear of G and
I is the set of internal vertices of P , then we say that G arises from G′ = (V (G) \ I, E(G) \ E(P )) by
adding the ear P and that G′ arises from G by removing the ear P .

The cyclomatic number µ(G) of G is

µ(G) = |E(G)| − |V (G)|+ c(G)

where c(G) is the number of components of G. A set C of vertex-disjoint cycles of G is a cycle packing.
The set of edges of the cycles in C is denoted by E(C). The maximum cardinality of a cycle packing of G
is denoted by

ν(G)
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and a cycle packing of cardinality ν(G) is called optimal.

Packing vertex-disjoint cycles in graphs is a very well-studied and classical graph-theoretical problem.
There is a vast amount of literature concerning conditions in terms of for instance order, size, vertex
degrees, degree sums, independence number, chromatic number, feedback vertex sets that are sufficient
for the existence of some number of vertex-disjoint cycles, which may additionally contain specified
elements or satisfy certain length conditions. We refer the reader to [2, 4–9, 11, 17–21], which is just a
small selection. The algorithmic problems concerning cycle packings are typically hard [1, 10, 13, 14]
and approximation algorithms were described [14]. Several authors mention practical applications in
computational biology such as reconstruction of evolutionary trees or genomic analysis.

In the present paper we study graphs G in which the maximum number of vertex-disjoint cycles ν(G)
is close to the cyclomatic number µ(G), which is a natural upper bound for ν(G). In fact µ(G) equals
the minimum number of edges whose removal from G deletes all cycles of G, which easily implies
µ(G) ≥ ν(G) with equality if and only if every component of G is a cactus and all cycles of G are
vertex-disjoint.

As our main result we prove the existence of a finite set P(k) of graphs for all k ∈ N0 such that every
2-connected graph G with µ(G) − ν(G) = k arises by applying a simple extension rule to a graph in
P(k). As an algorithmic consequence we describe algorithms calculating min{µ(G) − ν(G), k + 1} in
linear time for fixed k, that is in time O (f(k)(|V (G)|+ |E(G)|)). While in [3,12] we considered similar
results concerning edge-disjoint cycles, the problem to find many vertex-disjoint cycles in a graph can not
be reduced to its blocks unlike in the edge-disjoint case.

2 Results
In this section we will give a constructive characterization of the graphs in

G(k) = {G | µ(G)− ν(G) = k, V (G) 6= ∅, and G is 2-connected}.

For l ∈ N0, a graph P is an l-cycle-chain between u and v, if

• P is a cactus with at most two endblocks,

• the set C(P ) of cycles of P consists of l vertex-disjoint cycles,

• u 6= v, dP (u) = 1, and dP (v) = 1.

If G is a graph and e = uv ∈ E(G), then the graph H is said to arise from G by replacing the edge e with
an l-cycle-chain P (cf. Figure 1), ifH arises from the disjoint union ofG and an l-cycle-chain P between
u′ and v′ by removing the edge e and identifying u with u′ and v with v′. In this case H is said to contain
the l-cycle-chain P . Note that subdividing an edge is the same as replacing it with a 0-cycle-chain. It is
easy to see that ifH arises fromG by replacing the edge ewith an l-cycle-chain P , then µ(H) = µ(G)+l
and ν(H) ∈ {ν(G) + l − 1, ν(G) + l}.

We say that a graph H extends a graph G, if H arises from G by replacing every edge e ∈ E(G) with
an le-cycle-chain Pe such that µ(H)− ν(H) = µ(G)− ν(G).

A graph H is called reduced, if H does not extend a graph G different from H . Let

P(k) = {G | G ∈ G(k) and G is reduced}.
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Fig. 1: Replacing the edge e = uv ∈ E(G) with a 2-cycle-chain

The next lemma summarizes some important properties of the above extension notion.

Lemma 1 Let H arise from G by replacing every edge e ∈ E(G) with an le-cycle-chain Pe. Let

l =
∑

e∈E(G)

le and C =
⋃

e∈E(G)

C(Pe).

(i) If H extends G, then µ(H) − µ(G) = ν(H) − ν(G) = l and every optimal cycle packing of H
contains all l cycles in C.

(ii) H extends G if and only if G has an optimal cycle packing CG such that le = 0 for all e ∈ E(CG).

Proof: Let CH be an optimal cycle packing of H . Let E be a set of l edges intersecting every cycle in C.
Removing the edges in E can delete at most l different cycles in CH , which implies

ν(H)− ν(G) ≤ l. (1)

Clearly, µ(H)− µ(G) = l.

(i) Since H extends G, we have µ(H) − ν(H) = µ(G) − ν(G), which implies ν(H) − ν(G) = l.
Furthermore, since (1) holds with equality for every choice of E, we obtain E(C) ⊆ E(CH). By the
definition of a cycle-chain, this implies C ⊆ CH .

(ii) If H extends G, then, by (i), the cycles in CH \ C are subdivisions of the cycles in an optimal cycle
packing CG of G. Clearly, le = 0 for all e ∈ E(CG).

Conversely, if CG is an optimal cycle packing of G such that le = 0 for all e ∈ E(CG), then the
cycles in H that are subdivisions of the cycles in CG together with the cycles in C form a cycle
packing of H , which implies ν(H)− ν(G) ≥ l. Together with (1) it follows that ν(H)− ν(G) = l
and H extends G. 2

By definition, extending a graph in G(k) results in a larger graph in G(k). Another important feature of
the extension notion is that iterated extensions are not more powerful than a single extension as proved in
the next lemma.
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Lemma 2 (i) If G2 extends G1 and G1 extends G0, then G2 extends G0.

(ii) For k ∈ N0 every graph in G(k) extends a graph in P(k).

Proof:
(i) For i = 1, 2 let Gi extend Gi−1 by replacing every edge e ∈ E(Gi−1) with an l(i)e -cycle-chain P (i)

e .
If e ∈ E(G0), f ∈ E

(
P

(1)
e

)
and l(2)f ≥ 1, then, by Lemma 1( i), f is a bridge of P (1)

e . Therefore, if

le := l(1)e +
∑

f∈E
(
P

(1)
e

) l(2)f

for every e ∈ E(G), thenG2 extendsG0 by replacing every edge e ∈ E(G0) with an le-cycle-chain.

(ii) LetH ∈ G(k). By definition, there is a finite sequenceG0, G1, . . . , Gs ∈ G(k) such thatGi extends
Gi−1 for 1 ≤ i ≤ s, G0 ∈ P(k) and H = Gs. Repeated application of (i) implies that H extends
G0 and the proof is complete. 2

In view of the observation about graphs G with µ(G) = ν(G) made in the introduction it is easy to
determine G(0) and P(0). Let Pn and Cn denote the chordless path and chordless cycle of order n ∈ N.

Lemma 3 (i) No reduced graph H contains a vertex u ∈ V (H) with dH(u) = |NH(u)| = 2 or a
2-cycle-chain.

(ii) G(0) = {P1,P2} ∪ {Cn | n ≥ 2} and P(0) = {P1,P2,C2}.

Proof:
(i) Let H be a reduced graph. If u ∈ V (H) is such that dH(u) = |NH(u)| = 2, then contracting an

edge incident with u results in a graph G such that H extends G, which is a contradiction. If H
contains a 2-cycle-chain P , then every optimal cycle packing of H contains both cycles contained
in P . Therefore, if G arises from H by contracting one cycle C in P together with one further edge
incident with C (cf. Figure 2), then H extends G, which is a contradiction.

(ii) Let G ∈ G(0). As noted in the introduction, µ(G) = ν(G) implies that every component of G is
a cactus. Since G is 2-connected, it follows that G is either P1, or P2, or a chordless cycle Cn for
n ≥ 2. By ( i), P1, P2, and C2 are the only reduced graphs in G(0), which implies ( ii). 2

After these preparations, we are ready to prove our main result.

Theorem 1 P(k) is finite for every k ∈ N0.

Proof: We prove the result by induction on k. For k = 0, the result follows from Lemma 3( ii).
If k > 0, we argue that the number of edges in any graph H ∈ P(k) is bounded in terms of the number

of edges in some graph in P(k − 1).
Whitney [22] proved that a graph of order at least 2 is 2-connected if and only if it has an ear decom-

position, i.e. it arises from P2 by iteratively adding ears. Since removing an ear from H reduces µ(H) by
exactly 1 and ν(H) by at most 1, iteratively removing the ears of an ear decomposition of H , we obtain a
sequence of 2-connected graphs G0, G1, . . . , Gl = H , such that
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Fig. 2: Contraction in the proof of Lemma 3( i)

• for each i ∈ {1, . . . , l}, Gi arises by adding the ear Pi to Gi−1,

• ν(Gi−1) =

{
ν(Gi) , if i = 1

ν(Gi)− 1 , if i > 1.

The second condition implies that G0 ∈ G(k − 1) and Gi ∈ G(k) for i ∈ {1, . . . , l}. By Lemma 2( ii),
G0 extends some graph G ∈ P(k − 1).

Let Cl be an optimal cycle packing of Gl. If l ≥ 2, then the ear Pl is contained in a unique cycle Cl of
Cl and Cl \ {Cl} is an optimal cycle packing of Gl−1. Repeating this argument for indices from l down to
2, we obtain vertex-disjoint cycles C2, . . . , Cl ∈ Cl such that Pi is contained in Ci for 2 ≤ i ≤ l. Since
H is reduced, Lemma 3( i) implies that E := {P2, . . . , Pl} is a set of edges.

Claim. The graph G1 does not contain a 2-cycle-chain.

Proof of the Claim: For contradiction, we assume that G1 contains a 2-cycle-chain P . Since Gl = H is
reduced, Lemma 3( i) implies that l ≥ 2. It suffices to show that G2 contains a 2-cycle-chain. Repeating
this argument, it follows that H contains a 2-cycle-chain, which is a contradiction.

Let C ′ and C ′′ denote the two cycles in P . Clearly, the optimal cycle packing C1 of G1 contains both
these cycles. Let P ′ denote the path in P between C ′ and C ′′. Recall that P2 is contained in the cycle
C2, which is vertex-disjoint to all cycles in C1. Therefore, if P2 has no endvertex in P ′, then G2 contains
a 2-cycle-chain contained in P , and, if P2 has an endvertex in P ′, then P2 has both its endvertices in P ′

and G2 contains even a 3-cycle-chain, which completes the proof of the claim. 2

Since G1 arises from G0 by adding the ear P1, the claim implies that the graph G0 does not contain a
6-cycle-chain. Since every l-cycle-chain for l ≤ 5 contains at most 2 · 5 + 6 = 16 maximal ears, the
number of maximal ears of G0 is at most 16|E(G)|. Hence the number of maximal ears of G1 is at most
16|E(G)|+ 3.

Since H is reduced, all internal vertices of a maximal ear P of G1 must be endvertices of edges in E .
At most two internal vertices can be contained in some Pi ∈ E such that Ci contains an endvertex of
P . Each further internal vertex must be incident with an edge Pi ∈ E such that Ci consists of Pi and
a subpath of P . Hence, since H is reduced, Lemma 3( i) implies that each maximal ear of G1 contains
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at most four internal vertices. Therefore, each maximal ear contributes at most five edges to G1, i.e.
|E(G1)| ≤ 5(16|E(G)| + 3). Finally, since the edges in E are vertex-disjoint and |V (G1)| ≤ |E(G1)|,
we obtain |E| ≤ 5

2 (16|E(G)|+ 3), which implies |E(H)| ≤ 8(16|E(G)|+ 3). 2

Procedure Difference(k)
Input: A graph G
Output: min{µ(G)− ν(G), k + 1}
begin1

while G contains a bridge e ∈ E(G) do2

Delete e.3

while G contains a vertex u with dG(u) = |NG(u)| = 2 do4

Contract one of the edges incident with u.5

while G contains a 2-cycle-chain P do6

Contract one cycle C in P together with one further edge incident with C.7

while G contains a component C with C ∈ {P1,C2} do8

Delete C.9

if V (G) = ∅ then return 0.10

Select an endblock B of G.11

if µ(B)− ν(B) ≥ k + 1 then return k + 1.12

If B contains a cutvertex, then let u ∈ V (B) be the cutvertex, otherwise let u ∈ V (B) be any13

vertex. Let u be contained in s blocks of G.
∆k ←− µ(B)− ν(B).14

if u is contained in every optimal cycle packing of B then15

∆k ←− ∆k + dG−E(B)(u)− (s− 1);16

G′ ←− G− V (B);17

if ∆k ≥ k + 1 then return k + 1;18

else19

G′ ←− G− (V (B) \ {u});20

Let k′ be the output of DIFFERENCE(k −∆k) applied to G′.21

return min{∆k + k′, k + 1}.22

end23

We proceed to an algorithmical consequence of Theorem 1: For fixed k the finiteness of the sets P(k)
allows to decide µ(G)− ν(G) ≤ k in linear time.

Theorem 2 For every k ∈ N0 the algorithm DIFFERENCE(k) works correctly and has linear running
time.

Proof of correctness: By induction on the recursive depth, we may assume that the output of the recursive
call performed in line 21 is correct.

Up to line 9, G is modified such that the difference µ(G)− ν(G) does not change (cf. the argument in
the proof of Lemma 3( i)). Note that after these preprocessing steps, G contains neither a bridge, nor a
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vertex u with dG(u) = |NG(u)| = 2, nor a 2-cycle-chain, nor a component that is an isolated vertex or a
chordless cycle.

Clearly, it is correct to return 0 in line 10.
Since µ(G)− ν(G) ≥ µ(B)− ν(B), it is correct to return k + 1 in line 12.
If u is contained in every optimal cycle packing of B, then there is an optimal cycle packing of G that

is the union of an optimal cycle packing of G− V (B) and an optimal cycle packing of B. Since

µ(G) = µ(G− V (B)) + µ(B) + dG−E(B)(u)− (s− 1),

we obtain

µ(G)− ν(G) = µ(G− V (B))− ν(G− V (B))

+µ(B)− ν(B)

+dG−E(B)(u)− (s− 1)

and the return value in line 18 or line 22 is correct.
If u is not contained in every optimal cycle packing of B, then there is an optimal cycle packing of

G that is the union of an optimal cycle packing of G − (V (B) \ {u}) and an optimal cycle packing of
B − {u}. Since

µ(G) = µ(G− (V (B) \ {u})) + µ(B) and
ν(B) = ν(B − {u}),

we obtain

µ(G)− ν(G) = µ(G− (V (B) \ {u}))− ν(G− (V (B) \ {u}))
+µ(B)− ν(B)

and the return value in line 22 is correct.
This completes the proof of correctness. 2

Proof of linear running time: If B is a component of G or u is not contained in every optimal cycle
packing of B, then, by Lemma 3( ii) and the preprocessing, µ(B)− ν(B) > 0. If B is contained in s ≥ 2
blocks of G, then, by the preprocessing, G has no bridge and hence dG−E(B)(u) − (s − 1) > 0. This
implies that ∆k > 0 in line 21. Therefore, the recursive depth is at most k and it suffices to show that all
steps until line 20 can be done in linear time.

Since the block-cutvertex tree ofG can be determined in linear time [16], the deletion of bridges (line 3),
the deletion of trivial components (line 9), the selection of B (line 11) and the selection of u (line 13) can
be done in linear time. Furthermore, it is easy to see that the contractions in the preprocessing (lines 5
and 7) can be done in linear time.

By Lemma 2( ii), if µ(B) − ν(B) ≤ k, then there exists a graph B′ ∈ P :=
⋃k

i=0 P(i) such that B
extends B′. Since B contains at most one vertex v with dG(v) = |NG(v)| = 2 — the cutvertex u —
and since G contains no 2-cycle-chain after the preprocessing, B contains no 4-cycle-chain. Therefore, in
order to obtain B each edge of B′ is replaced by a subgraph with at most 11 edges. Since, by Theorem 1,
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P is finite, µ(B) − ν(B) ≤ k can only hold, if B belongs to a finite set of graphs depending on k and
lines 12, 14, and 15 can be done in constant time. This completes the proof. 2

It is easy to modify DIFFERENCE(k) so that it also returns an optimal cycle packing of the instance graph
G in linear time provided that µ(G) − ν(G) ≤ k. In fact, such a packing could consist of the cycles
contracted in line 7, the cycles of length 2 deleted in line 9, an optimal cycle packing of B, which, if
possible, avoids u and an optimal cycle packing of G′ obtained recursively.
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