Upper k-tuple domination in graphs

Gerard Jennhwa Chang^{123\dagger}Paul Dorbec^{4\ddagger}Hye Kyung Kim^{5\S}André Raspaud^{4\ddagger}Haichao Wang^6¶Weiliang Zhao^7 ||

¹Department of Mathematics, National Taiwan University, Taipei, Taiwan

²*Taida Institute for Mathematical Sciences, National Taiwan University, Taipei, Taiwan*

³National Center for Theoretical Sciences, Taipei Office, Taiwan

⁴LaBRI UMR CNRS 5800, Univ. Bordeaux, Talence, France

⁵Department of Mathematics Education, Catholic University of Daegu, Kyongsan, Republic of Korea

⁶Department of Mathematics, Shanghai University of Electric Power, Shanghai, China

⁷Zhejiang Industry Polytechnic College, Shaoxing, China

received 22nd February 2012, accepted 26th November 2012.

For a positive integer k, a k-tuple dominating set of a graph G is a subset S of V(G) such that $|N[v] \cap S| \ge k$ for every vertex v, where $N[v] = \{v\} \cup \{u \in V(G) : uv \in E(G)\}$. The upper k-tuple domination number of G, denoted by $\Gamma_{\times k}(G)$, is the maximum cardinality of a minimal k-tuple dominating set of G. In this paper we present an upper bound on $\Gamma_{\times k}(G)$ for r-regular graphs G with $r \ge k$, and characterize extremal graphs achieving the upper bound. We also establish an upper bound on $\Gamma_{\times 2}(G)$ for claw-free r-regular graphs. For the algorithmic aspect, we show that the upper k-tuple domination problem is NP-complete for bipartite graphs and for chordal graphs.

Keywords: Upper k-tuple domination, r-regular graph, bipartite graph, split graph, chordal graph, NP-completeness.

1 Introduction

All graphs considered in this paper are finite, simple and undirected. In a graph G with vertex set V(G)and edge set E(G), the open neighborhood of a vertex v is $N(v) = \{u \in V(G) : uv \in E(G)\}$ and the closed neighborhood is $N[v] = \{v\} \cup N(v)$. The degree of v, denoted by d(v), is the cardinality of N(v). Denote by $\delta(G)$ the minimum degree of a vertex in G. A graph is r-regular if d(v) = r for all $v \in V$. A stable set (respectively, clique) of G is a subset S of V(G) in which every two vertices are not adjacent

[‡]Supported in part by Agence Nationale de la Recherche under grant ANR-09-blan-0373-01.

Email: zwl@shu.edu.cn.

1365-8050 © 2012 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

[†]Email: gjchang@math.ntu.edu.tw. Supported in part by the National Science Council under grant NSC99-2923-M-002-007-MY3.

[§]E-mail: hkkim@cu.ac.kr. Supported in part by the Basic Science Research Program, the National Research Foundation of Korea, the Ministry of Education, Science and Technology (2011-0025989).

[¶]Email: whchao2000@163.com. Supported in part by the Foundation for distinguished Young Teachers, Shanghai Education Committee (No. sdl10023) and the Research Foundation of Shanghai University of Electric Power (No. K-2010-32).

(respectively, are adjacent). For two disjoint subsets A and B of V(G), let e[A, B] denote the number of edges between A and B.

For $S \subseteq V(G)$, the subgraph induced by S is the graph G[S] with vertex set S and edge set $\{uv \in E(G): u, v \in S\}$. A bipartite graph is a graph whose vertex set can be partitioned into two sets such that every two distinct vertices may be adjacent only if they are in different sets. A split graph is a graph whose vertex set can be partitioned into a stable set and a clique. A chord of a cycle is an edge joining two vertices on the cycle that are not adjacent on the cycle. A chordal graph is a graph in which every cycle of length at least four has a chord. Split graphs are chordal. A graph G is called claw-free if it does not contain the bipartite complete graph $K_{1,3}$ as an induced subgraph.

For positive integer k, a k-tuple dominating set of G is a subset S of V(G) such that $|N[v] \cap S| \ge k$ for all $v \in V(G)$. For a k-tuple dominating set S, any vertex in $N[v] \cap S$ is said to dominate v. Notice that a graph has a k-tuple dominating set if and only if $\delta(G) \ge k - 1$. The k-tuple domination number $\gamma_{\times k}(G)$ of G is the minimum cardinality of a k-tuple dominating set of G, while the upper k-tuple domination number $\Gamma_{\times k}$ of G is the maximum cardinality of a minimal k-tuple dominating set. A $\Gamma_{\times k}(G)$ -set of G is a minimal k-tuple dominating set of G of cardinality $\Gamma_{\times k}(G)$. An application of k-tuple domination for fault tolerance networks is presented in [9, 12]. For more results on k-tuple domination, we refer to [1, 2, 3, 4, 5, 13, 14, 15, 16, 17, 18, 19].

In this paper we first give an upper bound on $\Gamma_{\times k}$ for *r*-regular graphs, and characterize the extremal graphs achieving the upper bound. We also establish a sharp upper bound on $\Gamma_{\times 2}(G)$ for claw-free *r*-regular graphs. Finally, we show that the upper *k*-tuple domination problem is NP-complete for bipartite graphs and chordal graphs.

2 Upper k-tuple domination for r-regular graphs

This section establishes a sharp upper bound for upper k-tuple domination on r-regular graphs.

First, a k-tuple dominating set S is minimal if and only if every vertex in S is not *avoidable*, that is, it has a closed neighbor that is dominated by exactly k vertices in S. Hence, we have the following property.

Lemma 1 In a graph G with $\delta(G) \ge k - 1$, a k-tuple dominating set S is minimal if and only if each vertex in S has some closed neighbor u with $|N[u] \cap S| = k$.

For integers $r \ge k \ge 1$, let $\mathcal{H}_{r,k}$ be the family of r-regular graphs H whose vertex set is the disjoint union $F_1 \cup F_2 \cup F_3$, where F_1 induces an (r-1)-regular graph of which each vertex has exactly one neighbor in F_2 , F_2 is a stable set of which each vertex has exactly k-1 neighbors in F_1 and exactly r+1-k neighbors in F_3 , and F_3 is a stable set of which each vertex has exactly r neighbors in F_2 , see Figure 1. Since $(r+1-k)|F_2| = e[F_2,F_3] = r|F_3|$, there is some integer $m \ge 1$ such that $|F_2| = rm/g$ and $|F_3| = (r+1-k)m/g$, where $g = \gcd(r+1-k,r) = \gcd(r,k-1)$. And then $|F_1| = (k-1)rm/g$. The total number of vertices in H is n = (kr + r + 1 - k)m/g. According to Lemma 1, $F_1 \cup F_2$ is a minimal k-upper dominating set of H and so $\Gamma_{\times k}(H) \ge \frac{krn}{kr+r+1-k}$.

Theorem 2 If G is a r-regular graph of order n with $r \ge k \ge 2$, then $\Gamma_{\times k}(G) \le \frac{kn}{kr+r+1-k}$ with equality if and only if $G \in \mathcal{H}_{r,k}$.

Proof: Let S be a $\Gamma_{\times k}(G)$ -set of G and $S' = V(G) \setminus S$. For $k \leq i \leq r+1$, we define

 $S_i = \{u \in S : |N[u] \cap S| = i\}$ and $S'_i = \{u \in S' : |N[u] \cap S| = i\}$.

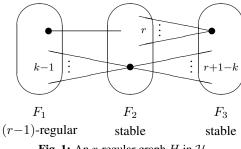


Fig. 1: An *r*-regular graph H in $\mathcal{H}_{r,k}$.

Notice that $S'_{r+1} = \emptyset$ and S'_r is stable as every vertex of S'_r has neighbors only in S. Since every vertex has at least k closed neighbors in S, it is the case that $S = \bigcup_{i=k}^{r+1} S_i$ and $S' = \bigcup_{i=k}^r S'_i$ are disjoint unions. Therefore, $|S| = \sum_{i=k}^{r+1} |S_i|$ and $|S'| = \sum_{i=k}^{r} |S'_i|$. According to Lemma 1, every vertex in S_{r+1} has at least one neighbor in S_k , while every vertex in S_k

has at most k - 1 neighbors in S_{r+1} . Therefore,

$$|S_{r+1}| \le e[S_{r+1}, S_k] \le (k-1)|S_k| \tag{1}$$

or equivalently

$$|S_{r+1}| - (k-1)|S_k| \le 0.$$
⁽²⁾

By Lemma 1 again, every vertex in $X = \bigcup_{i=k+1}^{r+1} S_i$ has at least one neighbor in $S_k \cup S'_k$ and every vertex in S_k (respectively, S'_k) has at most k-1 (respectively, k) neighbors in X. Therefore,

$$\sum_{i=k+1}^{r+1} |S_i| \le e[X, S_k] + e[X, S'_k] \le (k-1)|S_k| + k|S'_k|$$
(3)

or equivalently

$$\sum_{k=k+1}^{r+1} |S_i| - (k-1)|S_k| \le k|S'_k|.$$
(4)

We then use a double counting of e[S, S'] to get

$$\sum_{i=k}^{r} (r+1-i)|S_i| = e[S,S'] = \sum_{i=k}^{r} i|S'_i|.$$
(5)

Let $p = \min(\frac{r+1-k}{k}, 1)$ and $q = \max(\frac{r+1-k}{k}, 1) - 1$. Then, $p > 0, q \ge 0$ and $q+1 \ge \frac{r+1-k}{k} = p+q$. Consequently, (r+1-k) - (p+q)(k-1) = p+q and $q+r+1-i \ge q+1 \ge p+q$ for $k+1 \le i \le r$, which gives (6). Adding p times (2), q times (4) and (5) gives the first inequality in (7). And $(q+1)k = \max\{r+1-k,k\} \le r$ with equality only when r = k, which gives the second inequality in (7).

$$(p+q)|S| \le ((r+1-k) - (p+q)(k-1))|S_k| + (p+q)|S_{r+1}| + \sum_{i=k+1}^r (q+r+1-i)|S_i|$$
(6)

G. J. Chang, P. Dorbec, H. K. Kim, A. Raspaud, H. Wang, W. Zhao

$$\leq (q+1)k|S'_k| + \sum_{i=k+1}^r i|S'_i| \leq r|S'| = rn - r|S|.$$
(7)

Hence, $\frac{kr+r+1-k}{k}|S| = (r+p+q)|S| \le rn$ and so $\Gamma_{\times k}(G) \le \frac{krn}{kr+r+1-k}$, which proves the first part of the theorem.

Suppose $\Gamma_{\times k}(G) = \frac{krn}{kr+r+1-k}$. By the proof above, the inequalities in (1), the inequalities in (3) when q > 0, and the inequalities in (6) and (7) are equalities. The equality in (6) gives that $S = S_k \cup S_{r+1}$ when p + q < q + 1 and $S = S_k \cup S_{r+1} \cup S_r$ when $p + q \ge q + 1$, while the second equality in (7) gives that $S' = S'_r$ which is stable. The first equality in (1) gives that every vertex in S_{r+1} has exactly one neighbor in S_k , while the second equality gives that every vertex in S_k has exactly k - 1 neighbors in S_{r+1} and so exactly r + 1 - k neighbors in S'. We claim that $p + q \ge q + 1$ is impossible, for otherwise $p \ge 1$ implying $\frac{r+1-k}{k} \ge 1$ and so r > k. Then by Lemma 1, every vertex in S_r is adjacent to some vertex in $S'_k = \emptyset$ as $S' = S'_r$, a contradiction. Hence, p + q < q + 1 and so $S = S_k \cup S_{r+1}$. Letting $F_1 = S_{r+1}, F_2 = S_k$ and $F_3 = S'$, we have that G is in $\mathcal{H}_{r,k}$. On the other hand, any graph G in $\mathcal{H}_{r,k}$ satisfies $\Gamma_{\times k}(G) \ge \frac{krn}{kr+r+1-k}$ and so $\Gamma_{\times k}(G) = \frac{krn}{kr+r+1-k}$.

The extremal graphs in $\mathcal{H}_{r,k}$ for Theorem 2 contain claws. For claw-free *r*-regular graphs, the upper bound in Theorem 2 for upper 2-tuple domination can be improved.

Theorem 3 If G is a claw-free r-regular graph of order n with $r \ge 3$, then $\Gamma_{\times 2}(G) \le \frac{2n}{3}$.

Proof: Let S, S', S_i and S'_i be defined as in the proof of Theorem 2 with k = 2. For $2 \le i \le r + 1$, we further write

$$S_{2,i} = \{ u \in S_2 \colon |N(u) \cap S_i| = 1 \} \ \, \text{and} \ \ S_{i,2} = \{ u \in S_i \colon |N(u) \cap S_2| \geq 1 \}$$

Then $|S_2| = \sum_{i=2}^{r+1} |S_{2,i}|$. By the definition of $S_{2,i}$ and $S_{i,2}$, for $3 \le i \le r+1$,

$$|S_{i,2}| \le e[S_{i,2}, S_{2,i}] = |S_{2,i}|.$$
(8)

By Lemma 1, $S_{r+1,2} = S_{r+1}$ and so

$$|S_{r+1}| \le |S_{2,r+1}| \le |S_2|. \tag{9}$$

We then consider $e[S'_r, S]$. Since S'_r is stable and G is claw-free, every vertex in S has at most 2 neighbors in S'_r . First, every vertex $u \in S_{2,r+1}$ has no neighbor in S'_r . Otherwise, if such a neighbor v exists, then u has another neighbor w in S' and a neighbor x in S_{r+1} . Since x has only neighbors in S, it is not adjacent to v nor to w. Also, v is not adjacent to w since it has only neighbors in S. Hence a claw occurs at u, a contradiction. Second, for $3 \le i \le r$, every vertex $u \in S_i \setminus S_{i,2}$ has no neighbor in S_2 and hence, by Lemma 1, it has a neighbor in S'_2 . Thus, if u is in S_r (i = r), then this neighbor in S'_2 is the only neighbor of u in S', and so u has no neighbor in S'_r . Else, if $3 \le i \le r - 1$, then u has at most one neighbor in S'_r , or it would be the center of a claw. Finally, by definition, every vertex in S_{r+1} has no neighbor in S'_r . These give the first inequality in (10), while (8) and (9) give the second inequality in (10).

$$r|S'_r| = e[S'_r, S] \le \sum_{i=2}^r 2|S_{2,i}| + \sum_{i=3}^r |S_{i,2}| + \sum_{i=3}^{r-1} |S_i| \le 3|S_2| - 3|S_{r+1}| + \sum_{i=3}^{r-1} |S_i|.$$
(10)

288

Formula (5) with k = 2 gives

$$\sum_{i=2}^{r} (r+1-i)|S_i| = \sum_{i=2}^{r} i|S'_i|.$$
(11)

Formula (3) with k = 2 gives

$$\sum_{i=3}^{r+1} |S_i| \le |S_2| + 2|S_2'|.$$
(12)

Adding $\frac{r-3}{r}$ (9), $\frac{1}{r}$ (10), (11) and $\frac{r-3}{2}$ (12) gives

$$\frac{r-1}{2}(|S_2| + |S_r| + |S_{r+1}|) + \sum_{i=3}^{r-1} \left(\frac{3r-1}{2} - i - \frac{1}{r}\right)|S_i| \le (r-1)(|S_2'| + |S_r'|) + \sum_{i=3}^{r-1} i|S_i'|$$
(13)

The left side is bounded below by $\frac{r-1}{2}|S|$, the right above by (r-1)|S'|. Thus we get $|S| \le 2|S'|$ and finally, $\Gamma_{\times 2}(G) \le \frac{2n}{3}$.

3 Complexity results

The upper domination problem was shown to be NP-complete by Cheston, Fricke, Hedetniemi and Jacobs [6]. However, Cockayne, Favaron, Payan and Thomason [7] proved that $\Gamma(G) = \beta_0(G)$ for any bipartite graph G, and so $\Gamma(G)$ can be computed for bipartite graphs in polynomial time. It was also shown by Jacobson and Peters [11] that $\Gamma(G) = \beta_0(G)$ for any chordal graph G, and so $\Gamma(G)$ can be computed for chordal graphs in polynomial time. Besides, Hare, Hedetniemi, Laskar, Peters and Wimer [10] also established a polynomial algorithm for determining $\Gamma(G)$ on generalized series-parallel graphs.

On the other hand, we shall prove that the k-tuple domination problem, with $k \ge 2$ fixed, is NPcomplete for bipartite graphs and for chordal graphs. The proofs are separated into the cases of k = 2 and of $k \ge 3$. We consider the decision problem version as follows.

Upper k-tuple domination problem (UkTD)

Instance: A graph G = (V, E) and a positive integer $s \le |V|$. **Question:** Does G have a minimal upper k-dominating set of cardinality at least s?

To show that U2TD is NP-complete, we will make use of the well-known NP-complete problem 3-SAT [8].

One-in-three 3SAT (OneIn3SAT)

- **Instance:** A set $U = \{u_1, \dots, u_n\}$ of *n* variables and a collection $C = \{c_1, \dots, c_m\}$ of *m* clauses over U such that each clause $c \in C$ has |c| = 3 and no clause contains a negated variable.
- Question: Is there a truth assignment $\mathscr{A}: U \to \{\text{true, false}\}\$ for U such that each clause in C has exactly one true literal?

Theorem 4 *The upper 2-tuple domination problem is NP-complete even restricted on bipartite graphs or on split graphs, and hence also on chordal graphs.*

Proof. Obviously, U2TD is in NP. We shall show the NP-completeness of U2TD for bipartite graphs by reducing OneIn3SAT to it in polynomial time. Let $U = \{u_1, u_2, \ldots, u_n\}$ and $C = \{c_1, c_2, \ldots, c_m\}$ be an instance I of OneIn3SAT. We transform I to the instance (G_I, s) of U2TD in which s = 3n + m and G_I is the bipartite graph formed as follows.

Corresponding to each variable u_i we associate a cycle $C_i = u_i x_i y_i z_i u_i$. Corresponding to each 3element clause c_j we associate a vertex named w_j . Joining the vertex u_i to the vertex w_j if and only if the literal u_i belongs to the clause c_j . According to the above construction, it is easy to see that G_I is a bipartite graph and the construction is accomplished in polynomial time. The graph G_I associate with $(u_1 \vee u_2 \vee u_3) \wedge (u_2 \vee u_3 \vee u_4)$ is shown in Figure 2.

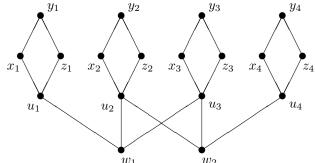


Fig. 2: The graph $G_I^{w_1}$ for $(u_1 \lor u_2 \lor u_3) \land (u_2 \lor u_3 \lor u_4)$.

We next show that I has a satisfying truth assignment if and only if G_I has a minimal upper 2-tuple dominating set of cardinality at least s = 3n + m.

Suppose first *I* has a satisfying truth assignment \mathscr{A} . A minimal upper 2-tuple dominating set *S* of G_I of cardinality *s* is constructed as follows. Let w_j belong to *S* for all $1 \le j \le m$. For each $1 \le i \le n$, if $\mathscr{A}(u_i) = \{\text{true}\}$, then let u_i, x_i and z_i be in *S*; otherwise, let x_i, y_i and z_i be in *S*. Clearly, $|N[v] \cap S| \ge 2$ for each vertex $v \in V(G_I)$ and *S* satisfies the conditions of Lemma 1, and so *S* is a minimal upper 2-tuple dominating set of G_I with cardinality s = 3n + m.

On the other hand, assume that S is a minimal upper 2-tuple dominating set of G_I with cardinality at least s = 3n + m. It follows from Lemma 1 that $|S \cap V(C_i)| \leq 3$ for $1 \leq i \leq n$. Further, $|S \cap \{w_1, w_2, \ldots, w_m\}| \leq m$ and so $|S| \leq 3n + m$. Notice that $|S| \geq 3n + m$ by the assumption. Hence, $|S \cap V(C_i)| = 3$ for $1 \leq i \leq n$ and $\{w_1, w_2, \ldots, w_m\} \subseteq S$. Let $\{u_{j_1}, u_{j_2}, u_{j_3}\}$ be the open neighborhood of w_j in G_I for $1 \leq j \leq m$. Since S is a minimal upper 2-tuple dominating set, $|S \cap \{u_{j_1}, u_{j_2}, u_{j_3}\}| \geq 1$. We claim that $|S \cap \{u_{j_1}, u_{j_2}, u_{j_3}\}| = 1$. Otherwise, $|S \cap \{u_{j_1}, u_{j_2}, u_{j_3}\}| \geq 2$. Then the degree of w_j in $G_I[S]$ is more than 1. However, w_j does not satisfy the conditions of Lemma 1 because $|S \cap V(C_i)| = 3$ for $1 \leq i \leq n$, a contradiction. Let $\mathscr{A}: U \to \{$ true, false $\}$ be defined by $\mathscr{A}(u_i) = \{$ true $\}$ if $u_i \in S$ and $\mathscr{A}(u_i) = \{$ false $\}$ if $u_i \notin S$. By the construction of G_I , we have each clause c_j of I contains only one variable u_i belonging to S. So \mathscr{A} is a satisfying truth assignment for I. Consequently, I has a satisfying truth assignment if and only if G_I has a minimal upper 2-tuple dominating set of cardinality at least s = 3n + m. This completes the proof for bipartite graphs. To deal with split graphs, we add edges to make $\{u_1, y_1, u_2, y_2, \dots, u_n, y_n\}$ a clique. The same arguments hold, and show the NP-completeness of the upper 2-tuple domination problem for split graphs.

Theorem 5 For any fixed integer $k \ge 3$, the k-tuple domination problem is NP-complete for bipartite graphs and for chordal graphs.

Proof: For any bipartite graph G on n vertices, consider the bipartite graph G' obtained by the following process. For each vertex v of G, we add a copy of $K_{k-1,k-1}$, denoted G_v with bipartition denoted (X_v, Y_v) . Then we link by an edge the vertex v to k-2 vertices in X_v . The widget added to each vertex v is drawn in Figure 3.

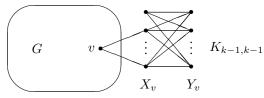


Fig. 3: The widget G_v added to each vertex v in G.

We claim that G has a minimal upper 2-tuple dominating set of size at least s if and only if G' has a minimal upper k-tuple dominating set of size at least s + 2(k - 1)n.

Clearly, if S is a minimal upper 2-dominating set of G with size at least s, then $S \cup (\bigcup_{v \in V(G)} (X_v \cup Y_v))$ is a minimal upper k-tuple dominating set of G' with size at least s + 2(k-1)n.

On the other hand, suppose S' is a minimal upper k-tuple dominating set of G' with size at least s + 2(k-1)n. Since every vertex in Y_v is of degree k-1, S' necessarily includes $\bigcup_{v \in V(G)} (X_v \cup Y_v)$. Let $S = S' \setminus (\bigcup_{v \in V} (X_v \cup Y_v))$. Every vertex v in V(G) is dominated precisely k-2 times by vertices from $S' \setminus S$. Therefore, v is dominated by at least two vertices in S and so S is a 2-tuple dominating set of G. By Lemma 1, v is dominated by some $u \in V(G')$ with $N_{G'}[u] = k$. This vertex u must be in V(G) and $N_G[u] = 2$. By Lemma 1 again, S is a minimal upper 2-tuple dominating set of G with size at least s.

The NP-completeness of the upper k-tuple domination problem for bipartite graphs then follows from the NP-completeness of the upper 2-tuple domination problem for bipartite graphs.

To deal with the chordal case, we start with a chordal graph G and for each $v \in V(G)$ we add to G_v edges joining any pair of vertices in X_v , forming a clique. The same arguments hold, and show the NP-completeness of the upper k-tuple domination problem for chordal graphs as a consequence of the NP-completeness of the upper 2-tuple domination problem for chordal graphs. \Box

References

- T. Araki, On the k-tuple domination of de Bruijn and Kautz digraphs, Inform. Process. Lett. 104 (2007), 86–90.
- [2] M. Blidia, M. Chellali and T. W. Haynes, Independent and double domination in trees, Utilitas Math. 70 (2006), 159–173.
- [3] M. Blidia, M. Chellali and T. W. Haynes, Characterizations of trees with equal paired and double domination numbers, Discrete Math. 306 (2006), 1840–1845.
- [4] G. J. Chang, The upper bound on *k*-tuple domination numbers of graphs, Euro. J. Combin. 29 (2008), 1333–1336.
- [5] M. Chellali and T. W. Haynes, On paired and double domination in graphs, Utilitas Math. 67 (2005), 161–171.
- [6] G. A. Cheston, G. Fricke, S. T. Hedetniemi and D. P. Jacobs, On the computational complexity of upper fractional domination, Discrete Appl. Math. 27 (1990), 195-207.
- [7] E. J. Cockayne, O. Favaron, C. Payan and A. G. Thomason, Contributions to the theory of domination, independence and irredundance in graphs, Discrete Math. 33 (1981), 249-258.
- [8] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman and Company, 1979.
- [9] F. Harary and T. W. Haynes, Double domination in graphs, Ars Combin. 55 (2000), 201–213.
- [10] E. O. Hare, S. T. Hedetniemi, R. C. Laskar, K. Peters and T. Wimer, Linear-time computability of combinatorial problems on generalized-series-parallel graphs, In D. S. Johnson *et al.*, editors, Discrete Algorithms and Complexity, pages 437-457, 1987, Academic Press, New York.
- [11] M. S. Jacobson and K. Peters, Chordal graphs and upper irredundance, upper domination and independence, Discrete Math. 86 (1990), 59-69.
- [12] R. Klasing and C. Laforest, Hardness results and approximation algorithms of k-tuple domination in graphs, Inform. Process. Lett. 89 (2004), 75–83.
- [13] C.-S. Liao and G. J. Chang, Algorithmic aspects of *k*-tuple domination in graphs, Taiwanese J. Math. 6 (2002), 415–420.
- [14] C.-S. Liao and G. J. Chang, k-tuple domination in graphs, Inform. Process. Lett. 87 (2003), 45-50.
- [15] D. Rautenbach and L. Volkmann, New bounds on the k-domination number and the k-tuple domination number, Appl. Math. Lett. 20 (2007), 98–102.
- [16] E. F. Shan, C. Y. Dang and L. Y. Kang, A note on Nordhaus-Gaddum inequalities for domination, Discrete Appl. Math. 136 (2004), 83–85.
- [17] B. Wang and K. N. Xiang, On *k*-tuple domination of random graphs, Appl. Math. Lett. 22 (2009), 1513–1517.
- [18] G. J. Xu, L. Y. Kang, E. F. Shan and H. Yan, Proof of a conjecture on k-tuple domination in graphs, Appl. Math. Lett. 21 (2008), 287–290.
- [19] V. Zverovich, The k-tuple domination number revisited, Appl. Math. Lett. 21 (2008), 1005–1011.

292