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The extended equivalence and equation
solvability problems for groups
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We prove that the extended equivalence problem is solvable in polynomial time for finite nilpotent groups, and coNP-
complete, otherwise. We prove that the extended equation solvability problem is solvable in polynomial time for
finite nilpotent groups, and NP-complete, otherwise.
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1 Introduction
The algorithmic aspects of the equivalence problem and the equation solvability problem have received
increasing attention in the past two decades. The equivalence problem for a finite algebra A asks whether
or not two (term or polynomial) expressions s and t are equivalent over A (denoted by A |= s ≈ t), i.e.
if s and t determine the same function over A. The equation solvability is one of the oldest problems of
algebra: it asks whether or not two (term or polynomial) expressions s, t can attain the same value for
some substitution over a finite algebra A, i.e. if the equation s = t can be solved. The complexity of
the equivalence and equation solvability problems have been thoroughly investigated for finite classical
algebras, e.g. for finite rings Burris and Lawrence (1993); Hunt and Stearns (1990); Lawrence and Willard
(1997); Szabó and Vértesi (2011), for finite groups Burris and Lawrence (2004); Goldmann and Russell
(2002); Horváth (2011); Horváth et al. (2007); Horváth and Szabó (2006), or for finite semigroups and
monoids Almeida et al. (2009); Kisielewicz (2004); Klíma (2004, 2009); Plescheva and Vértesi (2006);
Seif and Szabó (2006). The complexity of these questions is determined with respect to the length of the
input term or polynomial expressions.

In many situations a term or polynomial can be expressed in a more concise way using new operations,
not only the basic operations of the algebra. For example, the length of [[[x1, x2] , x3] , . . . , xn] is n if
expressed by using the commutator, and is O (2n) if expressed by using the group multiplication. Such
a change in the length suggests that the complexity of the equivalence or of the equation solvability
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problems may change as well. It is indeed the case in some situation: in Horváth and Szabó (2011) it is
shown that for the alternating group on four elements these problems have complexity in P; but if the group
is extended by the commutator as an extra operation, then the equivalence problem is coNP-complete and
the equation solvability problem is NP-complete. Such a complexity change cannot occur for two element
algebras Gorazd and Krzaczkowski (2011). To further investigate whether or not additional operations can
affect the complexity of the equivalence and equation solvability problems, we introduce their extended
version for finite groups.

Definition 1 Let G = (G, ·) be a finite group. We say that the extended equivalence (equation solvability)
problem over G is in P, if for arbitrary terms f1, . . . , fk the equivalence (equation solvability) problem
over (G, ·, f1, . . . , fk) is in P. We say that the extended equivalence problem over G is coNP-complete
(the equation solvability problem is NP-complete), if there exist terms f1, . . . , fk such that the equivalence
problem over (G, ·, f1, . . . , fk) is coNP-complete (the equation solvability problem over (G, ·, f1, . . . , fk)
is NP-complete).

It is clear that the complexity of an extended problem is at least as hard as the original problem. Def-
inition 1 can be extended to arbitrary algebras, e.g. for rings. Considering finite rings and applying the
methods described in Burris and Lawrence (1993); Horváth (2011); Hunt and Stearns (1990) one can ar-
rive at a similar dichotomy theorem for the extended problems as for the one about the original problems.

Theorem 2 LetR be a finite ring. IfR is nilpotent, then the extended equivalence and extended equation
solvability problems can be solved in polynomial time. If R is non-nilpotent, then the extended equiva-
lence problem is coNP-complete, and the extended equation solvability problem is NP-complete.

The main results of this paper are two similar theorems for groups.

Theorem 3 Let G = (G, ·) be a finite group. If G is nilpotent, then the equivalence problem over G
can be solved in polynomial time. If G is non-nilpotent, then there exists a term f over G such that the
equivalence problem over (G, ·, f) is coNP-complete.

Theorem 4 Let G = (G, ·) be a finite group. If G is nilpotent, then the equation solvability problem over
G can be solved in polynomial time. If G is non-nilpotent, then there exists a term f over G such that the
equation solvability problem over (G, ·, f) is NP-complete.

For non-nilpotent, solvable groups we prove Theorems 3 and 4 by induction. The initial case of the
induction is considered in Section 2, then we prove Theorems 3 and 4 in general in Section 3. We finish
the paper by mentioning some open problems in Section 4.

2 Abelian normal subgroup
Let G = (G, ·) be a finite, solvable, non-nilpotent group. Let us consider the lower central series of
G: γ0 (G) = G, γi (G) = [G, γi−1 (G)]. Let us denote by γ (G) the normal subgroup in which this
decreasing sequence terminates, and let T be the smallest positive integer such that γT (G) = γ (G). We
prove the solvable, non-nilpotent group case of Theorems 3 and 4 by induction on the order of the group.
The initial case is where both γ (G) and G/CG

(
γ (G)

)
are commutative.

Theorem 5 Let G = (G, ·) be a finite, solvable, non-nilpotent group. Assume that the groups γ (G)
and G/CG

(
γ (G)

)
are commutative. Then there exists a term f such that the equivalence problem over

(G, ·, f) is coNP-complete, and the equation solvability problem over (G, ·, f) is NP-complete.
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Proof: We prove that there exists a term f such that the equivalence problem over (G, ·, f) is coNP-
complete. Let A = γ (G) and B = G/CG

(
γ (G)

)
. Let End A denote the endomorphism ring of A.

The group G acts on A by conjugation. This action of G is isomorphic to B. We identify B with its
image in End A. Let ϕ : G → B denote the natural homomorphism from G onto B. Let R be the ring
generated by B in End A, i.e. R = 〈B〉End A. Since B is commutative, R is commutative as well.
Moreover 1 ∈ B implies 1 ∈ R. Note that A is a faithful left-module over End A, and therefore it is a
faithful module over the commutative ringR.

Denote the action of the ring element r ∈ R on a ∈ A by ar. For example, if a ∈ A, g ∈ G, b = ϕ (g),
then a1 = a, ab = aϕ(g) = g−1ag, and

ab−1 = aϕ(g)−1 = a−1+ϕ(g) = a−1g−1ag = [a, g].

Let us denote the set of commutator actions in End A by C: C = { b− 1 | b ∈ B }. LetRc ≤ End A be
the subring ofR generated by the commutator actions:

Rc = 〈C〉R = 〈b− 1 | b ∈ B〉R = 〈ϕ (g)− 1 | g ∈ G〉R .

Note, that A is a faithful Rc-module, as well. Note that |B| = |C|. Let c = |C|, and let d = |Rc|. Let Jc
denote the Jacobson radical ofRc.

We prove the theorem in the following steps.

1. We prove in Lemma 6 that there exists a polynomial p with integer coefficients such that Rc =
p (ϕ (G)).

2. We prove in Lemma 7 that the ringRc is non-nilpotent, that isRc/Jc is a direct sum of finite fields
F1, . . . ,Fl. Assume that |F1| ≥ · · · ≥ |Fl|.

3. Let q1 denote the number of elements of F1. We prove in Lemma 8 that q1 ≥ 3.

4. We introduce the term f using the polynomial p from Step 1. We polynomially reduce the GRAPH
q1-coloring problem to the equivalence problem over (G, ·, f). The instance of the GRAPH q1-
coloring problem is a graph Γ, and it asks whether or not the vertices of Γ can be colored by q1

colors such that no two adjacent vertices share the same color. This problem is well-known to be
NP-complete Karp (1972). For an arbitrary graph Γ we construct a term expression tΓ over (G, ·, f)
such that (G, ·, f) |= tΓ ≈ 1 if and only if the graph Γ is not q1-colorable. The length of tΓ will be
linear in the size of Γ.

In step 1 we prove thatRc is a verbal subring ofR.

Lemma 6 There exists a polynomial p with integer coefficients such thatRc = p (B) = p (ϕ (G)).

Proof: Let C = {u1, . . . , uc } and Rc = { r1, . . . , rd }. As Rc = 〈C〉R, for every ri ∈ Rc there exist a
polynomial pi with integer coefficients such that pi has no constant coefficient and ri = pi (u1, . . . , uc).
For every ri ∈ Rc let us fix such a polynomial pi. Let

p (x1,1, . . . , xd,c) =

d∑
i=1

pi (xi,1 − 1, xi,2 − 1, . . . , xi,c − 1) .
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Clearly, p (B) ⊆ Rc. Let bj = uj + 1 for 1 ≤ j ≤ c. Then B = { b1, . . . , bc }. Let us fix 1 ≤
i ≤ d and consider the substitution xi,j = bj , xl,j = 1 (l 6= i). For this substitution the value of p is
pi (u1, . . . , uc) = ri. Hence ri ∈ p (B) yieldingRc = p (B) = p (ϕ (G)). 2

We continue with step 2 of the proof.

Lemma 7 The ringRc is non-nilpotent.

Proof: Let F (G) denote the Fitting subgroup of G, the unique largest nilpotent normal subgroup of G
Robinson (1995). As G is non-nilpotent, F (G) 6= G, and F (G) is the set of left-Engel elements Baer
(1957). An element g ∈ G is a left-Engel element, if for every h ∈ G there exists a positive integer kh,
such that the kh-iterated commutator of h by g is the identity element: [[[h, g], g] . . . g] = 1. Let g ∈ G
be arbitrary, and let r = ϕ (g)− 1. We prove that g is a left-Engel element if and only if r is nilpotent.

Assume that g is a left-Engel element. Now, for every h ∈ G there exists a positive integer kh, such
that the kh-iterated commutator of h by g is the identity element: [[[h, g], g] . . . g] = 1. Let k be the
maximum of these numbers: k = max { kh | h ∈ G }. Recall that as γ (G)�G and γ (G) is abelian, we
have γ (G) ⊆ F (G). Then for every a ∈ A we have [[[a, g], g] . . . g] = 1. By [a, g] = aϕ(g)−1 = ar we
obtain ar

k

= 1, yielding rk = 0, i.e. r is nilpotent.
Now, assume that r is nilpotent. Let k be the smallest positive integer such that rk = 0. That is, for

every a ∈ A we have ar
k

= 1. From ar = [a, g], we obtain that the k-iterated commutator of a by g is
the identity of G: [[[a, g], g] . . . g] = 1. Let T be the positive integer for which A = γT (G). Let h ∈ G
be arbitrary, then the T -iterated commutator of h by g is an element of A: [[[h, g], g] . . . g] ∈ A. Thus the
(T + k)-iterated commutator of h by g is the identity element of G: [[[h, g], g] . . . g] = 1 Therefore g is a
left-Engel element. 2

Let Jc denote the Jacobson radical ofRc. Now,Rc/Jc is a direct sum of finite fields (Jacobson, 1945,
Theorem 27). In step 3 we prove that at least one of these fields contains more than two elements.

Lemma 8 For the ringRc we haveRc/Jc 6= Zl
2.

Proof: We prove the lemma indirectly: assume that Rc/Jc = Zl
2 for some positive integer l. Now,(

r2 + r
)
∈ Jc for every r ∈ Rc. Let t be the smallest positive integer for which rt is idempotent for every

r ∈ Rc and the exponent of G divides t. Thus Rc/Jc = Zl
2 implies

(
r2 + r

)t
= 0 for every r ∈ Rc.

Let b = ϕ (g) for some g ∈ G \ F (G). In the proof of Lemma 7 it is shown that commuting with g is a
non-nilpotent action, that is (b− 1) is non-nilpotent. Let r = (b− 1), then r ∈ Rc. Let us calculate the
value of

(
r2 + r

)t
in the ringR. SinceR is a commutative unital ring,

(
r2 + r

)t
= rt · (r + 1)

t
= rt · bt.

The exponent of G divides t, hence bt = ϕ (g)
t

= ϕ (gt) = ϕ (1) = 1. Thus
(
r2 + r

)t
= 0 yields

rt = 0, contradicting that r is a non-nilpotent element. 2

We continue with step 4 of the proof. Let F1, . . . ,Fl be the fields occurring as a direct summand in
Rc/Jc (with multiplicity), i.e. Rc/Jc = ⊕l

i=1Fi. Assume that |F1| ≥ · · · ≥ |Fl|, and let q1 = |F1|. By
Lemma 8 we have q1 ≥ 3. By Lemma 6 we can define the term f . Let p be the polynomial in Lemma 6.
The polynomial p depends on dc variables, where c = |C|, d = |Rc|. Let x̄1 and x̄2 be disjoint vectors of
dc variables, that is the set of variables of x̄1 is disjoint from the set of variables of x̄2. Let f be defined
in the following way:

f (y, x̄1, x̄2) = y(p(x̄1)−p(x̄2)), (1)
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Now, f is a term over G and it depends on 2dc+ 1 variables. We shall polynomially reduce the GRAPH
q1-coloring to the equivalence problem over (G, ·, f). By Lemma 8 we have q1 ≥ 3, thus the GRAPH
q1-coloring is NP-complete Karp (1972). Let Γ = (V,E) be an arbitrary simple graph with no loops. Let
V = { v1, . . . , vn } be its set of vertices and let E = { e1, . . . , em } be the set of its edges. Let t be the
smallest positive integer such that for every r ∈ Rc the element rt is idempotent. In particular, if r ∈ Jc
then rt = 0. Let

uΓ (z1, . . . , zn) =
∏

vivj∈E
(zi − zj)t . (2)

We would like to express yuΓ(z1,...,zn) using f defined by (1), where each zi runs through Rc and y
runs through A. We achieve this in two steps. We construct

W (y, x̄1, . . . , x̄n) = yuΓ(p(x̄1),...,p(x̄n)) = y
∏

vivj∈E(p(x̄i)−p(x̄j))t

for disjoint x̄1, . . . , x̄n vectors of dc variables, ensuring that the arguments of uΓ will be in Rc. Then we
guarantee that the value of y will be in A.

Let x̄ denote the vector of all ‘x’ variables, i.e. x̄ = (x̄1, . . . , x̄n). Now, we want to express W (y, x̄).
Although, W is a term over G, its length would be exponential in the size of Γ using only the group
multiplication. We shall express W using f , and thus the length of W will be linear in the size of Γ. For
every edge e = vivj let we (y, x̄) be the t-times iterated version of f (y, x̄i, x̄j):

we (y, x̄) = f ◦ f ◦ · · · ◦ f (y, x̄i, x̄j) = y(p(x̄i)−p(x̄j))t .

Let W (y, x̄) denote the composition of the terms we:

W (y, x̄) = we1
◦ we2

◦ · · · ◦ wem (y, x̄) = yuΓ(p(x̄1),...,p(x̄n)).

As A is a verbal normal subgroup of G, there exists a term s (ȳ) of variables ȳ = (y1, . . . , yk) such that
s (G) = A. Finally, let

tΓ (ȳ, x̄) = W (s (ȳ) , x̄) . (3)

The length of tΓ is linear in the size of Γ: for every edge e ∈ E we have ‖we‖ ≤ 2tcd + 1 = O (1).
Moreover, ‖W‖ ≤ ‖we1

‖ + · · · + ‖wem‖ + 1 = O (m). Finally, ‖tΓ‖ ≤ ‖W‖ · ‖s‖ = O (m), as s
depends only on G and not on Γ.

We prove that Γ is not colorable by q1 colors if and only if (G, ·, f) |= tΓ ≈ 1. Assume that Γ is
q1-colorable. Color the vertices of Γ by the elements of F1. Thus there exist elements r1, . . . , rn ∈ Rc

such that the color of vi is the F1-component of ri. That is, if ψ : Rc → F1 is the natural homomor-
phism, then ψ (ri) is the color of vi. Now, for every edge vivj the F1-component of (ri − rj) is not 0.
Hence (ri − rj)t = 1 in F1 for every edge vivj . That is, the F1-component of uΓ (r1, . . . , rn) is 1, and
uΓ (r1, . . . , rn) 6= 0. Therefore there exists an element a ∈ A such that auΓ(r1,...,rn) 6= 1. For every
1 ≤ i ≤ n let ḡi ∈ Gdc such that ri = p (ḡi) and let ḡ = (ḡ1, . . . , ḡn). Let h̄ ∈ Gk such that a = s

(
h̄
)
.

Now,
tΓ
(
h̄, ḡ
)

= s
(
h̄
)uΓ(p(ḡ1),...,p(ḡn))

= auΓ(r1,...,rn) 6= 1.

Assume now, that Γ is not q1-colorable. Consider an arbitrary substitution of tΓ. Let h̄ ∈ Gk be
arbitrary and for every 1 ≤ i ≤ n let ḡi ∈ Gdc be arbitrary. Let ḡ = (ḡ1, . . . , ḡn). Let a = s

(
h̄
)

and let
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ri = pi (ḡi). Now, a ∈ A and

tΓ
(
h̄, ḡ
)

= s
(
h̄
)uΓ(p(ḡ1),...,p(ḡn))

= auΓ(r1,...,rn).

We prove that uΓ (r1, . . . , rn) = 0. For this substitution, let us define the color of vi to be the F1-
component of ri. Since Γ is not q1-colorable, there exists an edge vivj such that the F1-components of
ri and rj are the same. Thus the F1-component of

∏
vivj∈E (ri − rj) is 0. For every 1 ≤ k ≤ l we

have q1 ≥ |Fk|, i.e. the graph Γ is not |Fk|-colorable. Thus, in a similar fashion, it follows that the Fk-
component of

∏
vivj∈E (ri − rj) is 0, as well. That is

∏
vivj∈E (ri − rj) ∈ Jc yielding uΓ (r1, . . . , rn) =(∏

vivj∈E (ri − rj)
)t

= 0 in Rc. Note that Lemma 8 was used for q1 = |F1| ≥ 3, i.e. the GRAPH q1-
coloring is NP-complete.

Finally, we prove that the equation solvability over (G, ·, f) is NP-complete. The proof is literally
the same as the proof of the coNP-completeness of the equivalence problem, apart from the following
differences. Let r ∈ Rc be an idempotent such that its F1-component is 1, and its Fk-component is 0 (for
2 ≤ k ≤ l). If Γ is q1-colorable then, as we proved in the coNP-completeness part, there exists elements
r1, . . . , rn ∈ Rc such that uΓ (r1, . . . , rn) 6= 0. From the same argument, r ·uΓ (r1, . . . , rn) = r follows,
as well. Let a ∈ A, a 6= 1 be arbitrary for which ar = a. Then tΓ = a is solvable if and only if Γ is
q1-colorable. 2

3 Proof of Theorems 3 and 4
In this section we prove Theorems 3 and 4. By the following lemma the equivalence and equation solv-
ability problems can be reduced to verbal subgroups.

Lemma 9 Let V = (V, ·) be a verbal subgroup of the group G = (G, ·). Let f be a group term.

1. If the equivalence problem over (V, ·, f) is coNP-complete, then the equivalence problem over
(G, ·, f) is coNP-complete.

2. If the equation solvability problem over (V, ·, f) is NP-complete, then the equation solvability prob-
lem over (G, ·, f) is NP-complete.

Proof: We prove only (1), as the proof of (2) is similar. We give a polynomial reduction from the
equivalence problem of (V, ·, f) to the equivalence problem of (G, ·, f). For every term t(x1, . . . , xn)
over (V, ·, f) we present a term t′ over (G, ·, f) such that t ≈ 1 over (V, ·, f) if and only if t′ ≈ 1
over (G, ·, f). As V is verbal, there exists a term s(x1, . . . , xk) over G such that s(G) = V. Let
ȳi = (yi1, . . . , yik) (i = 1, . . . , n) and let

t′ (ȳ1, . . . , ȳn) = t (s (ȳ1) , . . . , s (ȳn)) .

While ȳi runs through all the k-tuples of G, the value of s(ȳi) attains every element of V. Thus if t 6= 1
at some evaluation (h1, . . . , hn) ∈ Vn, then we can choose the tuples ȳi such that s(ȳi) = hi. Thus there
exists an evaluation of t′ such that t′ 6= 1.
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On the other hand, if t′ 6≈ 1 over (G, ·, f), then there exists an evaluation ȳ1, . . . , ȳk such that t′ 6= 1.
Now, for the elements hi = s(ȳi) we have t(h1, . . . , hn) 6= 1, hence t 6≈ 1 over (V, ·, f).

Thus t ≈ 1 over (V, ·, f) if and only if t′ ≈ 1 over (G, ·, f). The reduction is polynomial in the length
of t because the length of t′ is the product of the length of t and the length of s, and s depends only on the
group G. 2

Note that the converses of the statements of Lemma 9 are not true. With G = A4 (the alternating group
on 4 elements), V = G′ and f being the commutator we have that the equivalence problem for (G, ·, f)
is coNP-complete and is in P for (V, ·, f), and similarly, equation solvability for (G, ·, f) is NP-complete
and is in P for (V, ·, f).

By the following lemma the equivalence problem can be reduced to the factor by the centralizer of a
verbal subgroup, while the equation solvability problem can be reduced to the factor by a verbal subgroup.

Lemma 10 Let V be a verbal subgroup of G = (G, ·). Let H1 = (H1, ·) = G/CG (V) and let
H2 = (H2, ·) = G/V. Let f be a group term.

1. If the equivalence problem over (H1, ·, f) is coNP-complete, then the equivalence problem over
(G, ·, f) is coNP-complete.

2. If the equation solvability problem over (H2, ·, f) is NP-complete, then the equation solvability
problem over (G, ·, f) is NP-complete.

Proof: We prove (1). We give a polynomial reduction from the equivalence problem of (H1, ·, f) to the
equivalence problem of (G, ·, f). For every term t(x1, . . . , xn) over (H1, ·, f) we present a term t′ over
(G, ·, f) such that t ≈ 1 over (H1, ·, f) if and only if t′ ≈ 1 over (G, ·, f). As V is verbal, there exists
a term s(x1, . . . , xk) over G such that s(G) = V. Let ȳ = (y1, . . . , yk). Let t (x1, . . . , xn) be a term
over (H1, ·, f) and let x̄ = (x1, . . . , xn). Let the exponent of G be N . Consider the following term over
(G, ·, f):

t′ (x̄, ȳ) = t (x̄)
N−1

s (ȳ)
N−1

t (x̄) s (ȳ) = [t (x̄) , s (ȳ)] .

Assume first that (H1, ·, f) |= t ≈ 1. Then for every ḡ ∈ Gn we have t (ḡ) ∈ CG (V). For arbitrary
h̄ ∈ Gk we have s

(
h̄
)
∈ V. Thus

[
t (ḡ) , s

(
h̄
)]

= 1, that is (G, ·, f) |= t′ ≈ 1.
Assume now that (G, ·, f) |= t′ ≈ 1. If ȳ runs through Gk, then s (ȳ) runs through V. Then for every

ḡ ∈ Gn we have t (ḡ) ∈ CG (V), i.e. (H1, ·, f) |= t ≈ 1.
Thus t ≈ 1 over (H1, ·, f) if and only if t′ ≈ 1 over (G, ·, f). The reduction is polynomial in the length

of t because ‖t′‖ ≤ N (‖t‖+ ‖s‖).
The proof of (2) is the same, except that instead of t′ one should consider the following term:

t′′ (x̄, ȳ) = t (x̄) s (ȳ)
N−1

.

2

Now, we prove Theorems 3 and 4. If G is not solvable, then the equivalence problem over (G, ·) is
coNP-complete Horváth et al. (2007), and the equation solvability problem over (G, ·) is NP-complete
Goldmann and Russell (2002). Thus for an arbitrary term f the equivalence problem over (G, ·, f) is
coNP-complete, and the equation solvability problem over (G, ·, f) is NP-complete.
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If G is nilpotent, then by Lemma 5 in Horváth (2011) there exists a positive integer d (depending only
on G) such that for an arbitrary polynomial t (x1, . . . , xn) we have

t (G, . . . ,G) = { t (h1, . . . , hn) | (h1, . . . , hn) ∈ Td } ,

where
Td = { (h1, . . . , hn) | |{hi : hi 6= 1 }| ≤ d } .

That is we can obtain t (G, . . . ,G) by substituting only from Td. Now,

|Td| ≤
d∑

j=0

(
n

j

)
· |G|j ≤

d∑
j=0

(n · |G|)j ≤ (d+ 1) · (n |G|)d = O
(
‖t‖d

)
.

Hence we can obtain t (G, . . . ,G) with O(nd) many substitutions, thus in polynomial time of the length
of t. Now, t ≈ 1 if and only if t (G, . . . ,G) = { 1 }. Moreover, t = 1 can be solved if and only if
1 ∈ t (G, . . . ,G).

Now, we prove Theorem 3 for solvable, non-nilpotent groups by induction on the order of G.
Case 1: G′ = (G′, ·) is non-nilpotent. As |G′| < |G|, by the induction hypothesis there exists a term

f such that the equivalence problem over (G′, ·, f) is coNP-complete. By (1) of Lemma 9 the equivalence
problem over (G, ·, f) is coNP-complete.

Case 2: G′ is nilpotent, but G/CG (G′) is non-nilpotent. Let H = G/CG (G′). As G′ is nilpotent
1 6= Z(G′) ≤ CG(G′), hence |H| < |G|. Since H = (H, ·) is non-nilpotent, by the induction hypoth-
esis there exists a term f such that the equivalence problem over (H, ·, f) is coNP-complete. By (1) of
Lemma 10 the equivalence problem over (G, ·, f) is coNP-complete.

Case 3: G′ and G/CG (G′) are both nilpotent. Let A be the terminal element of the lower central
series of G, i.e. A = γ (G). We prove that A and G/CG (A) are commutative groups. Now, G/CG (G′)
is nilpotent, and A is the terminal element of the lower central series, thus A ≤ CG (G′). Moreover, A ≤
G′ implies A ≤ CG (G′) ∩G′ = CG′ (G′) = Z(G′), i.e. A is commutative. From A ≤ CG (G′) we
have CG (A) ≥ CG (CG (G′)) ≥ G′. Therefore G/CG (A) ≤ G/G′, and G/CG (A) is commutative.
Hence A and G/CG (A) are both commutative. Theorem 5 finishes the proof.

Finally, we prove Theorem 4 for solvable, non-nilpotent groups by induction on the order of G.
Case 1: G′ = (G′, ·) is non-nilpotent. As |G′| < |G|, by the induction hypothesis there exists a term f

such that the equation solvability problem over (G′, ·, f) is NP-complete. By (2) of Lemma 9 the equation
solvability problem over (G, ·, f) is NP-complete.

Case 2: G′ is nilpotent, and G′′ 6= 1. Since G is non-nilpotent and G′ is nilpotent, we see from
(Robinson, 1995, 5.2.10) that G/G′′ is non-nilpotent. Let H = G/G′′. As G′′ 6= 1, we have |H| < |G|.
Since H = (H, ·) is non-nilpotent, by the induction hypothesis there exists a term f such that the equation
solvability problem over (H, ·, f) is NP-complete. By (2) of Lemma 10 the equation solvability problem
over (G, ·, f) is NP-complete.

Case 3: G′ is nilpotent, G′′ = 1. Let A be the terminal element of the lower central series of G,
i.e. A = γ (G). We prove that A and G/CG (A) are commutative groups. Now, G′′ = 1 thus G′ is
commutative and A ≤ G′ yields that A is commutative, as well. Moreover, from A ≤ G′ we have
CG (A) ≥ CG (G′) ≥ CG′ (G′) = Z (G′) = G′. Thus G/CG (A) ≤ G/G′ and G/CG (A) is
commutative. Hence A and G/CG (A) are both commutative. Theorem 5 finishes the proof. 2
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4 Open questions
The term f in Theorems 3 and 4 varies from group to group. As it is mentioned in the Introduction,
the commutator can significantly change the length of expressions. It is proved in Horváth and Szabó
(2011) that the complexities of the equivalence and equation solvability problems change if we extend
the alternating group A4 by the commutator. One may wonder if f can be chosen as the commutator for
every finite group.

Problem 1 For every finite group G = (G, ·), determine the complexity of the equivalence and equation
solvability problems for (G, ·, [, ]).

The smallest group for which it would be interesting to know how the commutator affects the complex-
ity of the equivalence and equation solvability problems is S3.

Problem 2 Determine the complexity of the equivalence and equation solvability problems for (S3, ·, [, ]).
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