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Polynomial-time normalizers
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For an integer constant d > 0, let Γd denote the class of finite groups all of whose nonabelian composition factors lie
in Sd; in particular, Γd includes all solvable groups. Motivated by applications to graph-isomorphism testing, there has
been extensive study of the complexity of computation for permutation groups in this class. In particular, the problems
of finding set stabilizers, intersections and centralizers have all been shown to be polynomial-time computable. A
notable open issue for the class Γd has been the question of whether normalizers can be found in polynomial time. We
resolve this question in the affirmative. We prove that, given permutation groups G,H ≤ Sym(Ω) such that G ∈ Γd,
the normalizer of H in G can be found in polynomial time. Among other new procedures, our method includes a key
subroutine to solve the problem of finding stabilizers of subspaces in linear representations of permutation groups in
Γd.
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1 Introduction
While algebraic methods are surely of core interest in computational complexity, a particular attraction
of group-theoretic computation is its central role in the problem of testing graph isomorphism (ISO).
Though rarely difficult in practice, ISO is not known to be solvable in polynomial time. Arguably, the
most productive approaches to ISO have exploited its relation to a class of permutation-group problems
usually represented by the following.

Problem 1
Given: a permutation group G ≤ Sym(Ω) and a subset ∆ ⊆ Ω.
Find: the set stabilizer StabG(∆) = {g ∈ G | ∆g = ∆}.

Problem 2
Given: permutation groups G,H ≤ Sym(Ω).
Find: the intersection G ∩H .
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Problem 3
Given: permutation groups G,H ≤ Sym(Ω).
Find: the centralizer CG(H) = {g ∈ G | hg = h for all h ∈ H}.

Problem 4
Given: permutation groups G,H ≤ Sym(Ω).
Find: the normalizer NG(H) = {g ∈ G | Hg = H}.

As customary, we assume that a permutation group is input or output via a generating set S of permu-
tations on a set Ω. The input length is thus |S||Ω|. In fact, Sims’s classical method [50] can be used to
reduce the sizes of generating sets to O(|Ω|) (see, e.g., Jerrum [23], Knuth [28]). Hence, polynomial time
for permutation groups is generally phrased as time polynomial in |Ω|.

Up to polynomial time, Problems 1–3 are equivalent, each is reducible to Problem 4, and ISO is re-
ducible to any of the four problems. So, it is not surprising that, despite continued improvements in
practical implementations (notably, in the computer algebra systems GAP [18] and MAGMA [9]), none of
these problems is known to be solvable in polynomial time. On the other hand, the compelling evidence
that ISO is unlikely to be NP-complete (see: Goldreich, Micali, and Wigderson [20, §2]; Schöning [48])
has been extended to decision versions of Problems 1-4 by Babai and Moran [8, §5]. This has motivated
extensive investigation into polynomial-time computability for permutation-group problems in general
but especially for Problems 1–4 (see [25], [35] for surveys).

Aside from the overall reducibility between these four problems, solutions geared to special classes of
groups have facilitated polynomial-time algorithms for significant instances of ISO. For example, the so-
lution to Problem 1 just for 2-groups yielded the first (and still the only known) polynomial-time approach
to testing isomorphism of trivalent graphs (see [32, §2]). Subsequently, a polynomial-time set-stabilizer
algorithm for the class of finite groups all of whose nonabelian composition factors are bounded (called the
class Γd as defined below) yielded ISO in polynomial time for graphs of bounded valence (see Luks [32])
or bounded genus (see Miller [41]).

The polynomial-time solution to Problem 1 for G ∈ Γd led immediately to similar success with Prob-
lems 2, 3 forG ∈ Γd. However, the normalizer question forG ∈ Γd has remained open (see [35, Question
19]). The main result of this paper is its resolution.

The problem of finding normalizers is, of course, of both practical and theoretical interest. In practice,
most implementations include backtrack search at some level and thereby have some potential to cause
exponential worst-case running time (see [9], [18], [30], [53]). In fact, this exponential behavior has been
observed even for instances of nilpotent groups (see [38], [39]).

Nevertheless, it was observed by Kantor and Luks [25, §10] that normalizers in nilpotent groups can be
computed in polynomial time. Subsequently, a redesigned method of Luks, Rákóczi, and Wright [38] for
nilpotent groups improved the polynomial timing to O(|Ω|4).

In this paper, we consider the following class.

Definition For an integer d > 0, let Γd denote the class of finite groups all of whose nonabelian compo-
sition factors are isomorphic to subgroups of Sd.

Manifestly, Γd includes all solvable groups. As indicated, the class arises naturally in significant in-
stances of ISO. It has also become an important subject of investigation in asymptotic group theory in its
own right (see, e.g., [6], [45], [46]).
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The key property that resolved Problems 1–3 for Γd groups was the following important result due to
Babai, Cameron and Pálfy: there is a function f(d) such that, if a subgroup G of Sn is primitive with
G ∈ Γd, then |G| = O(nf(d)) (see [6, Theorem 1.1]). (In fact, [6] deals with a more general class
of groups; for more on this, see the remark following Theorem 3.8.) This enabled a polynomial-time
divide-and-conquer method that exploits orbits and blocks. As it was the convention used in [32] and
other previous studies on computation involving Γd groups [7], [25], [35], [43], throughout this paper,
we regard d as a fixed constant and thus complexity of the form O(|Ω|g(d)), where g(d) is a function
depending only on d, as polynomial time.

The aforementioned results of [32] concerning Problems 2, 3 assert that, given G,H ≤ Sym(Ω) such
that G ∈ Γd, with no restriction on H , one can find G ∩ H and CG(H) in polynomial time. The gap
in the theory has been the question of whether, given such G,H ≤ Sym(Ω) with G ∈ Γd, one can find
NG(H) in polynomial time. As a partial answer to this question, the authors announced in [36] that one
can find NG(H) in polynomial time if H ≤ G. We now completely resolve this question to fill the gap.
The principal result of this paper is

Theorem 1.1 Given permutation groups G,H ≤ Sym(Ω) such that G ∈ Γd, one can find the normalizer
NG(H) in polynomial time.

Given Theorem 1.1, via a standard reduction, we also derive a polynomial-time solution to the equiva-
lent decision problem.

Theorem 1.2 Given permutation groups G,H1, H2 ≤ Sym(Ω) such that G ∈ Γd, in polynomial time
one can determine whether there is an element g ∈ G such that Hg

1 = H2 and, if so, exhibit such g.

In [25], Kantor and Luks hypothesized, in a quotient-group thesis, namely, that problems that are in
polynomial time for permutation groups remain in polynomial time when applied to quotients of permuta-
tion groups.(i) In the spirit of this thesis, we extend these results to quotient groups via a method inspired
by the Frattini argument (see [25, §7]).

Theorem 1.3 Given permutation groups G,K ≤ Sym(Ω) such that K is a normal subgroup of G, and
G/K ∈ Γd, in polynomial time one can solve the following problems.

(i) Given a permutation group H ≤ Sym(Ω) such that K is a normal subgroup of H , find the normal-
izer NG(H).

(ii) Given permutation groups H1, H2 ≤ Sym(Ω) such that K is a normal subgroup of both H1 and
H2, determine whether there is an element g ∈ G such that Hg

1 = H2 and, if so, exhibit such g.

The overall algorithm for Theorem 1.1 utilizes theG-chief series of 〈HG〉 and, though reorganized here
for clarity of our concerns, is thereby in the spirit of earlier normalizer computations (see, e.g., [14], [19],
[39]). Thus, we reduce to the case where, for each chief factor L/K, H covers (HL = HK) or avoids
(H ∩ L = H ∩ K) . We focus then on instances M > L > K in the chief series such that H covers
M/L but avoids L/K and seek the normalizer of (H ∩M)K/K in the action of G on M/K. For both
these phases, we appeal, for polynomial time, to special properties of Γd. We utilize algorithms for each
of Problems 1–3, but extensions of these are required as well.

(i) Assuming, of course, that the problem makes sense when stated for quotients, e.g., the problem of finding set stabilizers would
not seem to have a meaningful extension.
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We recall that the divide-and-conquer method that resolved Problems 1–3 exploits orbits and, in the
transitive case, uses the primitive action on a block system to break the group into a ‘small’ number
of cosets of the intransitive stabilizer of the blocks. This method is routinely used in our normalizer
algorithm as well. But we further develop an analogue of this divide-and-conquer paradigm for matrix-
group computation, since the normalizer problem even for permutation groups naturally leads to instances
of finding stabilizers of subspaces in certain matrix groups. Whereas the permutation-group divide-and-
conquer paradigm utilized orbits and imprimitivity blocks, the matrix-group analog, first introduced in
[34, §6], makes use of invariant subspaces and systems of imprimitivity (cf. the computational matrix
group project [29] that uses Aschbacher’s classification [1]).

Using this matrix-group divide-and-conquer paradigm, we prove in particular the following result,
which is required in our proof of Theorem 1.1 but may also be of independent interest (cf. [35, §10]).

Let V be an n-dimensional vector space over a finite field k of order qe for some prime q.

Theorem 1.4 Given a permutation group G ≤ Sym(Ω) such that G ∈ Γd and a representation φ : G→
GL(V ), one can solve the following problems in time polynomial in |Ω|, n, q and e.

(i) Given a vector v ∈ V , find the vector stabilizer CG(v).

(ii) Given a subspace W ≤ V , find the subspace stabilizer NG(W ).

In this theorem, the characteristic q of the underlying field k is involved in the running time. This
parametrization enables us to call Rónyai’s deterministic algorithm for finding invariant subspaces from
[47, §5] (while, if we appeal to his Las Vegas version instead, we can accomplish the same task in Las
Vegas polynomial time in |Ω|, n, log q and e, replacing q by log q). For our applications to the problem
of finding normalizers in permutation groups, all of the parameters n, q and e of V will be polynomially
bounded in |Ω|.

We remark that, more generally, Theorem 1.4 and its underlying divide-and-conquer machinery, which
will be presented in §5, also apply to manageable groups, i.e., Γd groups with polynomial-time procedures
for constructive membership-testing (see Luks [34] and Miyazaki [43]). Indeed, §5 fills necessary details
on the divide-and-conquer machinery for solvable matrix groups that were only outlined in [34, §6] (in
particular, §5.2 clarifies an important reduction in [34, §6.2] and [43, §IV.2]). While we will often refer-
ence and employ other basic results proven in [34] in the present paper, such references will be limited to
those in the earlier sections, namely, [34, §§1–4].

In a future paper [37], the authors hope to elaborate on some analogues of the results herein for matrix
groups in Γd.

Finally, we emphasize that our goal is a clear resolution of the polynomial-time issue. With this in mind,
in several places, we have striven to simplify the exposition at the expense of both low-level complexity
and practical efficiency. We specifically reserve the latter concern for future investigation wherein it will
be coupled with more general techniques for implementing polynomial-time centralizers and normalizers
in classes of matrix groups (see [37], [43]).

We will appeal to the Classification of the Finite Simple Groups (CFSG) through several subroutines to
prove Theorems 1.1–1.4. We will mark key results that depend on CFSG by “(CFSG)”.

Organization of the paper In §2, we will review basic definitions and notation. In §3, we will recall
elements of the known polynomial-time library for permutation groups, and we will further expand the
library to include several subroutines needed for the normalizer algorithm. In §4, we will describe the
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overall architecture of the main algorithm and prove Theorems 1.1–1.3. Then, in §5, we will describe in
detail the key subroutine for finding stabilizers of vectors and subspaces to prove Theorem 1.4.

The development requires statements of a large number of problems; with the exception of Problems 1–
4 for general groups, all of these are shown to be in polynomial time. To facilitate searches for cited
subroutines, we have numbered the problems and, where necessary, followed the problem statements with
propositions (or lemmas or corollaries) that establish polynomial-time complexity.

2 Preliminaries
For the reader’s convenience, we first review some basic definitions and notation of permutation and linear
representations. We also summarize some standard conventions for computing with groups. Our general
reference on finite group theory is [2].

2.1 Permutation representations
We denote by Sym(Ω) the symmetric group of all permutations on an n-element set Ω or by Sn if the
underlying set does not require explication. Throughout this subsection, let a group G act on such a set Ω
via a homomorphism π : G→ Sym(Ω). We call n the degree of π; if G ≤ Sym(Ω), where π is regarded
as the natural injection, then we call n the degree of G.

For g ∈ G, we denote the images of α ∈ Ω and ∆ ⊆ Ω under π(g) by αg and ∆g , respectively. The
orbit of α ∈ Ω under G is αG := {αg | g ∈ G}. If Ω itself forms a single orbit, then we call G (as well
as π) transitive.

For α ∈ Ω, the point stabilizer of α in G is the subgroup Gα := {g ∈ G | αg = α}. For ∆ ⊆ Ω,
the pointwise stabilizer of ∆ in G is the subgroup G∆ := {g ∈ G | δg = δ for all δ ∈ ∆}, whereas
the set stabilizer of ∆ in G is the subgroup StabG(∆) := {g ∈ G | ∆g = ∆}. If Ω possesses a group
structure with G acting as automorphisms, then we often write CG(α), CG(∆) and NG(∆) to denote Gα,
G∆ and StabG(∆), respectively. For x ∈ Sym(Ω), the support of x is supp(x) := {α ∈ Ω | αx 6= α},
whereas the fixed points of x is fix(x) := {α ∈ Ω | αx = α}. We also write fix(G) := {α ∈ Ω | αg =
α for all g ∈ G}; again, if Ω possesses a group structure with G acting as automorphisms, then we often
write CΩ(G) := fix(G).

For G-invariant ∆ ⊆ Ω (that is, ∆g = ∆ for all g ∈ G), we call the restriction of π to ∆, denoted by
π|∆ : G→ Sym(∆), the constituent of π on ∆ and its image G∆ := π|∆(G) the constituent of G on ∆;
if ∆ is an orbit, then we call both π|∆ and G∆ transitive constituents.

Assume that G is transitive on Ω. A subset ∆ ⊆ Ω is a block if, for each g ∈ G, either ∆g = ∆ or
∆g ∩ ∆ = ∅. We call the set of all images of a block, forming a G-invariant partition of Ω, a system of
blocks. If G has no system of blocks other than the partition into singletons and the partition with Ω itself,
then we call G (as well as π) primitive.

2.2 Linear representations
Let k be a field and V be an n-dimensional vector space over k. We denote by Endk(V ) the algebra of k-
linear endomorphisms of V and by GL(V ) = GL(V, k) the general linear group of all units of Endk(V ).
Throughout this subsection, let a group G act on V via a homomorphism φ : G → GL(V ). We say V
is a kG-module. We call n the degree of φ over k; if G ≤ GL(V ), where φ is regarded as the natural
injection, then we call n the degree of G over k. Since GL(V ) ≤ Sym(V ), the notation of permutation
representations applies to G.
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A subspaceW of V is a kG-submodule ifW g = W for all g ∈ G. If the only kG-submodules are 0 and
V , then we call V (as well as G and φ) irreducible. If V is a direct sum of irreducible kG-submodules,
then we call V (as well as G and φ) completely reducible.

Suppose that V is completely reducible. For an irreducible kG-submoduleW of V , the kG-homogene-
ous component of V determined by W is the kG-submodule generated by all irreducible kG-submodules
of V that are kG-isomorphic to W (here, for kG-modules X,Y , a kG-homomorphism is a k-linear map
ψ : X → Y commuting with the actions of G in the sense that ψ(xg) = ψ(x)g for all x ∈ X and g ∈ G).
The (canonical) isotypic decomposition of V is the direct sum of its kG-homogeneous components. If V
itself forms one kG-homogeneous component, then we call V (as well as G and φ) kG-homogeneous.

If V = V1 ⊕ · · · ⊕ Vm, m ≥ 2, and G permutes V1, . . . , Vm as a transitive permutation group of
degree m under φ, then we call V := {V1, . . . , Vm} a system of imprimitivity. If the induced permutation
representation of G on V is primitive, then we call V a minimal system of imprimitivity. If V is an
irreducible kG-module but has no system of imprimitivity, then we call V (as well as G and φ) primitive.

Let f : G → V be a function. If f(gh) = f(g)h + f(h) for all g, h ∈ G, then we call f a 1-cocycle.
This also means that f is a 1-cocycle if and only if the extension of φ to φf : G→ GL(V ⊕ k) defined by

(v, a)φf (g) := (vg + af(g), a)

for v ∈ V , a ∈ k and g ∈ G is a homomorphism. The set of all 1-cocycles from G to V , denoted by
Z1(G,V ), forms a kG-module via (f + f ′)(g) := f(g) + f ′(g), (af)(g) := a(f(g)) and fh(g) :=

f(gh
−1

)h for f, f ′ ∈ Z1(G,V ), g, h ∈ G and a ∈ k.
An element e of Endk(V ) is unipotent if all characteristic values of e are equal to 1 ∈ k. A subgroup

G of GL(V ) is unipotent if all elements of G are unipotent; if char k = p, then G is unipotent if and only
if G is a p-group.

2.3 Computational conventions
We summarize some standard computational conventions in the generality of abstract finite groups e-
quipped with polynomial-time procedures to compute products and inverses of elements (for the related
abstract notion of black-box groups, see, e.g., [49, Chapter 2]).

We again emphasize that, for both input and output, groups ares specified by generators, unless stated
otherwise. In this subsection, assume that we are given a group G = 〈S〉.

All algorithms identifying group elements are constructive and computed via the following notion of a
straight-line program: For g ∈ G, a straight-line program to reach g from S is a sequence (g1, . . . , g`)
such that g` = g and, for i = 1, . . . , `− 1, one of the following holds:

gi ∈ S,
gi = g−1

j for some j < i, or
gi = gjgk for some j, k < i.

Consider a homomorphism π : G→ M . In computational situations, π is specified by the image π(s)
of each s ∈ S, and the image π(g) of g ∈ G is computed via a straight-line program to reach g from
S. For a representation φ : G → GL(V ), where V is a finite dimensional vector space over a field k, a
1-cocycle f : G → V is specified by the image f(s) of each s ∈ S. The image f(g) of g ∈ G is then
computed via

(f(g), 0) := (0, 1)φf (g) − (0, 1),
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where (0, 1)φf (g) is evaluated using a straight-line program to reach g from S.
Consider a coset Gx. In computational situations, Gx is specified by a pair consisting of generators

for G and any coset representative. A subcoset of Gx is a subset of Gx that is either empty or a coset of
a subgroup of G. Certain subcosets are defined by predicates that can be easily evaluated (for example,
consider, for G ≤ Sym(Ω) and ∆1,∆2 ⊆ Ω, the subset transporter TransG(∆1,∆2) := {g ∈ G |
∆g

1 = ∆2}). In general, for a subcoset Hy ⊆ Gx (using the notation Hy even if it may be empty),
when generators for H and a coset representative are not necessarily available at hand, if we are given
a polynomial-time procedure to determine, for any given z ∈ Gx, whether z ∈ Hy, then we say Hy is
(polynomial-time) recognizable.

The length of a subgroup series is often essential to polynomial running time of algorithms. In Sn, by
Lagrange’s theorem, a series of subgroups has length at most log n! = O(n log n), and this bound will be
sufficient for our purposes (though, for optimum O(n) bounds, see [5], [12]).

3 Polynomial-time library
In §§3.1–3.4, we will review relevant portions of the known polynomial-time library for permutation
groups. In §§3.5–3.7, we will introduce some new additional tools. For further details on §§3.1–3.4, we
refer to [25], [35].

3.1 Basic tools
We first summarize some of the most fundamental results (see [17], [24], [33], [35], [49], [50]).

Theorem 3.1 Given G = 〈S〉 ≤ Sym(Ω), in polynomial time one can solve the following problems.

(i) Given α ∈ Ω, list the orbit αG and test the transitivity of G.

(ii) Test whether G is primitive and, if not, find a non-trivial block system.

(iii) Given a recognizable subgroupH ofG such that |G : H| = O(|Ω|c) for a constant c > 0 (specified
by a polynomial-time procedure to test, for given g ∈ G, whether g ∈ H), find generators for H
and a complete set of coset representatives for H in G.

(iv) Find |G|.

(v) Given x ∈ Sym(Ω), test whether x ∈ G and, if so, exhibit a straight-line program to reach x from
S.

(vi) Given a homomorphism π : G→ Sym(Ω′) (defined on generators),

(a) find Kerπ,

(b) for given M ≤ π(G), find π−1(M) = {g ∈ G | π(g) ∈M}.

(vii) Find the derived series of G and test the solvability of G.

(viii) Given N ≤ Sym(Ω) such that N is normalized by G,

(a) find CG(N) (including, in particular, Z(G)),
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(b) find G ∩N ,
(c) for given x ∈ GN , find g ∈ G and n ∈ N such that x = gn.

(ix) Find a composition series of G.

(x) Find a chief series of G.

(xi) (CFSG) Given a prime p dividing |G|, find a Sylow p-subgroup of G; furthermore, given such
subgroups P1 and P2 of G, find g ∈ G such that P g1 = P2. 2

It is well-known that Problems (i), (ii) can be solved easily by elementary combinatorial methods (see,
e.g., [35, 3.1, 3.2]). Problems (iii)–(v) were first shown to be in polynomial time in [17] using a variant of
Sims’s method [50].

For Problem (vi)(a), under the induced action φ : G → Sym(Ω ∪ Ω′), it suffices to find the pointwise
stabilizer of Ω′ in φ(G) via Problem (iii) (see also [33, Lemma 1.1(8)]). For Problem (vi)(b), given
M = 〈X〉, it is sufficient to find a small set Y ⊆ G such that π(Y ) = X from straight-line programs to
reach x ∈ X from π(S) via Problem (v), for π−1(M) = 〈Y ∪Kerπ〉.

Problem (vii) is an easy extension of Problem (v) (see, e.g., [35, 3.12]), and Problem (viii)(b) is an
extension of Problem (iii) (see, e.g., [35, Proposition 7.1]). To solve Problem (viii)(c), given N = 〈T 〉, it
suffices to form a straight-line program P to reach x from S ∪ T , for a factor g of x may be obtained by
substituting in P each occurrence of t ∈ T by 1 ∈ Sym(Ω).

Problem (ix) was first shown in to be in polynomial time in [33]. A polynomial-time algorithm for
Problem (viii)(a) was also given originally in [33, §3] as one of the key subroutines for Problem (ix)
(cf. [35, Proposition 7.3]). It is an application of [33], [47] that Problem (x) is in polynomial time (see,
e.g., [25, §4]).

Polynomial-time solutions to Problem (xi) are due to the seminal work of Kantor [24] and extensively
use CFSG.

3.2 The quotient-group thesis
As suggested in the quotient-group thesis in [25], all known problems that are in polynomial time for
permutation groups remain in polynomial time when applied to quotients of permutation groups. For
our purposes, we essentially require the ability to solve in quotient groups only the most fundamental
Problems (iv)–(viii) of Theorem 3.1.

Polynomial-time solutions to the quotient-group versions of Problems (iv)–(vii), (viii)(b), (c) are im-
mediate from Theorem 3.1(iv)–(vii), (viii)(b), (c), respectively.(ii) However, for Problem (viii)(a), despite
the elementary nature of the method for Theorem 3.1(viii)(a), as far as we know, the justification of the
thesis is not routine. The next lemma from [25, §6] involves construction of Sylow subgroups via Theo-
rem 3.1(xi) and thus must appeal to CFSG (cf. [35, §8]).

Throughout this paper, a quotient group G := G/K, where K E G ≤ Sym(Ω), is specified by a pair
consisting of generating sets for G and K, and an element g ∈ G is specified by a coset representative
g ∈ G such that g = Kg.

Lemma 3.2 (Kantor–Luks)(CFSG) For G = G/K, where K E G ≤ Sym(Ω), given H,N ≤ G such
that H normalizes N, one can find CH(N) (including, in particular, Z(H)) in polynomial time. 2

(ii) In the quotient-group version of Problem (v), we are given an element and a subgroup of a quotient group in Sym(Ω). Likewise,
in that of Problem (vi), we are given a homomorphism from a quotient group in Sym(Ω) to a quotient group in Sym(Ω′).
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3.3 Centralizers and normalizers in Sym(Ω)

In the following, we discuss some polynomial-time tools for finding centralizers and special instances of
normalizers in Sym(Ω).

We begin with

Problem 5
Given: G ≤ Sym(Ω).
Find: CSym(Ω)(G).

The following is a well-known fact (see, e.g., [49, §6.1.2]).

Lemma 3.3 Problem 5 is in polynomial time. 2

Next, we consider

Problem 6
Given: E ≤ Sym(Ω) such thatE is elementary abelian and isomorphic to a direct product of its transitive

constituents.
Find: NSym(Ω)(E).

Lemma 3.4 Problem 6 is in polynomial time.

Proof: Let ∆i, i = 1, . . . , `, be the orbits of E so that E ∼= E∆1 × · · · × E∆` (i.e., for each i, the action
of E∆i on ∆i is regular).

For i = 1, . . . , `, let Ni := {x ∈ NSym(Ω)(E) | supp(x) ⊆ ∆i} and Ci := CSym(Ω)(E) ∩ Ni.
Notice now that, if we regard each E∆i as a vector space, then each Ni/Ci ∼= GL(E∆i). With this
correspondence in hand, we construct, for i = 1, . . . , `, a small set (e.g., of size 2) Ti for which Ni =
〈Ti, Ci〉 (here, we construct Ti only, though Ci and thus Ni are computable in polynomial time).

It now remains to find, for each pair of orbits ∆i and ∆j of the same length, a transposition xij ∈
NSym(Ω)(E) that switches ∆i and ∆j , leaving the remaining points of Ω fixed. Indeed, CSym(Ω)(E)
includes such transpositions since, for each such pair ∆i and ∆j , the regular E-action on ∆i is equivalent
to that on ∆j . Thus, we return 〈T1, . . . , T`,CSym(Ω)(E)〉 = NSym(Ω)(E). 2

Remark Problem 6 is not known to be in polynomial time if we remove the assumption that G is isomor-
phic to a direct product of its transitive constituents. In fact, without such an assumption, ISO is reducible
to this problem (see [35, §10]).

Via Problem 5, the following two additional problems are also in polynomial time.

Problem 7
Instance: G,H ≤ Sym(Ω) and an isomorphism π : G→∼ H (defined on generators of G).
Question: Is there x ∈ Sym(Ω) such that π(g) = gx for all g ∈ G? If so, exhibit such x.

Lemma 3.5 Problem 7 is in polynomial time.

Proof: Consider an action φ : G→ Sym(Ω× {1, 2}) defined by (α, 1)φ(g) := (αg, 1) and (α, 2)φ(g) :=
(απ(g), 2) for α ∈ Ω and g ∈ G. Via Problem 5, we find C := CSym(Ω×{1,2})(φ(G)); here, C acts on the
set of the orbits of φ(G), say, D := {∆1, . . . ,∆m} via ψ : C → Sym(D). Then there is an appropriate
element x ∈ Sym(Ω) if and only if, for each orbit ∆i, exactly half of the sets in ∆

ψ(C)
i lie in Ω × {1}
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(see, e.g., [49, §6.1.2]). If this holds, it is easy to find y ∈ C such that (Ω × {1})y = Ω × {2} (in fact,
for each orbit ∆i, C induces the symmetric group on ∆

ψ(C)
i ). The desired element x is then defined by

(α, 1)y = (αx, 2). 2

Remark In general, for G = 〈S〉 ≤ Sym(Ω) and M ≤ Sym(Ω′), it is easy to determine whether a
given function π : S →M is extendible to a homomorphism (resp. isomorphism) G→M (cf. [25, §4]).
To see this, let D := 〈(s, π(s)) | s ∈ S〉 ≤ Sym(Ω) × Sym(Ω′). Then π extends to a homomorphism
(resp. isomorphism) if and only if |D| = |G| (resp. |D| = |G| = |M |).

Problem 8
Instance: G ≤ Sym(Ω) and σ ∈ Aut(G) (defined on generators).
Question: Is σ ∈ Inn(G)? If so, exhibit a ∈ G such that ga = gσ for all g ∈ G.

Lemma 3.6 Problem 8 is in polynomial time.

Proof: We first find, via Problem 7, x ∈ Sym(Ω) such that gx = gσ for all g ∈ G. We then test whether
x ∈ GCSym(Ω)(G), and if so, using Theorem 3.1(viii)(c), find a ∈ G and c ∈ CSym(Ω)(G) such that
x = ac. It suffices to return a. 2

Remark Lemma 3.6 answers an open question of Kantor and Luks posed in [25, §13].

3.4 Tools for Γd

In the class Γd, there are polynomial-time solutions to a number of permutation-group problems that
resemble ISO. The following results from [32] concerning Problems 1–3 are particularly well-known
(cf. [35, Corollary 6.4]).

Theorem 3.7 (Luks) Given G ≤ Sym(Ω) such that G ∈ Γd, in polynomial time one can solve the
following problems.

(i) Given ∆ ⊆ Ω, find StabG(∆).

(ii) Given H ≤ Sym(Ω), find G ∩H .

(iii) Given H ≤ Sym(Ω), find CG(H).

In fact, Theorem 3.7 was first proved in [32] under the stronger assumption that all composition factors,
both abelian and nonabelian, were in Sd. With a view toward extending the applicability of the methods,
Babai, Cameron and Pálfy subsequently derived the following important result in [6, Theorem 1.1].

Theorem 3.8 (Babai–Cameron–Pálfy) There is a function f(d) satisfying the following: if G is a prim-
itive permutation group of degree n such that G ∈ Γd, then |G| = O(nf(d)). 2

Remark (i) An earlier version of Theorem 3.8 was also proved in [32] under the assumption that all
composition factors were in Sd, and this sufficed for the graph-isomorphism application. In fact, [6]
weakened the restriction on composition factors even further than our assumption in Theorem 3.8; specif-
ically, [6] deals with Ad-free groups, in which no section (i.e., quotient of any subgroup) is isomorphic
to Ad (cf. [46]). However, we require the present definition of Γd to derive another crucial polynomial
bound in linear groups in Proposition 5.7. Our definition of Γd is also the same as that of [35].
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(ii) The function f(d) has been investigated further (see [7]). By [45], it was improved from O(d log d)
to O(d) for Ad-free groups (cf. [31]). Divide and conquer using orbits and blocks. The divide-and-

conquer paradigm that motivated Theorem 3.8 applies to problems that ask for construction of a recog-
nizable subcoset of a given coset Gx in X ≤ Sym(Ω), where G ∈ Γd, equipped with a representation
X → Sym(Σ) and a G-invariant subset Φ ⊆ Σ such that the following hold:

(1) Recursive property. Given proper G-invariant subsets Φ1,Φ2 ⊂ Φ such that Φ = Φ1 ∪̇Φ2, the
problem is recursively reducible to induced problems on Φ1 and Φ2 in time polynomial in |Ω| and
|Σ|.

(2) Base property. If Φ is a singleton, then the problem is solvable in time polynomial in |Ω| and |Σ|.

We illustrate this paradigm by recalling the proof of Theorem 3.7. The essential steps are concentrated
in the method for

Problem 9
Given: G,H ≤ Sym(Ω) such that G ∈ Γd and x ∈ Sym(Ω).
Find: Gx ∩H .

Proposition 3.9 Problem 9 is in polynomial time.

Proof: Consider the coordinatewise action of Gx × H on Ω × Ω and ∆ := Diag(Ω × Ω). To solve
Problem 9, it then suffices to find StabGx×H(∆) = {(y, y) | y ∈ Gx ∩H}. To accommodate recursion,
we consider, more generally, the following subcoset problem.

Let p1 denote the first-coordinate projection map of Sym(Ω) × Sym(Ω). For Γ ⊆ Ω, we write
Diag(Γ,Ω) := {(α, α) | α ∈ Γ}.

Given: G ≤ Sym(Ω)× Sym(Ω) such that p1(G) ∈ Γd, x ∈ Sym(Ω)× Sym(Ω) and p1(G)-invariant
Φ ⊆ Ω.

Find: C(Gx,Φ) := {y ∈ Gx | Diag(Φ,Ω)y = Diag(Φp1(x),Ω)}.

If not empty, C(Gx,Φ) is a coset of StabG(Diag(Φ,Ω)). We now solve this problem under the divide-
and-conquer paradigm. We perform two levels of divide-and-conquer maneuvers under the G-action on
Φ via p1, involving the decomposition of Φ into orbits and, in the transitive case, the decompositions of Φ
into blocks and G into cosets. In particular, we consider the following three (two recursive and one base)
cases.

Intransitive case If G acts intransitively on Φ, then we first find proper G-invariant subsets Φ1,Φ2 ⊂ Φ
such that Φ = Φ1 ∪̇Φ2. Since C(Gx,Φ) = C(C(Gx,Φ1),Φ2), it is sufficient to solve recursively for, if
not empty, Hy := C(Gx,Φ1) and then C(Hy,Φ2).

Transitive case If G acts transitively on Φ, where |Φ| > 1, then we find a minimal block system
Φ := {Φ1, . . . ,Φm} of Φ and decompose G into cosets of the kernel K of the G-action on Φ, say,
G = Ky1 ∪̇ · · · ∪̇Ky` for some y1, . . . , y` ∈ G. SinceK acts intransitively on Φ, the problem is reduced
to ` instances of the intransitive case of finding C(Ky1x,Φ), . . . , C(Ky`x,Φ). Of ` solutions to these in-
stances, nonempty ones are cosets Lz1, . . . , Lzk of the same subgroup L := StabK(Diag(Φ,Ω)). These
cosets may easily be pasted together to form a single coset of StabG(Diag(Φ,Ω)), for Lz1 ∪̇ · · · ∪̇Lzk =
〈L, {ziz−1

1 }i=2,...,k〉z1.
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Base case The above recursion bottoms out whenG acts primitively on Φ (i.e., when Φ1, . . . ,Φm become
singletons). If Φ = {α} and x = (x1, x2), we return either ∅ or {(g1, g2) ∈ G | αg2 = αx1x

−1
2 }x =

C(Gx,Φ).

Timing analysis In the intransitive case, we solve sequentially on Φ1 and Φ2, where |Φ1| + |Φ2| = |Φ|.
In the transitive case, notice that, by Theorem 3.8, the kernel of the G-action on a minimal block system
has polynomial index in G; that is, ` = O(mc) for a constant c > 0. Therefore, the original problem on
Φ is reduced to O(mc+1) problems on subsets of size |Φ|/m. By the results of §3.1, these reductions are
in polynomial time. Hence, this algorithm runs in polynomial time. 2

Via Problem 9, we can now solve Problem 1 in Γd. In fact, we can also solve

Problem 10
Given: G ≤ Sym(Ω) such that G ∈ Γd and ∆1,∆2 ⊆ Ω.
Find: TransG(∆1,∆2) = {g ∈ G | ∆g

1 = ∆2}.

Corollary 3.10 Problem 10 is in polynomial time.

Proof: If |∆1| = |∆2|, then we find x ∈ Sym(Ω) such that ∆x
1 = ∆2 and, via Problem 9, Gx−1 ∩

StabSym(Ω)(∆1). 2

We now complete

Proof of Theorem 3.7: The assertions concerning Problems (i), (ii) are immediate from Proposition 3.9
and Corollary 3.10, so it remains to solve Problem (iii). For this, note that CG(H) = G ∩ CSym(Ω)(H);
that is, via Problems 5, 9, we have a polynomial-time solution to Problem (iii). 2

Remark See [32, §3] for an illustration of the paradigm directly applied to Theorem 3.7(i).

Let X = (Ω, E) denote a hypergraph consisting of a set Ω and a collection E ⊆ 2Ω; here, we regard
elements of Ω vertices and members of E hyperedges. For G ≤ Sym(Ω), under the induced action of G
on 2Ω, we consider the problem of finding the automorphism group of X in G.

Problem 11
Given: G ≤ Sym(Ω) such that G ∈ Γd and a hypergraph X = (Ω, E).
Find: AutG(X) = {g ∈ G | Eg = E}.

The following result is due to the work of Miller [42]. We include a proof in our notation as an additional
illustration of the divide-and-conquer paradigm.

Lemma 3.11 (Miller) Problem 11 is in polynomial time.

Proof: For Φ ⊆ Ω, we define EΦ := {Φ ∩ ∆ | ∆ ∈ E}. To accommodate recursion, we consider the
following generalization.

Given: G ≤ Sym(Ω) such that G ∈ Γd, x ∈ Sym(Ω), G-invariant Φ ⊆ Ω and E ⊆ 2Ω.
Find: C(Gx,Φ, E) := {y ∈ Gx | (EΦ)y = EΦx}.

We note that, if not empty, C(Gx,Φ, E) is a coset of StabG(EΦ).
To solve this problem, we apply the divide-and-conquer paradigm using the action of G on Φ, but

the intransitive case requires some additional work: First, given proper G-invariant subsets Φ1,Φ2 ⊂ Φ
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such that Φ = Φ1 ∪̇Φ2, we find, via recursion, C(C(Gx,Φ1, E),Φ2, E). If not empty, the result of this
recursion is a coset Hy, where H = StabG(EΦ1

) ∩ StabG(EΦ2
). Here, observe that, for each ∆ ∈ E,

each element of Hy need not map Φ1 ∩ ∆ and Φ2 ∩ ∆ into the same member of E. Thus, we perform
the following to find C(Gx,Φ, E). We form D := {(Φ1 ∩ ∆,Φ2 ∩ ∆) | ∆ ∈ E} ⊆ EΦ1 × EΦ2 and
D′ := {(Φx1 ∩∆,Φx2 ∩∆) | ∆ ∈ E} ⊆ EΦx1

× EΦx2
. Under the induced action of H on EΦ1

× EΦ2
, we

now find TransH(D,D′y
−1

) = {h ∈ H | Dhy = D′} via Problem 10.
In the base case in which Φ is a singleton, we simply compare EΦ against EΦx and return either Gx or
∅. 2

We need the following extension of Problem 11.

Problem 12
Given: G ≤ Sym(Ω) such that G ∈ Γd and E ⊆ 22Ω

.
Find: StabG(E).

Lemma 3.12 Problem 12 is in polynomial time.

Proof: To solve this problem, we first form E′ :=
⋃
E∈E E ⊆ 2Ω and then, via Problem 11, find

H := StabG(E′). Here, notice that E ∈ 2E
′
. Under the induced action of H on E′, we return, via

Problem 11, StabH(E). 2

3.5 Tools for linear representations
In this subsection, we consider several fundamental problems whose inputs are permutation groups e-
quipped with linear representations. Throughout this subsection, we assume that V is an n-dimensional
vector space over a finite field k of order qe for some prime q.

We first begin with

Problem 13
Instance: G ≤ Sym(Ω) and a representation φ : G→ GL(V ).
Question: Is φ irreducible? If not, exhibit a proper kG-submodule W < V .

In [47], Rónyai considered problems in associative algebras and proved, as a byproduct of his main
result,

Theorem 3.13 (Rónyai) Problem 13 is solvable in time polynomial in |Ω|, n, q and e (where V ∼= Fnqe). 2

Remark This theorem is used in finding a chief series of G ≤ Sym(Ω) in polynomial time (see, e.g.,
[25, §4]; see also Theorem 3.1(x)). As in the chief-series application, for any vector space V arising in the
present work, all of the parameters n, q and e of V are polynomially bounded in |Ω|. It is thus sufficient
to achieve running time of linear-representation problems such as Problem 13 in time polynomial in |Ω|,
n, q and e (see also the remark following Theorem 5.1). Note, however, that log q suffices in the timings
for Problems 14, 16, and we expect that these problems will have other applications.

Another fundamental problem is

Problem 14
Instance: G ≤ Sym(Ω), a representation φ : G→ GL(V ) and kG-submodules W1,W2 ≤ V .
Question: Is there a kG-isomorphism ψ : W1→∼W2? If so, exhibit such ψ.



74 E. M. Luks and T. Miyazaki

In general, Brooksbank and Luks [10] have shown that testing isomorphism of modules over an arbi-
trary field requires only a polynomial number of field operations (see also Chistov, Ivanyos and Karpin-
ski [15], which suffices for our application over finite fields); in particular, we have

Lemma 3.14 Problem 14 is solvable in time polynomial in |Ω|, n, log q and e (where V ∼= Fnqe). 2

With Theorem 3.13 and Lemma 3.14 at hand, we next consider

Problem 15
Given: G ≤ Sym(Ω), an irreducible representation φ : G→ GL(V ) and N C G.
Find: a direct sum of the kN -homogeneous components V = V1 ⊕ · · · ⊕ Vm whose summands form a

system of imprimitivity for G or a report that V is kN -homogeneous.

Lemma 3.15 Problem 15 is solvable in time polynomial in |Ω|, n, q and e (where V ∼= Fnqe).

Proof: We apply the standard argument in the proof of Clifford’s theorem (see, e.g., [2, 12.13]).
We first use Theorem 3.13 to find an irreducible kN -submodule W ≤ V . Next, we find 1 = g1, . . . ,

gr ∈ G such that V = W g1 ⊕ · · · ⊕W gr and form V := {W g1 , . . . ,W gr}.
We now appeal to Lemma 3.14 to partition V into isomorphism classes, say, V1, . . . ,Vm; that is, we put

W gi and W gj into the same class if they are kN -isomorphic. Unless m = 1, for each class Vi, we add
all its members to form a kN -homogeneous component Vi; hence, V = V1 ⊕ · · · ⊕ Vm, and G permutes
the summands as a system of imprimitivity. If there is only one isomorphism class, then we report that V
is kN -homogeneous. 2

Now, we consider

Problem 16
Given: G ≤ Sym(Ω) and a representation φ : G→ GL(V ).
Find: Kerφ.

As far as we know, this problem cannot be solved efficiently via a sequential stabilization of a basis of
V (for comparison, we note that Problem 18 hypothesizes that G ∈ Γd). Nevertheless, in [25, §4], with
the help of Kantor’s Sylow machinery and thus CFSG (Theorem 3.1(xi)), the problem was asserted to be
in polynomial time; since the proof was omitted in [25] due to space limitations, we include it here.

Lemma 3.16 (CFSG) Problem 16 is solvable in time polynomial in |Ω|, n, log q and e (where V ∼= Fnqe).

Proof: We reduce a given instance to a p-group case. For each prime p dividing |G|, we appeal to
Theorem 3.1(xi) to find a single P ∈ Sylp(G) and collect them in a common set P . Since the kernel of φ
is generated by the kernels of φ|P for all P ∈ P , it suffices to solve the problem for each P ∈ P .

The remainder of the proof is in [34, §4.6], which in fact resolves, more generally, the problem for a
solvable linear group G assuming the primes in |G| are polynomially bounded. 2

Remark (i) If we hypothesize that G ∈ Γd in Problem 16, then the problem can be solved without
invoking CFSG by using the method of Kantor and Taylor from [26], in place of Theorem 3.1(xi), to find
Sylow subgroups.

(ii) We also note that, in general, if G and H are manageable groups (in the sense of [34]), i.e., groups
with polynomial-time procedures for constructive membership-testing, for any homomorphism π : G →
H , finding Kerπ and π−1(M) for given M ≤ π(G) is in polynomial time: To find Kerπ, we form a
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presentation 〈X|R〉 of π(G) and pull back 〈RF (X)〉. To find π−1(M) for given M = 〈T 〉, it suffices to
find U ⊆ G such that π(U) = T and return 〈U ∪Kerπ〉 = π−1(M). For more on this, see [34, §4]
(cf. Theorem 3.1(vi)).

Now, in general, for N E G ≤ GL(V ), notice that g ∈ G centralizes N if and only if g fixes all
elements of the linear span k[N ] in Endk(V ). So, Problem 16 is used to solve

Problem 17
Given: G ≤ Sym(Ω), N E G and a representation φ : G→ GL(V ).
Find: C E G such that φ(C) = Cφ(G)(φ(N)).

We next consider problems that resemble ISO in linear representations. As before, we restrict inputs to
the class Γd to seek polynomial-time solutions. The following two problems are of our primary interest.

Problem 18
Given: G ≤ Sym(Ω) such that G ∈ Γd, a representation φ : G→ GL(V ) and v ∈ V .
Find: CG(v) = {g ∈ G | vg = v}.
Problem 19
Given: G ≤ Sym(Ω) such that G ∈ Γd, a representation φ : G→ GL(V ) and W ≤ V .
Find: NG(W ) = {g ∈ G |W g = W}.

To accommodate recursion, we first reformulate Problems 18, 19 to seek subcosets rather than sub-
groups. An equivalent subcoset-version of Problem 18 is naturally

Problem 20
Given: G ≤ Sym(Ω) such that G ∈ Γd, a representation φ : G→ GL(V ) and v, w ∈ V .
Find: TransG(v, w) = {g ∈ G | vg = w}.

In fact, Problem 20 is also equivalent to

Problem 21
Given: G ≤ Sym(Ω) such that G ∈ Γd, a representation φ : G→ GL(V ), f ∈ Z1(G,V ) and v ∈ V .
Find: f−1(v) = {g ∈ G | f(g) = v}.

If not empty, f−1(v) is a coset of Ker f = f−1(0). For given v ∈ V , let f(x) := vx − v. Then
Ker f = CG(v). Also, for another given w ∈ V , note that f−1(w − v) is the solution to Problem 20.

Conversely, to reduce Problem 21 to Problem 20, for given f ∈ Z1(G,V ), we consider the extension
of φ to φf : G → GL(V ⊕ k) defined by (v, a)g := (vg + af(g), a) for v ∈ V , a ∈ k and g ∈ G. With
such φf , we have f(g) = v if and only if (v, 1)g = (vg + v, 1) for v ∈ V , 1 ∈ k and g ∈ G.

For Problem 19, we consider the following reformulation.

Problem 22
Given: G ≤ Sym(Ω) such that G ∈ Γd, a representation φ : G→ GL(V ) and W1,W2 ≤ V .
Find: TransG(W1,W2) = {g ∈ G |W g

1 = W2}.
We will devote §5 to the proof of

Proposition 3.17 Problems 18–22 are solvable in time polynomial in |Ω|, n, q and e (where V ∼= Fnqe).

To prove Proposition 3.17, we will first solve Problem 21 since it lends itself easily to a divide-and-
conquer paradigm. As a corollary, we will immediately obtain solutions to Problems 18, 20. We will then
solve Problems 19, 22 via Problem 20.
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3.6 Automorphisms of characteristically simple groups
In this subsection, we will develop polynomial-time tools for constructing representations of the automor-
phism groups of direct products of isomorphic nonabelian simple groups.

We first recall some basic facts concerning permutation representations of group extensions. Suppose
that a group H is an extension of a normal subgroup N by a group K. If N acts faithfully on a set Ω, then
it induces a faithful action of H on Ω×K in the following way: Consider the canonical homomorphism
* : H → K whose kernel is N and fix a lifting of *, say, λ : K → H (i.e., λ(k)∗ = k for k ∈ K).
For each h ∈ H , we define a function fh : K → N by fh(k) := λ(k)hλ(kh∗)−1 for k ∈ K. Then, for
h ∈ H and (α, k) ∈ Ω×K, we define (α, k)h := (αfh(k), kh∗).

We now consider the following general problem.

Problem 23
Given: G ≤ Sym(Ω) such that Z(G) = 1 and Σ ⊆ Aut(G) such that 〈Inn(G) ∪ Σ〉 = Aut(G).
Find: a faithful representation π : Aut(G)→ Sym(Ω′) (where |Ω′| is polynomially bounded).

More specifically, for G = 〈S〉, we assume that σ ∈ Σ is defined on each s ∈ S and that π performs the
following: given σ ∈ Aut(G) defined on each s ∈ S, determine π(σ) in Sym(Ω′).

Proposition 3.18 Problem 23 is solvable in time polynomial in |Ω|, |Σ| and |Out(G)|.

Proof: We construct a faithful action of Aut(G) on Ω × Out(G) by applying the preceding method for
general group extensions to ‘H’ = Aut(G), ‘N ’ = Inn(G) and ‘K’ = Out(G). For this, it suffices to
describe how to construct (i) a faithful action of Inn(G) on Ω and (ii) a multiplication table of Out(G),
the canonical homomorphism * : Aut(G)→ Out(G) and a lifting λ : Out(G)→ Aut(G) in the desired
time.

We recall that, forG = 〈S〉, given σ, τ ∈ Aut(G) and s ∈ S, we can evaluate sστ = (sσ)τ by means of
a straightline program from S to sσ (cf. §2.3). We also recall that Problem 8, the problem of determining,
for any given σ ∈ Aut(G), whether σ ∈ Inn(G), is in polynomial time.

For a faithful action of Inn(G) on Ω, since Z(G) = 1, it suffices to construct an isomorphism φ :
Inn(G)→∼ G. For this, given σ ∈ Inn(G), we use Problem 8 to determine a ∈ G such that ga = gσ for
all g ∈ G and set φ(σ) := a.

For (ii), from Σ, again via Problem 8, we generate a complete set of coset representatives R for Inn(G)
in Aut(G) and then construct a multiplication table for Out(G) indexed by elements aρ, ρ ∈ R. To
construct * : Aut(G) → Out(G), for each σ ∈ Σ, we find ρ ∈ R such that σρ−1 ∈ Inn(G) and define
σ∗ := aρ. To construct a lifting of *, we set λ(aρ) := ρ for aρ ∈ Out(G). 2

The preceding technique will be used when dealing with nonabelian simple groups. For this, we appeal
to the following fact from CFSG: For every nonabelian simple group T , we have |Out(T )| = O(log |T |)
(see, e.g., [27]). Furthermore, if T is given as a permutation group, then, by [24], in polynomial time, one
can find the “natural” representation of T , in which form the elements of Out(T ) are easily listed: For
the alternating groups An with n ≥ 5, except for n = 6, it is an elementary fact that Aut(An) = Sn
and thus |Out(An)| = 2 (see, e.g., [52, I, 3.2.17]). For the simple groups of Lie type, the automorphisms
adhere to a neatly-formulated pattern (more specifically, every automorphism is the product of an inner, a
“diagonal”, a “graph” and a “field” automorphism) (see, e.g., [13, Chapter 12], [21, §2.5]).
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Consequently, for any nonabelian simple T ≤ Sym(Ω), |Out(T )| is polynomially bounded, and small
Σ ⊆ Aut(T ) such that 〈Inn(T ) ∪ Σ〉 = Aut(T ) is computable in polynomial time. With this in mind,
we consider

Problem 24
Given: T ≤ Sym(Ω) such that T is nonabelian simple.
Find: a faithful representation π : Aut(T )→ Sym(Ω′) (where |Ω′| is polynomially bounded).

By Proposition 3.18, we have

Corollary 3.19 (CFSG) Problem 24 is in polynomial time. 2

Remark It is also not difficult to directly solve Problem 24 using the well-known structures of the
automorphisms of the simple groups. As indicated in Problem 23, the preceding approach offers a general
method and applicable to any centerless groups whose outer automorphism groups are small.

Recall that, ifN ∼= T ` for a nonabelian simple group T , then Aut(N) ∼= Aut(T )oS`. This isomorphism
is used in the solution of

Problem 25
Given: N ≤ Sym(Ω), T1, . . . , T` E N such that N ∼= T1×· · ·×T` ∼= T ` for a nonabelian simple group

T , and isomorphisms τi : T1→∼ Ti (defined on generators) for i = 2, . . . , `.
Find: a faithful representation π : Aut(N)→ Sym(Ω′) (where |Ω′| is polynomially bounded).

Lemma 3.20 (CFSG) Problem 25 is in polynomial time.

Proof: We first construct an isomorphism φ : Aut(N) →∼ Aut(T ) o S`. For this, given σ ∈ Aut(N),
we perform the following: Let aσ ∈ S` induced by the action of σ on {T1, . . . , T`} via the bijection
Ti 7→ i for i = 1, . . . , `. We now form ασ ∈ Aut(N) that permutes via aσ the corresponding elements
of T1, . . . , T` according to τ2, . . . , τ`; that is, if iaσ = j, 1 ≤ i ≤ `, 1 ≤ j ≤ `, then tασi := τj(τ

−1
i (ti))

for ti ∈ Ti. Then σα−1
σ stabilizes each of T1, . . . , T`; thus, σα−1

σ = σ1 · · ·σ` for some σi ∈ Aut(Ti) for
i = 1, . . . , `. Regarding T = T1 = · · · = T`, we define φ(σ) := (σ1, . . . , σ`)aσ ∈ Aut(T ) o S`.

Via Problem 24, we next form a faithful representation ψ : Aut(T ) → Sym(Ω × Out(T )). We paste
together φ and ψ to form a faithful representation π : Aut(N)→ Sym(Ω×Out(T )× {1, . . . , `}). 2

We now apply the methods for Problems 24, 25 to solve

Problem 26
Given: N = N/K for K E N ≤ Sym(Ω), T1, . . . ,T` E N such that N ∼= T1 × · · · ×T`

∼= T ` for a
nonabelian simple group T , and isomorphisms τi : T1→∼Ti (defined on generators) for i = 2, . . . , `.

Find: a faithful representation π : Aut(N)→ Sym(Ω′) (where |Ω′| is polynomially bounded).

Lemma 3.21 (CFSG) Problem 26 is in polynomial time.

Proof: As demonstrated above, since Aut(N) ∼= Aut(T ) o S`, we may assume that N is nonabelian sim-
ple. Here, we call a procedure from [33, §6] for constructing permutation representations of composition
factors of permutation groups, to form, on a small set Ω̂, a faithful representation φ : N → Sym(Ω̂).
Then, via φ, we apply the method for Problem 24. 2
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3.7 Normalizers of characteristically simple groups
In this subsection, we will develop polynomial-time tools for finding normalizers of direct products of
isomorphic simple groups.

First, we consider normalizing elementary abelian groups.

Problem 27
Given: G,E ≤ Sym(Ω) such that G ∈ Γd, and E is elementary abelian.
Find: NG(E).

Lemma 3.22 Problem 27 is in polynomial time.

Proof: First, we find the orbits of E, say ∆i, i = 1, . . . , `, and form E0 := E∆1 · · ·E∆` ∼= E∆1 ×
· · · × E∆` . Here, we note that NG(E) ≤ NG(E0). Next, via Problems 6, 9, we find G0 := NG(E0) =
G ∩ NSym(Ω)(E0). Under the linear representation induced by the conjugation action of G0 on E0, we
then find, via Problem 19, NG0(E) = NG(E). 2

We next consider the following general problem (cf. Problem 23).

Problem 28
Given: G ≤ Sym(Ω) and Σ ⊆ Aut(G) (defined on generators) such that 〈Inn(G) ∪ Σ〉 = Aut(G).
Find: NSym(Ω)(G).

Proposition 3.23 Problem 28 is solvable in time polynomial in |Ω|, |Σ| and |Out(G)|.

Proof: We first form, via Problem 8, a complete set of right coset representatives R := {ρ1, . . . , ρ`} for
Inn(G) in Aut(G). Then, for each ρi ∈ R, we test, via Problem 7, if there is xi ∈ Sym(Ω) such that
gxi = gρi for all g ∈ G, and if so, collect such xi in a set X . Next, via Problem 5, we find CSym(Ω)(G)
and then return 〈X〉GCSym(Ω)(G) = NSym(Ω)(G). 2

We will now consider several normalizer problems involving nonabelian simple groups. As in Prob-
lems 24–26, we will appeal to the aforementioned facts about the outer automorphism groups of non-
abelian simple groups.

Problem 29
Given: T ≤ Sym(Ω) such that T is nonabelian simple.
Find: NSym(Ω)(T ).

Since the structure of Out(T ) is known, where |Out(T )| is polynomially bounded, we have, by Propo-
sition 3.23,

Corollary 3.24 (CFSG) Problem 29 is in polynomial time. 2

For G,T ≤ Sym(Ω), note that NG(T ) = G∩NSym(Ω)(T ). Problems 9 and 29 now provide a solution
to

Problem 30
Given: G,T ≤ Sym(Ω) such that G ∈ Γd, and T is nonabelian simple.
Find: NG(T ).

Corollary 3.25 (CFSG) Problem 30 is in polynomial time. 2
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We use a similar technique to solve

Problem 31
Given: G,T1, T2 ≤ Sym(Ω) such that G ∈ Γd, and T1, T2 are nonabelian simple.
Find: TransG(T1, T2) = {g ∈ G | T g1 = T2}.

Lemma 3.26 (CFSG) Problem 31 is in polynomial time.

Proof: We consider, for the transposition t on {1, 2}, the natural action of Ĝ := G o 〈t〉 on Ω× {1, 2} via
(α, i)(g1,g2)t := (αgi , it) for (α, i) ∈ Ω × {1, 2} and gi ∈ G for i = 1, 2. Also, consider T̂ := T1 × T2

for which (α, i)(t1,t2) := (αti , i) for (α, i) ∈ Ω × {1, 2} and ti ∈ Ti for i = 1, 2. Since the structure of
Out(T̂ ) is known, where |Out(T̂ )| is polynomially bounded, we proceed to find, via Problem 28, N̂ :=
NĜ(T̂ ) in polynomial time. If N̂ stabilizes Ω× {1}, then we return TransG(T1, T2) = ∅. Otherwise, we
find a generator n̂ of N̂ such that (Ω× {1})n̂ = Ω× {2} and then determine g ∈ G such that (α, 1)n̂ =
(αg, 2) for all α ∈ Ω. Now, via Problem 30, we find NG(T1) and return NG(T1)g = TransG(T1, T2). 2

For finding normalizers of direct products of isomorphic nonabelian simple groups, we first consider
the following technical problem.

Problem 32
Given: G,T1, . . . , T` ≤ Sym(Ω) such that G ∈ Γd, and T1, . . . , T` are nonabelian simple, and an action

of G on I = {1, . . . , `}.
Find: StabG({(t, i) | i ∈ I and t ∈ Ti}) in the action of G on Sym(Ω)× I .

Lemma 3.27 (CFSG) Problem 32 is in polynomial time.

Proof: To accommodate recursion, we write T := {(t, i) | i ∈ I and t ∈ Ti} and consider the following
generalization.

Given: H ≤ G, g ∈ G and H-invariant J ⊆ I .
Find: {x ∈ Hg | (T ∩ (Sym(Ω)× J))x = T ∩ (Sym(Ω)× Jg)}.

For this, we apply the divide-and-conquer paradigm of §3.4 to the action of H on J (cf. Proposi-
tion 3.9). In the base case in which J = {j}, we return, via Problem 31, {x ∈ Hg | T xj = Tjg} =

TransH(Tj , T
g−1

jg )g. 2

Problem 33
Given: G,H ≤ Sym(Ω) such that G ∈ Γd, and H is a direct product of isomorphic nonabelian simple

groups.
Find: NG(H).

Lemma 3.28 (CFSG) Problem 33 is in polynomial time.

Proof: Suppose that H = T1 · · ·T` ∼= T1 × · · · × T` in which all Ti are isomorphic nonabelian simple
groups. Since Problem 30 is in polynomial time, we may assume that ` ≥ 2. We will utilize the fact that
x ∈ Sym(Ω) normalizes H if and only if x stabilizes {T1, . . . , T`}.

Suppose that two distinct Ti have a common nontrivial orbit. Then the orders of these two and therefore
all Ti are equal to the size of such an orbit. For each Ti, we form Ai := {(α, αt) | α ∈ Ω and t ∈ Ti}.
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Now, notice that x ∈ Sym(Ω) stabilizes {T1, . . . , T`} if and only if x stabilizes {A1, . . . ,A`} under the
natural action of Sym(Ω) on Ω× Ω. We thus find, via Problem 11, StabG({A1, . . . ,A`}).

Next, suppose instead that no two Ti have a common orbit. For this, for each Ti, we form the set
Bi of all orbits of Ti. Under the natural action of G on 22Ω

, via Problem 12, we then find G0 :=
StabG({B1, . . . ,B`}). Let G0 act on I := {1, . . . , `} induced by the action of G0 on {B1, . . . ,B`}
via the bijection Bi 7→ i for i = 1, . . . , `. It now suffices to find, via Problem 32, StabG0({(t, i) | i ∈
I and t ∈ Ti}). 2

4 Main algorithm to find NG(H)

In this section, we will first describe the main steps of our normalizer algorithm and then prove Theo-
rems 1.1, 1.2, 1.3.

For simplicity, it is convenient to focus on a procedure that is aimed only at getting a step closer to the
normalizer; in particular, we consider

Problem 34
Given: G,H ≤ Sym(Ω)such that G ∈ Γd and NG(H) < G.
Find: G0 such that NG(H) ≤ G0 < G.

In the next two subsections, we will describe our procedure to prove

Proposition 4.1 (CFSG) Problem 34 is in polynomial time.

Here, we first recall the notions of covering and avoidance: Let G be a group, A,B ≤ G, and C E B.
We say A covers B/C if BA = CA. We say A avoids B/C if B ∩A = C ∩A.

In §4.1, we will first reduce the given instance to the case in which H either covers or avoids each
G-chief factor of 〈HG〉. Then, in §4.2, we will focus on a segment M > L > K in the chief series such
that H covers M/L but avoids L/K.

4.1 Reducing to H that covers or avoids each factor
Using Theorem 3.1(x), we first construct a G-chief series for X := 〈HG〉 as follows.

X = X1 B X2 B · · · B Xr = 1.

If there is a chief factor L/K of X such that L > (H ∩ L)K > K (i.e., H neither covers nor avoids
L/K), we then perform the following according to the structure of L/K. Here, we note that G does not
normalize (H ∩ L)K.

Case 1 L/K is abelian. Under the natural action of G on L/K, find G0 := NG((H ∩ L)K/K) via
Problem 19. Return G0 and exit.

Case 2 L/K is nonabelian. On some set Ω′, construct a faithful representation π : AutGL/K(L/K) →
Sym(Ω′) via Problem 26. Now, use Lemma 3.2 to find a homogeneous component J/K in the socle of
(H ∩L)K/K (cf. [7, §5], [25, §9]). Here, J/K char (H ∩L)K/K, so NG((H ∩L)K/K) ≤ NG(J/K);
furthermore, since L/K is a chief factor, NG(J/K) < G. Now, working with the image ofG in Sym(Ω′)
via π, find G0 := NG(J/K) via Problem 33. Return G0 and exit.
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4.2 M > L > K where H covers M/L but avoids L/K

We may assume now that H either covers or avoids each factor. For such a series, if applicable, we first
move covered factors towards the tail of the series as follows: While there is a segment M > L > K in
the series, whereH coversM/L but avoids L/K, andG normalizes (H∩M)K, replace L by (H∩M)K.

Since G does not normalize H , we then have a segment M > L > K such that H covers M/L but
avoids L/K, and G does not normalize (H ∩ M)K. For such a segment, we perform the following
according to the structure of L/K. Let M := M/K, L := L/K, and H := (H ∩ M)K/K (here,
M = HL, H ∩ L = 1, and H ∼= M/L).

Case 1 L is abelian. Form the natural homomorphism * : H → HL/L (actually, * is an isomorphism
since H ∩ L = 1) and its inverse λ : H∗ → H such that λ(h∗) = h for all h ∈ H. Notice that, if g ∈ G,
then

g ∈ NG(H) ⇔ λ(h∗g) = hg for all h ∈ H

⇔ λ(h∗g
−1

)g = λ(h∗) for all h ∈ H.

Form a 1-cocycle f ∈ Z1(G,Z1(H∗,L)) defined by

f(g)(h∗) := λ(h∗)−1λ(h∗g
−1

)g

for g ∈ G (here, H∗ acts on L via lh
∗

:= lh for l ∈ L and h ∈ H, and G acts on Z1(H∗,L) via
αg(h∗) := α(h∗g

−1

)g for α ∈ Z1(H∗,L), h ∈ H and g ∈ G). Working with the representation of G on
Z1(H∗,L) (whose dimension is at most rank L · log |H|), find G0 := Ker f = NG(H) via Problem 21.
Return G0 and exit.

Case 2 L is nonabelian. For G := GK/K, on some set Ω′, construct a faithful representation π :
AutGM(L) → Sym(Ω′) via Problem 26 (here, since M embeds in AutGM(L), H embeds in Sym(Ω′)
via π). Working with the image of G in Sym(Ω′) via π, find G0 := NG(H) via Problem 27 or 33. Return
G0 and exit. 2

4.3 Proofs of Theorems 1.1–1.3

Proof of Theorem 1.1: With the help of the above procedure for Problem 34, we describe how to find
NG(H).

First, letG1 := G. WhileG1 does not normalizeH , repeat the following: findG0 such that NG1
(H) ≤

G0 < G1 via Problem 34 and let G1 := G0. Finally, return G1 = NG(H). 2

Proof of Theorem 1.2: We mimic a standard reduction from the problem of testing conjugacy of two
elements to the problem of finding the centralizer of an element given in [25, §11] (cf. Lemma 3.26).

We consider, for the transposition t on {1, 2}, the natural action of Ĝ := G o 〈t〉 on Ω×{1, 2} such that
(α, i)(g1,g2)t := (αgi , it) for (α, i) ∈ Ω × {1, 2} and gi ∈ G for i = 1, 2. We also form Ĥ := H1 ×H2

for which (α, i)(h1,h2) := (αhi , i) for (α, i) ∈ Ω× {1, 2} and hi ∈ Hi for i = 1, 2. Using Theorem 1.1,
we find N̂ := NĜ(Ĥ). Then there is g ∈ G such that Hg

1 = H2 if and only if there is a generator ŝ of N̂
such that (Ω× {1})ŝ = Ω× {2}. In particular, if such ŝ = (s1, s2)t for s1, s2 ∈ G, then Hs1

1 = H2 and
Hs2

2 = H1. 2
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Proof of Theorem 1.3: The following proof involves a computational use of the Frattini method with
Kantor’s Sylow machinery (Theorem 3.1(xi)) as in [25, §5].

We may assume that K is not nilpotent (because, if K is nilpotent, then G ∈ Γd). Suppose that
G = 〈S〉 and H = 〈T 〉. Since K is not nilpotent, for some prime p dividing |K|, there is P ∈ Sylp(K)
such that P is not normal in K. To begin, we appeal to Theorem 3.1(xi) to find such P . Now, we form
S0 := {s ∈ S | P s = P}. Then, for each s ∈ S such that P 6= P s, with the help of Theorem 3.1(xi)
again, we find k ∈ K such that P k = P s and add ks−1 to S0. We repeat the same for T to form a set
T0 ⊆ NH(P ).

Next, form X := 〈S, T 〉 and Y := 〈S0, T0〉. We remark here that, by the Frattini argument, X =
NX(P )K = Y K. We then form an isomorphism φ : X/K →∼ Y/(Y ∩ K). For this, we recall that,
by Theorem 3.1(viii)(c), for any given x ∈ X , we can find yx ∈ Y and kx ∈ K such that x = yxkx;
so, using any such yx, we define φ(Kx) := (Y ∩ K)yx. Under this isomorphism, we recursively find
Nφ(G/K)(φ(H/K)) in Y/(Y ∩K) and then pull back the result in G/K; here, to find the pullback, we
appeal to the quotient-group version of Theorem 3.1(vi)(b) (see §3.2). 2

5 Finding vector and subspace stabilizers
Throughout this section, we assume that V is an n-dimensional vector space over a finite field k of order
qe for some prime q.

The main purpose of this section is to prove Proposition 3.17 and thus Theorem 1.4. In particular, we
will solve Problems 18–22 in time polynomial in |Ω|, n, q and e. Our solutions are based on a divide-and-
conquer paradigm resulting from the following.

Theorem 5.1 Given G ≤ Sym(Ω) such that G ∈ Γd and an irreducible representation ¯ : G→ GL(V ),
one can find one of the following, in time polynomial in |Ω|, n, q and e (where V ∼= Fnqe).

(i) H ≤ G and a direct sum V = V1 ⊕ · · · ⊕ Vm, where m ≥ 2, such that

(a) each dimk Vi = n/m, |G : H| = O(mc) for a constant c > 0, and

(b) H acts on V = {V1, . . . , Vm} as a permutation group of degree m.

(ii) A E G such that Ā is abelian and |G : A| = O(|Ω|+ n).

Remark (i) As indicated in §1, in Theorem 5.1, the characteristic q of the field k is involved in the running
time. Indeed, this parametrization enables us to call the deterministic version of Rónyai’s method to test
irreducibility (e.g., in Propositions 5.8, 5.11, where we have to make use of his method). (If, however, we
appeal to his Las Vegas version instead, we can accomplish the same task in Las Vegas polynomial time
in |Ω|, n, log q and e, replacing q by log q.) For our applications to the problem of finding normalizers in
permutation groups, n, q and e are all polynomially bounded in |Ω|.

(ii) We do not assert in Theorem 5.1(i) that V is a system of imprimitivity for H because the action of H
on V will not necessarily be transitive. In fact, although the decomposition arises in various ways through
the results leading up to the proof of Theorem 5.1, it will be seen that this action always turns out to be
either transitive or trivial. However, the critical item for our divide-and-conquer paradigm is just that the
summands in the decomposition of V have equal dimension n/m.
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With the help of Rónyai’s method to test irreducibility from [47, §5] (see also Theorem 3.13), Theo-
rem 5.1 facilitates the extension to representations of Γd groups of the divide-and-conquer paradigm for
solvable linear groups (see [34, §6]). As in §3.4, it is indeed Γd that enables us to find subgroups of
polynomial index that preserve suitable direct-sum decompositions.

In §5.1, we will first present this divide-and-conquer paradigm resulting from Theorem 5.1. In §5.2,
as promised in §3.5, we will prove that the paradigm is applicable to Problems 18–22 (cf. [34, §§6.2,
6.3]). The remainder of this section is devoted to proving Theorem 5.1. In §5.3, we will begin with some
preliminaries on linear groups. In §§5.4, 5.5, we will next describe the two key subroutines that will be
used in our main algorithm for Theorem 5.1. In §5.6, we will then present the main algorithm.

5.1 Divide and conquer using invariant subspaces and imprimitivity systems
In general, as in permutation groups, this divide-and-conquer paradigm for linear groups applies to prob-
lems (such as Problems 18–22) that ask for construction of a recognizable subcoset of a given coset Gx
in X ≤ Sym(Ω), where G ∈ Γd, equipped with a representation X → GL(V ) such that the following
hold:

(1) Recursive property. Given a proper kG-submodule W < V , the problem is recursively reducible
to induced problems on W and V/W in time polynomial in |Ω|, n, q and e.

(2) Base property. If the G-action on V is irreducible and cyclic, then the problem is solvable in time
polynomial in |Ω|, n, q and e.

The paradigm works in the following way. With the help of Theorems 3.13, 5.1, the paradigm performs
two levels of divide-and-conquer maneuvers involving proper kG-submodules of V and, in the irreducible
case, direct-sum decompositions of V on which subgroups of G of polynomial index act. In particular,
we consider the following three cases (two recursive and one base).

Reducible case As required by (1) above, if there is a proper kG-submodule W < V , then we recursively
solve the induced problems on W and V/W .

Irreducible case We first appeal to Theorem 5.1 and perform the following according to which of the
outputs we obtain.

In case (i), we consider the output: H ≤ G and V = V1 ⊕ · · · ⊕ Vm, where m ≥ 2. For this, we first
decompose G into cosets of H , say, G = Hy1 ∪̇ · · · ∪̇Hy` for some y1, . . . , y` ∈ G, where ` = O(mc).
Thus, the problem for G on V reduces to ` problems for cosets of H on V . Each of these ` problems
considers the orbit/imprimitivity structure of H in V , following the standard permutation-group divide-
and-conquer paradigm (illustrated previously for Theorem 3.7): in each orbit, consider the action on a
minimal system of imprimitivity, and decompose the group into cosets of the kernel of that action. The
process continues until we are faced with a single element of V and a group fixing that element.

(For simplicity of presentation and timing, the algorithm keeps to the submodules generated by ele-
ments of V until it is faced with a single Vi. In practice, finer decomposition may be observed and used,
especially as the group at hand decreases.)

In case (ii), we consider the output: A E G such that the A-action on V is abelian. As before, we
decompose G into cosets of A and reduce the problem to instances involving these cosets. The problem
for A exploits the recursive property, ultimately reducing to ≤ n instances of the following base case



84 E. M. Luks and T. Miyazaki

Base case The above recursion bottoms out when the abelian G-action on V becomes irreducible (and
thus cyclic by Schur’s lemma, see, e.g., [2, 12.4]). In this base case, the problem is solvable in the desired
time as required by (2) above.

Timing analysis In the reducible case, we solve sequentially on W and V/W , where dimkW +
dimk V/W = n.

In case (i), divide-and-conquer is applied to the action on V with respect to orbits and then minimal
systems of imprimitivity using stabilizers of such systems (cf. §3.4). Having exhausted the action on V , we
end up with a problem on one of the Vi’s. Using the bound on primitive Γd groups (from Theorem 3.8) for
the index of the kernels of the minimal-system actions, we conclude that the problem for each coset of H
is reduced toO(mf(d)+1) instances on submodules of dimension n/m. Thus, since |G : H| = O(mc) for
a constant c > 0, the original problem for G on V is reduced to O(mc+f(d)+1) instances on submodules
of dimension n/m.

In case (ii), where A E G such that the A-action on V is abelian, the original problem is reduced to
O(n(|Ω|+ n)) instances of the base case.

5.2 Applying the divide-and-conquer paradigm
We will solve Problems 18–22 to prove Proposition 3.17 via the divide-and-conquer paradigm described
above. (In the following solution to Problem 35, the proof of the base property (2) corrects a corresponding
reduction in [34, §6.2] and the proof of Theorem 4.1.2(i), Case 1, in [43, §IV.2].)

Proof of Proposition 3.17: As indicated in §3.5, it suffices to solve Problems 21, 22 in the desired running
time.

Solution to Problem 21: To accommodate the above paradigm, we consider the following generalization.

Problem 35
Given: X ≤ Sym(Ω), a representation ¯ : X → GL(V ), G ≤ X such that G ∈ Γd, x ∈ X ,

f ∈ Z1(X,V ) and v ∈ V .
Find: C(Gx, V, f, v) := {y ∈ Gx | f(y) = v}.

If not empty, C(Gx, V, f, v) is a coset of Ker f |G = (f |G)−1(0).
As indicated in §5.1, to complete the proof, it suffices to prove that this problem has these properties:

(1) given a proper kG-submodule W < V , the problem is recursively reducible to induced problems on
W and V/W , and (2) if the G-action on V is irreducible and cyclic, then the problem is solvable in the
desired time.

Proof of the recursive property (1) for Problem 35: To begin, we suppose that a proper kG-submodule
W < V is given. Let u := (v − f(x))x

−1

. Since C(Gx, V, f, v) = C(G,V, f, u)x, it suffices to find
C(G,V, f, u).

We first solve the problem on V/W . In particular, under the induced representation G → GL(V/W ),
with f̂ ∈ Z1(G,V/W ) defined by f̂(g) := W + f(g) for g ∈ G, we solve recursively for C(G,V/W, f̂ ,
W + u), which is, if not empty, a coset Ka ⊆ G.

We next solve the problem on W . For this, we first note that f̂(g) = W if and only if f(g) ∈ W
for g ∈ G; so, f(K) ⊆ W . Under the restriction K → GL(W ), regarding f ∈ Z1(K,W ), we find
C(K,W, f, (u − f(a))a

−1

) recursively. If not empty, the result is a coset Hb ⊆ K. So, C(G,V, f, u) =
Hba and C(Gx, V, f, v) = Hbax.
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Proof of the base property (2) for Problem 35: We now suppose that the G-action on V is irreducible and
cyclic. It is also convenient to assume that the ground field k is a prime field Fq . (If k is of order qe for
e > 1, then we regard V ∼= Fenq and consider the induced FqX-representation of degree en.) As before,
let u := (v − f(x))x

−1

. To solve for C(Gx, V, f, v), it suffices to find C(G,V, f, u). If f(G) = 0, we
simply return ∅ if u 6= 0 or G if u = 0. So, we suppose that f(G) 6= 0.

To begin, via Problem 16, we find N := CG(V ), the kernel of the G-action on V . Clearly, f |N : N →
V is a homomorphism. By the cocycle property, f(g−1ng) = f(n)g for n ∈ N and g ∈ G. Thus, f(N)
is G-invariant as an abelian group and therefore a ZG-module. That is, since k is a prime field, f(N) is a
kG-submodule of V . Since Ḡ is irreducible, f(N) = 0 or V .

We first assume that f(N) = V . We recall here that, for f |N : N → V and any w ∈ V , finding
the preimage (f |N )−1(w) = {n ∈ N | f(n) = w} is in polynomial time (see Remark (ii) following
Lemma 3.16). Suppose that G = 〈S〉. Now, for each s ∈ S, we find ns ∈ N such that f(ns) = −f(s)
(and hence f(sns) = 0). Let H := 〈sns | s ∈ S〉. Then G = HN , where, for h ∈ H and n ∈ N , we
have f(hn) = u if and only if f(n) = u. Thus, we return H(f |N )−1(u) = C(G,V, f, u).

Now, we assume that f(N) = 0. We first find a ∈ G such that G/N = 〈Na〉 so that G = 〈a〉N
and C(G,V, f, u) = C(〈a〉, V, f, u)N . Thus, it suffices to find the integers r such that f(ar) = u. Let
t := f(a) and α := ā. Clearly, K := k[α] is a field. Since Ḡ is irreducible, V = Kt; in particular,
u = βt for some β ∈ K. The cocycle property implies that αrt = (α− 1)f(ar) + t; hence, it suffices to
solve for r in αr = (α− 1)β+ 1. This discrete-log problem in 〈α〉 is in polynomial time since the primes
in the order of α are polynomially bounded.

Solution to Problem 22: For this, we consider the following generalization.

Problem 36
Given: X ≤ Sym(Ω), a representation ¯ : X → GL(V ), G ≤ X such that G ∈ Γd, x ∈ X and

W1,W2 ≤ V .
Find: C(Gx, V,W1,W2) := {y ∈ Gx |W y

1 = W2}.
If not empty, C(Gx, V,W1,W2) is a coset of NG(W1).
As before, it suffices to prove that this problem has the aforementioned properties (1), (2). As indi-

cated in §3.5, our methods eventually reduce the above problem to Problem 20, which is equivalent to
Problem 21.

Proof of the recursive property (1) for Problem 36: As before, we suppose that a proper kG-submodule
W < V is given. Here, let W3 := W x−1

2 . Since C(Gx, V,W1,W2) = C(G,V,W1,W3)x, it suffices to
find C(G,V,W1,W3).

We first solve an induced problem on W . In particular, under the restriction G → GL(W ), we solve
recursively for C(G,W,W1 ∩W,W3 ∩W ), which is, if not empty, a coset Ka ⊆ G.

We next solve a residual problem on V/W . For this, under the representation K → GL(V/W ), we
find C(K,V/W, (W +W1)/W, (W +W a−1

3 )/W ) recursively. If not empty, the result is a cosetNb ⊆ K.
We still have some additional work to do to complete our solution. Let W4 := W a−1b−1

3 . Since
C(G,V,W1,W3) = C(N,V,W1,W4)ba, we now seek C(N,V,W1,W4). For this, form kN -submodules
A := W +W1 = W +W4 andB := W ∩W1 = W ∩W4. AsA/B = W/B⊕W1/B = W/B⊕W4/B,
we next find e, f ∈ Endk(A/B) such that e and f are the projections ontoW1/B andW4/B, respectively.
Under the induced action ofN on Endk(A/B), it now suffices to find TransN (e, f), which is computable
via Problem 20.
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Proof of the base property (2) for Problem 36: We suppose that the G-action on V is irreducible and
abelian. We may also assume that W1 6= 0. Let W3 := W x−1

2 . Our goal is to find C(G,V,W1,W3).
Here, we note that, since G is abelian, C(G,V,W,U) = C(G,V,W g, Ug) for all W,U ≤ V and g ∈ G.

Let A := W1, B := W3, A′ := 0 and B′ := 0. We perform the following:

while A+A′ 6= V do
begin

find g ∈ G such that Ag 6≤ A+A′;
(* Here, such g ∈ G exists by the irreducibility of G. *)
if Ag ∩ (A+A′) 6= 0 then

begin
A := A ∩ (A+A′)g

−1

;
B := B ∩ (B +B′)g

−1

;
end

else
begin

A′ := (A+A′)g
−1

;
B′ := (B +B′)g

−1

;
end

end

This loop maintains the following invariant:

A 6= 0, A ∩A′ = 0 and C(G,V,W1,W3) ⊆ C(G,V,A,B) ∩ C(G,V,A′, B′).

Once the loop terminates, we have V = A ⊕ A′. Let A′′ = A′ ∩ W1 so that W1 = A ⊕ A′′. Let
B′′ = B′ ∩W3. If either V 6= B ⊕B′ or W3 6= B ⊕B′′, then we return ∅. Otherwise, by the above loop
invariant and the fact that W1 = A⊕A′, we observe that

C(G,V,W1,W3) ⊆ C(G,V,A,B) ∩ C(G,V,A′, B′) ∩ C(G,V,W1,W3)

⊆ C(G,V,A,B) ∩ C(G,V,A′, B′) ∩ C(G,V,A′′, B′′)
⊆ C(G,V,W1,W3) ∩ C(G,V,A′, B′)
⊆ C(G,V,W1,W3).

That is,

C(G,V,W1,W3) = C(G,V,A,B) ∩ C(G,V,A′, B′) ∩ C(G,V,A′′, B′′).

We first solve recursively for C(G,V,A′′, B′′), which is, if not empty, a coset Ka ⊆ G. It then remains
to find C(K,V,A,Ba−1

) ∩ C(K,V,A′, B′a−1

). For this, we form e, f ∈ Endk(V ) such that e and f are
projections from V onto A and Ba

−1

with respect to V = A⊕ A′ and V = Ba
−1 ⊕B′a−1

, respectively.
It turns out that C(K,V,A,Ba−1

) ∩ C(K,V,A′, B′a−1

) = {k ∈ K | ek = f}, which is computable via
Problem 20. 2
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5.3 Preliminaries on linear groups
In this subsection, we will study some structural properties of linear groups. There are two key proposi-
tions. Lemma 5.2 is a general fact that will be used in the main result of §5.5. Proposition 5.7 is the most
important result of this subsection. Along with Theorem 3.8, this result on irreducible Γd groups enables
us to find subgroups of polynomial index that preserve direct-sum decompositions for Theorem 5.1(i)
when V is homogeneous (see §5.4).

We begin with the following well-known fact. We include a proof for the reader’s convenience. Recall
that n = dimk V .

Lemma 5.2 If G is an irreducible subgroup of GL(V ), and A is a cyclic normal subgroup of G, then
|G : CG(A)| ≤ n.

Proof: Suppose that A = 〈a〉. Let k̄ be the algebraic closure of k and write V k̄ := k̄ ⊗k V . Regard
G ≤ GL(V k̄, k̄) so that a is diagonalizable.

Let U be an eigenspace for a and G1 := NG(U) = {g ∈ G | Ug = U}. Since G normalizes A, it
permutes the eigenspaces of a. Hence, |G : G1|, which measures the number of images of U under G, is
≤ n. Thus, it suffices to prove that G1 ≤ CG(A).

Let g ∈ G1. Since G normalizes A, it follows that [g, a] = am ∈ A for some integer m > 0. Now, a
acts on U as a scalar, so [g, a] fixes every u ∈ U and therefore has nonzero fixed points even over k. Since
CV (Am) is a kG-submodule, the irreducibility of G implies that [g, a] = 1 and thus g ∈ CG(A). 2

To prepare for the proof of Proposition 5.7, we state four lemmas. The following lemma is borrowed
from [6].

Lemma 5.3 If G is an irreducible subgroup of GL(V ) such that G/Z(G) is a direct product of ` non-
abelian simple groups, then n ≥ 2`.

Proof: Let G1/Z(G) be a simple factor of G/Z(G). Then [6, Proposition 2.7] asserts that n ≥ 2`−1n1,
where n1 is the dimension of an irreducible kG1-submodule of V . 2

Recall that, in general, an automorphism σ of a group G is central if σ is in the kernel of the induced
action of Aut(G) on G/Z(G). Since the central automorphisms of G leave every element of G′ fixed, we
have

Lemma 5.4 If G is a group such that G = G′, Aut(G) is isomorphic to a subgroup of Aut(G/Z(G)). 2

A classical theorem of Wielandt [54, Theorem 8.7], Praeger and Saxl [44] asserts that, if a subgroup G
of Sn is primitive with An 6≤ G, then |G| ≤ 4n (in fact, via CFSG, |G| ≤ n

√
n [11]; see also [3], [4],

[40]). In turn, this leads to the following fact (see, e.g., [6, Lemma 2.2]).

Lemma 5.5 Let G ≤ Sn. If no composition factor of G is isomorphic to Am for any m > d ≥ 6, then
|G| < dn−1. 2

For the last of our lemmas, we prove

Lemma 5.6 Let N,M ≤ GL(V ) with [N,M ] = 1 and NM irreducible. If W is an irreducible kN -
submodule of V , U is an irreducible kM -submodule of V , and K := EndkN (W ), then dimk V ≥
dimKW · dimk U .
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Proof: The irreducibility of NM implies that V is homogeneous both as a kN -module and as a kM -
module. Let A := HomkG(W,V ). By [2, 27.14(5)], the k-space structures on V and A are extendible to
K-space structures so that V is K-isomorphic to A⊗K W . Thus, dimk V = dimk A · dimKW .

Now, fix 0 6= w0 ∈W . The kM -linear map φ : A→ V defined by φ(a) := wa0 for a ∈ A is nontrivial,
else {w ∈ W | wA = 0} would be a proper kN -submodule of W . Hence, φ(A) is a nonzero kM -
submodule of V and therefore contains an isomorphic copy of U . So, dimk A ≥ dimk φ(A) ≥ dimk U .
The result follows. 2

We now come to the main result of this subsection.

Proposition 5.7 Let G be an irreducible subgroup of GL(V ) such that G ∈ Γd, and let N,A C G such
that A is cyclic, and N/A is a nonabelian chief factor of G. Suppose that V is homogeneous both as a
kN ′-module and as a kCG(N ′)-module. If n0 is the dimension of an irreducible kCG(N ′)-submodule of
V , then |G : CG(N ′)| ≤ (n/n0)c for a constant c > 0.

Proof: We first note that A = Z(N). To see this, notice that, since N/A is a minimal normal subgroup of
G/A, either A = CN (A) or CN (A) = N . However, if A = CN (A), then N/A would embed in Aut(A),
which is abelian, a contradiction. Hence, CN (A) = N and thus A = Z(N).

Let H := N ′ throughout. We next note that H is semisimple; that is, H = H ′, and H/Z(H) is a
direct product of nonabelian simple groups (see, e.g., [52, II, 6.6.5]). Further, Z(H) = H ∩ Z(N) so that
N/Z(N) ∼= H/Z(H).

Let W be an irreducible kH-submodule of V and K := EndkH(W ). Since V is a homogeneous kH-
module, H acts faithfully on W . Consider the induced representation φ : H → GL(W,K) of degree t
(where t ≥ 2 since H is noncyclic). Now, let Z := Z(H), and write H/Z ∼= H1/Z × · · · ×H`/Z, where
each Hi/Z is isomorphic to a nonabelian simple group T . It follows from Lemma 5.3 that 2` ≤ t.

Since H is semisimple, Aut(H) embeds in Aut(H/Z) by Lemma 5.4; therefore, G/CG(H) embeds
in Aut(H/Z) ∼= Aut(T ) o S`. Let Ĝ denote the isomorphic image of G/CG(H) in Aut(H/Z), and
consider L̂ E Ĝ that leaves each Hi/Z invariant. Clearly, L̂ embeds in Aut(T )` so that |L̂| ≤ c`1 for
some constant c1 > 0 (by the Γd hypothesis). Next, write c2 := max(d, 6). Since Ĝ/L̂ lies in S`, where
no composition factor of Ĝ/L̂ is isomorphic to Am for any m > c2, it follows from Lemma 5.5 that
|Ĝ/L̂| < c`−1

2 . Hence, if c3 := c1c2, then |G/CG(H)| = |L̂||Ĝ/L̂| < c`3 ≤ c3tlog2 c3 .
It suffices now to prove that n/n0 ≥ t. For this, let V0 be an irreducible kHCG(H)-submodule such

that W ≤ V0 ≤ V and U0 be an irreducible kCG(H)-submodule of V0. By Lemma 5.6, dimk V0 ≥
dimKW · dimk U0. Since V is a homogeneous kCG(H)-module, n0 = dimk U0. Consequently, n ≥
dimk V0 ≥ dimKW · dimk U0 = tn0. 2

Remark It is in this proposition that the present definition of Γd (in which all nonabelian composition
factors lie in Sd) is essential (in particular, to bound the orders of the automorphism groups of nonabelian
simple groups).

5.4 Divide and conquer using nonabelian chief factors
As promised earlier, in this and the next subsections, we will describe the two key subroutines that will
be used in the main procedure to prove Theorem 5.1. For given G ≤ Sym(Ω) such that G ∈ Γd, an
irreducible representation ¯ : G→ GL(V ) and a chief factor N/A of G, both of these subroutines seek a
decomposition of V into a system of imprimitivity or a direct sum of equal-dimensional kH-submodules
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for some H < G of polynomial index, based on the structure of N/A (barring a few exceptional cases
when N/A is abelian).

We first deal with nonabelian chief factors. In the following proposition, the key property of Γd linear
groups we require is Proposition 5.7.

Proposition 5.8 Given G ≤ Sym(Ω) such that G ∈ Γd, an irreducible representation ¯ : G → GL(V )
and N,A C G such that N̄ > 1, Ā is cyclic, and N/A is a nonabelian chief factor of G, one can find one
of the following, in time polynomial in |Ω|, n, q and e (where V ∼= Fnqe).

(i) A direct sum V = V1 ⊕ · · · ⊕ Vm, where m ≥ 2, and the summands form a system of imprimitivity
for G.

(ii) H C G and a direct sum of kG-isomorphic irreducible kH-submodules V = V1⊕· · ·⊕Vm, where
m ≥ 2, such that |G : H| = O(mc) for a constant c > 0.

Proof: We will describe our algorithm in the following two steps. In Step 1, we first seek a system of
imprimitivity for G induced by some accessible normal subgroup of G; if V has no such system, then, in
Step 2, we appeal to Proposition 5.7 for a desirable pair (H,

⊕m
i=1 Vi).

Step 1 Reduction to Problem 15. To begin, we solve Problem 15 to seek a system of imprimitivity
V := {V1, . . . , Vm} for G induced by either N ′ or C C G such that C̄ = CḠ(N̄ ′) (here, C is computable
in polynomial time via Problem 17). Unless V is homogeneous both as a kN ′-module and as a kC-
module, we return

⊕m
i=1 Vi for (i) and halt.

Step 2 V is homogeneous both as a kN ′-module and as a kC-module. Since N̄ ′ centralizes C̄ and is
nonabelian, C̄ is necessarily reducible. Via Problem 13, we find an irreducible kC-submodule V1 < V ,
decompose V = V1 ⊕ · · · ⊕ Vm such that each Vi = V gi1 for some gi ∈ G and then return a pair
(H,

⊕m
i=1 Vi) with H := C.

We note here that, since V is a homogeneous kC-module, all irreducible kC-submodules of V share the
same dimension; thus, any irreducible kC-submodule V1 may be used to decompose V = V1 ⊕ · · · ⊕ Vm
for which Proposition 5.7 guarantees that |G : C| is polynomially bounded in m. 2

5.5 Divide and conquer using abelian chief factors
In this subsection, we will describe the second key subroutine for Theorem 5.1 that deals with abelian
chief factors. We will give a top-level description of this subroutine in the proof of Proposition 5.11,
which is the main result of this subsection. We will prove this proposition by way of three lemmas.
Throughout this subsection, Q8 denotes the quaternion group of order 8.

The following result is inspired by the well-known structure of extraspecial p-groups (see, e.g., [22,
13.7 Satz], [51, Theorem 19.2]).

Lemma 5.9 Given P ≤ Sym(Ω), a representation ¯ : P → GL(V ) such that P̄ is a p-group for some
prime p 6= q, CV (P ′) = 0, Z(P̄ ) is cyclic, and P̄ /Z(P̄ ) is an elementary abelian group of rank 2` > 0,
one can find one of the following, in time polynomial in |Ω|, n, q and e (where V ∼= Fnqe).

(i) E C P such that P ′ < E and Ē is elementary abelian, with the isotypic decomposition with respect
to E, V = V1 ⊕ · · · ⊕ Vm, where m ≥ p`/3, and the summands form a system of imprimitivity for
P .
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(ii) Q C P such that P̄ = Q̄Z(P̄ ) and Q̄ ∼= Q8. (This option will only turn up when p = 2 and ` = 1.)

Proof: Let K be the kernel of ¯ : P → GL(V ). In this proof, for any x ∈ P and X ≤ P , we write
x := Kx and X := XK/K.

We will describe our algorithm in the following two steps. In Step 1, we exploit the symplectic structure
of P/Z(P) and factor P into a product of Z(P) and 2` cyclic groups. In Step 2, using this factorization,
we construct E C P and a system of imprimitivity induced by E for P for (i) (except for one case in
which we end up with (ii)).

Step 1 Factoring P. Consider the natural homomorphism * : P→ P/Z(P). Since P/Z(P) is elementary
abelian, |P′| = p, so that we may regard P′ as a finite field of order p and P∗ as a vector space over P′.
A function f : P∗ × P∗ → P′ defined by f(x∗,y∗) := [x,y] for x,y ∈ P is then a symplectic form,
making (P∗, f) a symplectic space.

Our goal is to decompose P with respect to a hyperbolic basis of (P∗, f); that is, we seek a1, b1, . . . ,
a`, b` ∈ P such that P = Z(P)〈a`〉〈b`〉 · · · 〈a1〉〈b1〉, where |ai| ≥ |bi| for i = 1, . . . , `, [ai,aj ] =
[ai,bj ] = [bi,bj ] = 1 for all pairs i 6= j, and 1 6= [a1,b1] = · · · = [a`,b`] = z0 where P′ = 〈z0〉. For
this, we first fix 1 6= z0 ∈ P ′ and find a1, b1 ∈ P such that [a1,b1] = z0 with |a1| ≥ |b1|. We next find
P1 C P such that P1 = CP(〈a1,b1〉). Then P = P1〈a1〉〈b1〉. By repeating this procedure on P1 and
so on, the desired factorization readily follows.

Step 2 Seeking a suitable E. There are three cases to consider.

Case (a) p is odd. For i = 1, . . . , `, we first find an integer εi ≥ 0 such that apεii bpi = 1 and let
ei := aεii bi. We then form E := 〈e1, . . . , e`, z0〉, where Ē is indeed elementary abelian of rank `+ 1. For
each `-tuple λ = (λ1, . . . , λ`) ∈ Z`p, set

Vλ := {v ∈ V | ve1 = vz
λ1
0 , . . . , ve` = vz

λ`
0 }

and V := {Vλ | λ ∈ Z`p}. Then E acts as a cyclic group on each Vλ ∈ V and, since CV (P ′) = 0, each
isotypic submodule for E is in V . Furthermore, since, for 1 ≤ i ≤ `,

V ai(λ1,...,λi,...,λ`)
= V(λ1,...,λi+1,...,λ`),

P acts transitively on V , which is then the complete isotypic decomposition of V with respect to E. In
this case, m = p`.

Note that the system V is computable via Problem 15 or directly from the definition of Vλ.

Case (b) p = 2 and ` ≥ 2. For i = 1, . . . , `, we find an integer εi ≥ 0 such that a2εi
i b2

i = 1 and let
di := aεii bi. Next, let e1 := d1d2, e2 := d3d4, . . . , and eb`/2c := d`−2d`−1 if ` is odd, or eb`/2c := d`−1d`
if ` is even. Now, we form E := 〈e1, . . . , eb`/2c, z0〉. The rest is the same as Case (a)’s argument. In this
case, m = 2bl/2c ≥ 2l/3.

Case (c) p = 2 and ` = 1. Write a := a1 and b := b1. As before, we find an integer ε ≥ 0 such that
a2εb2 = 1 and let d := aεb (here, |d| = 2 or 4).

Unless |d| = |a| = 4, we now perform one of the following: (1) if |d| = 2, let e1 := d; (2) if |d| = 4
and |a| = 2, let e1 := a; (3) if |d| = 4 and |a| ≥ 8, we find an integer r ≥ 3 such that |a| = 2r and let
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e1 := a2r−2

d. Then, in any case, we form E := 〈e1, z0〉. The rest is the same as Case (a)’s argument. In
this case, m = 2`.

Finally, if |d| = |a| = 4, we form Q := 〈a, d〉 for (ii). 2

Before proving the main result, we present, with the help of Lemma 5.9, an intermediate lemma.

Lemma 5.10 Given G ≤ Sym(Ω) such that G ∈ Γd, an irreducible representation ¯ : G→ GL(V ) and
N,A E G such that Ā is cyclic and centralized by N̄ > 1, and N/A is an abelian chief factor of G, one
can find one of the following, in time polynomial in |Ω|, n, q and e (where V ∼= Fnqe).

(i) H ≤ G and a direct sum V = V1 ⊕ · · · ⊕ Vm, where m ≥ 2, such that |G : H| = O(mc) for a
constant c > 0, and the summands form a system of imprimitivity for H .

(ii) Q C G such that N = QA and Q̄ ∼= Q8.

(iii) B E G such that B̄ is abelian and A < B.

Proof: We will describe our algorithm in the following two steps. In Step 1, unless N̄ is abelian, to apply
Lemma 5.9, we will first find P E N such that P̄ is a p-group of class 2. In Step 2, we will then appeal
to the lemma with respect to this P .

Step 1 Finding a p-group of class 2. If N̄ is abelian, then we simply return B := N for (iii). Otherwise,
N̄ is nilpotent of class 2, and we find P E N such that P̄ is the unique Sylow p-subgroup of N̄ for the
prime p that divides |N/A|; here, as Ḡ is irreducible, p 6= q and CV (P ′) = 0. We also find Z C G such
that Z̄ = Z(P̄ ). Since N/A is a chief factor of G, Ā = Z(N̄); therefore, N = PA and thus P/Z ∼= N/A.
The rank of P/Z must then be even, say, 2` > 0 (see, e.g., [22, 13.7 Satz]).

Step 2 Applying Lemma 5.9. We now appeal to Lemma 5.9 with respect to this P to either

(a) find E C P such that P ′ < E, and Ē is elementary abelian, with the isotypic decomposition
with respect to E, V = V1 ⊕ · · · ⊕ Vm, where m ≥ p`/3, and the summands form a system of
imprimitivity for P , or

(b) return Q C P such that P = QZ (which implies N = QA) and Q̄ ∼= Q8 for (ii).

In case (a), we proceed to find the kernel H of the natural action of G on P/Z. Since H centralizes
P/Z, it follows that EZ C H so that H acts on V := {V1, . . . , Vm} as well. We then return the pair
(H,

⊕m
i=1 Vi) for (i).

It now remains to prove that |G : H| is polynomially bounded in m. Since G acts irreducibly on N/A,
it also acts irreducibly on P/Z, whose rank is 2`. By the result of Babai, Cameron and Pálfy on the
orders of completely reducible linear groups in Γd [6, Corollary 3.3], there is a constant c2 > 0 such that
|G : H| ≤ pc2(2`). By Lemma 5.9, m ≥ p`/3; thus, if c1 := 6c2, then |G : H| ≤ mc1 . 2

We are now ready to complete the proof of the main result of this subsection. In the following propo-
sition, we refine Lemma 5.10 by amending (i) and removing (ii) with an additional assumption that
|G : A| > 24n. Indeed, the proof of this proposition essentially consists of special routines to handle
the quaternion case of Lemma 5.10(ii).
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Proposition 5.11 Given G ≤ Sym(Ω) such that G ∈ Γd, an irreducible representation ¯ : G→ GL(V )
and N,A E G such that Ā is cyclic and centralized by N̄ > 1, N/A is an abelian chief factor of G, and
|G : A| > 24n, one can find one of the following, in time polynomial in |Ω|, n, q and e (where V ∼= Fnqe).

(i) H ≤ G and a direct sum V = V1 ⊕ · · · ⊕ Vm, where m ≥ 2, such that |G : H| = O(mc) for a
constant c > 0, and either

(a) {V1, . . . , Vm} is a system of imprimitivity for H , or

(b) V is a homogeneous kH-module, where V1, . . . , Vm are irreducible kH-submodules of V of
dimension n/m.

(ii) B E G such that B̄ is abelian and A < B.

Proof: We will describe our algorithms in the following two steps. In Step 1, we reduce the given input
to instances to which Proposition 5.8 and/or Lemma 5.10 are applicable. In Step 2, we handle a special
case involving quaternion groups to which Proposition 5.8 and Lemma 5.10 do not apply, and we seek a
system of imprimitivity induced by these groups.

Step 1 Applying Proposition 5.8 and Lemma 5.10. We first apply the algorithm for Lemma 5.10 to the
given input. Unless it results in the quaternion type, we immediately return the result of applying this
lemma, namely, the pair (H,

⊕m
i=1 Vi) for (i)(a) or B E G such that B̄ is abelian and A < B for (ii), and

halt.
We next consider the case in which the result of applying Lemma 5.10 is of the quaternion type (say,

Q C G). For this, via Problem 17, we first find C E G such that C̄ = CḠ(N̄). Here, we observe
that |G : C| ≤ 24n (to see this, notice that |Ḡ : CḠ(Q̄)| ≤ |Aut(Q8)| = 24 and, since CḠ(N̄) =
CḠ(Q̄) ∩ CḠ(Ā), |CḠ(Q̄) : CḠ(N̄)| ≤ |Ḡ : CḠ(Ā)| ≤ n by Lemma 5.2). Since |G : A| > 24n, this
then implies that A < C. Now, we find M ≤ C such that M/A is a chief factor of G and consider the
following two cases.

If M/A is nonabelian, then we appeal to Proposition 5.8 with respect to M/A and directly return its
result for (i)(a) or (i)(b).

If M/A is abelian, then we appeal to Lemma 5.10 with respect to M/A. As before, unless it results in
the quaternion type again (say, R C G this time), directly return the result of applying Lemma 5.10 for
(i)(a) or (ii), and halt.

Step 2 Finding a system of imprimitivity induced by quaternion groups. We are now left with the case in
which we have at hand both Q,R C G such that N = QA = RA and Q̄, R̄ ∼= Q8. Our goal here is to
construct a system of imprimitivity induced by elements of Q, R and A.

First, we find e1 ∈ Q and e2 ∈ R such that ē1 ∈ Q̄ \ R̄ and ē2 ∈ R̄ \ Q̄. Then, with a ∈ A such that
|ā| = 2, we form E := 〈e1e2, a〉. We also find the kernel H of the natural action of G on NM/A. As in
the proof of Lemma 5.9, we find the set V := {V1, V2} of isotypic subspaces for E, which form a system
of imprimitiviy for H . It suffices to return the pair (H,V1 ⊕ V2) for (i)(a), where |G : H| is bounded by
a constant. 2
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5.6 The main algorithm for Theorem 5.1
In this subsection, we will finally present our main algorithm to prove Theorem 5.1. We will prove the
theorem by way of repeated applications of

Proposition 5.12 Given G ≤ Sym(Ω) such that G ∈ Γd, an irreducible representation ¯ : G→ GL(V )
and A E G such that Ā is abelian, and |G : A| > max(|Ω|, d!/2, 24n), one can find one of the following,
in time polynomial in |Ω|, n, q and e (where V ∼= Fnqe).

(i) H ≤ G and a direct sum V = V1 ⊕ · · · ⊕ Vm, where m ≥ 2, such that |G : H| = O(mc) for a
constant c > 0, and either

(a) {V1, . . . , Vm} is a system of imprimitivity for H , or
(b) V is a homogeneous kH-module, where V1, . . . , Vm are irreducible kH-submodules of V of

dimension n/m.

(ii) B E G such that B̄ is abelian and A < B.

Proof: We will describe our algorithm in the following two steps. In Step 1, we seek a system of imprim-
itivity induced by A; if V has no such system, then, in Step 2, we appeal to Propositions 5.8, 5.11.

We may assume that Ḡ is nonabelian and that G/A is nonsimple.

Step 1 Reduction to Problem 15. We solve Problem 15 to find, if it exists, a system of imprimitivity
V = {V1, . . . , Vm} for G induced by A. Unless V is a homogeneous kA-module, we return the result of
solving Problem 15, namely,

⊕m
i=1 Vi, for (i)(a) and halt.

Step 2 V is a homogeneous kA-module. We note that, in this step, Ā must be cyclic. To begin, via
Problem 17, we find C E G such that C̄ = CḠ(Ā). Notice here that |G : C| ≤ n by Lemma 5.2. Since
|G : A| > n, it then follows that A < C. We next find N ≤ C such that N/A is a chief factor of G and
consider two cases.

If N/A is nonabelian, then we apply the algorithm for Proposition 5.8 and directly return its result for
(i)(a) or (i)(b).

If N/A is abelian, then we apply the algorithm for Proposition 5.11 and directly return its result; that
is, the pair (H,

⊕m
i=1 Vi) for (i)(a) or (i)(b), or B C G such that B̄ is abelian and A < B for (ii). 2

Proof of Theorem 5.1: We now describe, with the help of Proposition 5.12, the top-level algorithm for
Theorem 5.1. Recall that, for given G ≤ Sym(Ω) such that G ∈ Γd and an irreducible representation
¯ : G→ GL(V ), our goal is to find one of the following.

(i) H ≤ G and a direct sum V = V1 ⊕ · · · ⊕ Vm, where m ≥ 2, such that each dimk Vi = n/m,
|G : H| = O(mc) for a constant c > 0, and H acts on V = {V1, . . . , Vm} as a permutation group
of degree m.

(ii) A E G such that Ā is abelian and |G : A| = O(|Ω|+ n).

Note that cases (i)(a) and (i)(b) of Proposition 5.12 both fall into case (i) above.

Algorithm We first initialize A := 1. While |G : A| > max(|Ω|, d!/2, 24n), we repeat the following: (1)
Apply the algorithm for Proposition 5.12; (2) if its result is B C G such that B̄ is abelian and A < B,
then we now let A := B; else, we return the result and halt. 2
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