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The Černý conjecture for automata
respecting intervals of a directed graph
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The Černý’s conjecture states that for every synchronizing automaton with n states there exists a reset word of length
not exceeding (n− 1)2. We prove this conjecture for a class of automata preserving certain properties of intervals of
a directed graph. Our result unifies and generalizes some earlier results obtained by other authors.
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In this paper we consider finite (deterministic complete) automata A = 〈Q,Σ, δ〉 with the state set Q,
the input alphabet Σ, and the transition function δ : Q × Σ → Q. The transition function defines the
action of the letters in Σ on Q, which, in this paper, is denoted simply by concatenation: δ(q, a) = qa.
The action extends in a natural way to the words in Σ∗, and we use the same notation qw = δ(q, w).
Accordingly, we write Qw = {qw : q ∈ Q}.

The automaton A is called synchronizing if there exists a word w ∈ Σ∗ such that |Qw| = 1 (in other
words, w resets A sending all the states into one particular state). Such a word w is called synchronizing
(or a reset word) for A. The problem of synchronization is very natural and its various aspects are consid-
ered in the literature (see e.g. [6, 8, 13] for general information and further references). The most famous
is the following conjecture due to Černý.

Conjecture (Jan Černý 1964, [4]) If a deterministic finite n-state automaton A = 〈Q,Σ, δ〉 is synchro-
nizing, then it has a reset word of length ≤ (n− 1)2.

This conjecture is considered as one of the most longstanding open problems in the theory of finite
automata. The consequent research includes verifying the conjecture for various classes of automata,
establishing bounds for the length of reset words, investigating natural algorithmic and complexity ques-
tions, and many other related problems. For more detailed discussion we refer the reader to the most
recent survey [13] by Volkov. Here, we mention only the most important results proving the conjecture in
special cases.

†Email: Mariusz.Grech@math.uni.wroc.pl. Supported in part by Polish MNiSZW grant N N201 543038.
‡Email: Andrzej.Kisielewicz@math.uni.wroc.pl.Supported in part by Polish MNiSZW grant N N201 543038

1365–8050 c© 2013 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/dmtcs-ojs/index.php/volumes/
http://www.dmtcs.org/dmtcs-ojs/index.php/volumes/dm15:3ind.html


62 Mariusz Grech and Andrezj Kisielewicz

In 1978, Pin [9] proved the conjecture for circular automata with a prime number of states (an au-
tomaton is circular if it has a letter acting as a cyclic permutation of all the states). In 1990, Eppstein
[6] proved the conjecture for orientable automata (preserving a given cyclic ordering of all the states).
In 1998, Dubuc [5], completing his earlier research, has verified the conjecture for all circular automata.
In 2001, Kari [7] verifies the conjecture for eulerian automata (whose transition digraph is eulerian). In
2003, Ananichiev and Volkov [2] prove the conjecture for monotonic automata (preserving a linear order
of the states), and in 2005 they generalize their result to a broader class given by a certain multi-level
construction [3]. In 2007, Trahtman [12] demonstrates that the conjecture is true for aperiodic automata
(ones with the transition monoid having no nontrivial subgroups). In 2008, Almeida, Margolis, Steinberg,
and Volkov [1] verify the conjecture for another class of automata related to the formal language theory:
those with monoids belonging to DS class. In 2009, Volkov [14] proves the conjecture for the so-called
weakly monotonic automata, a certain strong generalization of generalized monotonic automata including
the automata preserving a connected partial order. Most recently, in 2011, Steinberg [10] verifies the
conjecture for automata having a letter inducing a connected digraph with the cycle of prime length (thus
generalizing the mentioned Pin’s result). In addition, various classes of small automata have been verified
using computer programs. In particular, Trahtman [11], in 2007, has announced checking all the automata
on 2 letters with n ≤ 10 states.

Some of the above results involve assumptions on preserving by an automaton a certain structure. In
this paper, we show that this kind of results may be unified and generalized. We introduce the notions of an
interval for a directed graph, respecting the intervals of a digraph by an automaton, and the congruence
induced by such a relation. Then, we prove a reduction theorem of the form that if an automaton A
respects intervals of a directed graph and the induced quotient automaton satisfies the Černý conjecture,
then so does A. Our result implies that the Černý conjecture is true for a large class of automata that
includes, in particular, orientable automata [6], monotonic and generalized monotonic automata [2, 3],
aperiodic automata [12], and weakly monotonic automata [14].

1 Preliminaries
There are two structures connected with an automaton A = 〈Q,Σ, δ〉 giving possibilities of viewing the
automaton in various ways. The transition digraph T = T (A) is defined on Q by (q, s) ∈ T if and only
if qa = s for some a ∈ Σ. The transition monoid M = M(A) is one generated by transformations
on Q corresponding to letters in Σ. Then, the words in Σ∗ correspond to compositions of generating
transformations.

Automaton A = 〈Q,Σ, δ〉 is strongly connected if its transition digraph is strongly connected. In
general, one can consider strongly connected components of T (A). These are partially ordered by the
relation of the existence of a directed edge in T (A) from one component to another. It is clear that if A
is synchronizing, then T (A) has to have a unique minimal strongly connected component C. In such a
case, the restriction A|C of A to C forms a reduced automaton. It is easy to prove (and it is considered as
a folklore result) that if A|C satisfies the Černý conjecture, then so does A. Thus, it is enough to consider
only strongly connected automata.

In terms of monoids, this is just a reduction to transitive monoids, since it is clear that A is strongly
connected if and only ifM(A) is transitive. A further natural reduction would be one to transition monoids
which are primitive in the sense of permutation group theory.

Given A = 〈Q,Σ, δ〉, an equivalence relation ∼ on Q is called a congruence (on A) if it is preserved
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by A. More precisely, q ∼ s implies qa ∼ sa for all a ∈ Σ. If ∼ is a congruence, then the quotient
automaton A/∼ = 〈Q′,Σ, δ′〉 is defined in the natural way: Q′ = Q/∼ is the set of the equivalence
classes of ∼, and δ([q]∼, a) = [qa]∼, where [q]∼ denotes the equivalence class containing q. One may
conjecture that for all congruences the following equivalence holds: A satisfies the Černý conjecture if
and only if the quotient automaton does. If the Černý conjecture is true then, of course, this equivalence is
also true. Yet, we see no natural way to prove it, and according to our experience, this problem in general
may be as hard as the Černý conjecture itself. Yet, we have attempted to find special kinds of congruences,
for which the problem would be more naturally linked to the Černý conjecture and a reduction step would
be possible. Here we have one easy and natural result.

Proposition 1.1 Let ∼ be a congruence on a strongly connected automaton A = 〈Q,Σ, δ〉 such that one
of its equivalence class is a singleton. Then, A satisfies the Černý conjecture, whenever A/∼ does.

Proof: Let |Q| = n and k be the number of the equivalence classes in ∼. We may assume that k < n,
since otherwise the result is trivial. By assumption, there exists a word w ∈ Σ∗ of length ≤ (k − 1)2

resetting A/∼. This word sends all the states of A into one ∼-class B.
Let s be the unique element of a singleton ∼-class. Since A is strongly connected, there exists a word

u ∈ Σ∗ that sends a fixed state q ∈ B into s. Moreover, we may assume that the length |u| ≤ k − 1,
since if u = a1 . . . at is the shortest word with qu = s, then the path corresponding to applying successive
letters ofw visits every∼-class at most once. Indeed, suppose to the contrary that qa1 . . . ai and qa1 . . . aj
are in the same ∼-class, and i < j < t. Then, since ∼ is a congruence, qa1 . . . aiaj+1j . . . at = s, a
contradiction.

It follows that the word u sends all the states of the ∼-class B into s, and therefore uw resets A. The
length |uw| ≤ (k − 1)2 + k − 1 < (n− 1)2, as required. 2

In the sequel, the argument used in this proof will be treated as routine.

2 Intervals in digraphs
Apart from the transition digraph T = T (A) determined by the automaton A〈Q,Σ, δ〉, we shall consider
also another digraph D on the the set of the states Q with the property that certain structures on D, called
intervals, are preserved by the transition function δ of A.

LetD = 〈Q,E〉 be an arbitrary directed graph. We say that a vertex z ∈ D lies on a directed path from
x to y (in D) if there is a directed path x = x0, x1, . . . , xn = y such that z = xi for some i = 0, 1, . . . , n
and x, y /∈ {x1, . . . , xn−1}. In short, we say that the path xy contains z. Note that the path in question
may have repeated occurrences of vertices except for end vertices x, y each of which occurs only once.
In the sequel, we assume that all considered paths have this property. Only if necessary, we stress this
calling such paths singular. (Note also that we allow trivial paths with x = y).

The set of all vertices z lying on a directed path between x and y will be denoted by [x, y]. Such a set
is called a (directed) interval of D. Note, that by definition, if [x, y] 6= ∅, then x, y ∈ [x, y]. Note also that
due to the singularity assumption on paths, even for strongly connected digraphs the intervals [x, y] and
[y, x] usually differ from each other. For example, if D is a simple directed cycle, then the intervals yield
a division of the cycle into two arcs. If D is acyclic, then one of the intervals [x, y] and [y, x] is empty,
and the other one is the usual interval in the induced partial ordering (the transitive closure of D). The
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interval [x, x], by definition, is the strongly connected component of the vertex x in D. In the sequel, we
shall use the abbreviation sc-component.

We say that an automaton A = 〈Q,Σ, δ〉 respects the intervals of a digraph D defined on Q, if for
every letter a ∈ Σ, and all x, y ∈ Q, the following conditions holds:

(i) if [x, y] 6= ∅, then [xa, ya] 6= ∅,

(ii) if both [x, y] 6= ∅ and [y, x] 6= ∅, then [x, y]a ⊆ [xa, ya],

(iii) if xa = ya, then one of the sets [x, y]a or [y, x]a has at most one element.

The first condition means that A preserves existence of a directed path between vertices. The second
condition means that in case when there are directed paths between x and y in both directions, z ∈ [x, y]
implies za ∈ [xa, ya], which means that the relation of lying on a directed path between vertices is
preserved. The third condition deals with the special case when the endpoints of the interval are mapped
into the same vertex. What is happening with the two intervals [x, y] and [y, x] in such a situation? We
assume a sort of continuity: when x approaches y then one of the intervals is getting smaller while the
other is getting larger.

We will consider both strongly connected digraphs (where for each pair of vertices x, y there exists a di-
rected path from x to y) and weakly connected digraphs (where each pair of vertices is connected by some
undirected path) (that is the underlying undirected graph is connected). Both the properties induce equiv-
alence relations giving partitions into strongly connected components or weakly connected components,
respectively. Note, that the condition (i) above means, in particular, thatA preserves both the partition into
strongly connected components of D and the partition into weakly connected components of D. Thus the
corresponding equivalence relations are congruences, which will be referred to as congruences induced
by the strongly (or weakly) connected components of D, respectively.

Lemma 2.1 If A = 〈Q,Σ, δ〉 respects the intervals of a digraph D = 〈Q,E〉, then the conditions (i-iii)
above hold for every word w, as well (that is, with a replaced by w, and Σ replaced with Σ∗).

Proof: For the condition (i) the claim is obvious. For (ii), we note that the condition implies that both
[xa, ya] and [ya, xa] are nonempty. The claim for w = a1 . . . an follows by successive application of (ii)
for letters a1, . . . , an. For (iii), if one of [x, y] or [y, x] is empty, then one of [x, y]w or [y, x]w is empty,
as well, and thus satisfies (iii). Otherwise, successive application of (ii), yields that [x, y]u ⊆ [xu, yu] for
every prefix u of w. Taking u to be the largest prefix of w such that xu 6= yu, and applying (iii) for xu
and yu, yields the required result for w. 2

Example. If D is a simple directed cycle, then respecting intervals means preserving the orientation of
the cycle. Indeed, the interval [x, y] consists of consecutive vertices on the cycle. Let us make use of
the comments after the definition (i)-(iii). If vertices x, y, z occur on the cycle in this very order, then
by (i), the relation of lying on a directed path between vertices is preserved. Conversely, if this relation
is preserved, then (ii) holds, while (i) and (ii) are trivial for the cycle. If D is an acyclic digraph, then
respecting intervals means preserving the partial order induced by D. Indeed, it is enough to observe
that the interval [x, y] is the set of all z such that x ≤ z ≤ y, that is, the usual interval of the induced
partial order. If we denote this order by ≤, then the condition [x, y] 6= ∅ is equivalent to x ≤ y. Thus, the
condition x ≤ y implies xa ≤ ya is equivalent to (i). The condition (ii) is trivial for acyclic digraphs, and
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(iii) holds since if x 6= y, then one of [x, y] or [y, x] is empty. In the remainder of the paper, we show that
these are in fact the extreme cases of a general situation.

Under assumptions as above, let ∼ denote the equivalence relation on Q induced by sc-components of
D, and let Q′ = Q/∼ be the quotient set. Then the relation induced on Q′ by D is an acyclic digraph,
which we denote by D′ = D/∼. The quotient automaton A/∼ respects the intervals of D′, that is, in
view of the remark above, it preserves the partial order induced by D′. The property of respecting the
intervals of a digraph may be now characterized as follows.

Lemma 2.2 An automaton A = 〈Q,Σ, δ〉 respects the intervals of a digraph D on Q if and only if A/∼
preserves the partial order induced by D/∼ and for all x, y belonging to the same sc-component of D the
conditions (ii) and (iii) above holds.

We say that the strongly connected components of a digraph D are dense, or that D is scc-dense, if for
all x, y, z belonging to the same sc-component C of D either z ∈ [x, y] or z ∈ [y, x]. Note that a simple
directed cycle is dense in that sense. The property is not as strong as it may seem at the first sight. Let
us call a vertex z ∈ C a check-point for the pair x, y ∈ C (x, y 6= z) if each directed path from x to y
contains z and each directed path from y to x contains z, as well.

Lemma 2.3 A digraph D is scc-dense if and only if contains no check-point in any sc-component of D.

Proof: Suppose first D has a check-point z in an sc-component C. So, there are x, y ∈ C such that any
directed singular path between x and y goes through z. It follows that y /∈ [z, x] and y /∈ [x, z].

Conversely, suppose that z /∈ [x, y]. Then, one of the following holds: either (a) every path xz contains
y, or (b) every path zy contains x.

Similarly, supposing that z /∈ [y, x], we have that either (c) every path yz contains x, or (d) every path
zx contains y.

Now, (a) and (c) contradicts the fact that there is a path form x to z, while (a) and (d) means that y is a
check-point. The situation for the remaining two possibilities is similar. Consequently, there is always a
check-point, as required. 2

Now we prove a crucial property of the automata respecting the intervals of an scc-dense digraph
connected with synchronization. We will be interested in the situation when the image Xw of the subset
X of Q under the word w collapses, by which we mean that |Xw| = 1.

Lemma 2.4 LetA = 〈Q,Σ, δ〉 respects the intervals of an scc-dense digraphD onQ. IfX is a nonempty
subset of Q, |X| > 1, contained in an sc-component of D such that |Xw| = 1, then there exist different
x, y ∈ X such that X ⊆ [x, y] and the whole interval [x, y] collapses under w.

Proof: The proof is by induction on the cardinality of X . For |X| = 2 the claim follows trivially from the
condition (iii) of Lemma 2.1. Otherwise, let us fix z ∈ X . By induction assumption, there are different
x, y ∈ X \ {z} such that X \ {z} ⊆ [x, y] and [x, y] collapses under w. If z ∈ [x, y], then we are done.
So, we may assume z /∈ [x, y].

Since D is scc-dense, it follows that z ∈ [y, x]. This means that there is a path yx containing z, and
consequently, there is a path yz containing no x. This path may be added to every path xy yielding
a path from x to z. It follows that [x, y] ⊆ [x, z]. Similarly (since there is a path zx containing no
y),[x, y] ⊆ [z, y].



66 Mariusz Grech and Andrezj Kisielewicz

If any of [x, z] or [z, y] collapses under w, we are done. Hence, we may assume, by condition (iii) of
Lemma 2.1, that both [z, x] and [y, z] collapse under w, that is,

|[z, x]w| = |[y, z]w| = 1.

We may assume also that there are t ∈ [x, z] and s ∈ [z, y] such that tw 6= zw = xw and sw 6= zw =
yw.

We show that among paths xz containing t there exists one not containing y. Suppose to the contrary
that each path xz containing t contains y, as well. If the segment xt of such a path (that is the part from x
to t) does not contain y, then neither does the segment tz (otherwise, we would have a path xy containing
t, and since by induction hypothesis |[x, y]w| = 1, it follows that tw = xw, a contradiction). Similarly,
if the segment tz of such a path does not contain y, then neither does the segment xt (otherwise, we
would have a path yz containing t, and since, by assumption above, [y, z] collapses, we have tw = zw, a
contradiction). Choose a path xz that contains t. Let yt and ty be the segments of this path that has only
one occurrence of y, each. Let xt be a path that does not contain y. Combine it with the segment ty, we
have a path from x to y that contains t, and as before, this leads to a contradiction. Similarly, Let tz be a
path that does not contain y. Combine it with the segment yt, we have a path from y to z that contains t,
and again, a contradiction. It follows that every path xt contains y, and every path tz contains y. Since y
is not a check-point, there is a path zt not containing y, and therefore not containing x either. Similarly,
there is a path tx not containing y, and therefore not containing z either. This yields a (singular) path zx
containing t, which (since [z, x] collapses) yields tw = zw, a contradiction.

In a completely analogous way we show that among paths zy containing s there exists one not con-
taining x. Combining it with a path xz containing t and not containing y, we obtain a (singular) path xy
containing z, which contradicts the assumption that z /∈ [x, y], and thus completes the proof. 2

3 Main result
We start from a preliminary result. Let A = 〈Q,Σ, δ〉 be a synchronizing automaton and let C be a subset
of Q. A family F = {X1, . . . , Xm} of subsets of Q is called a Černý family for C, if for every image
Y = Cu by a word u ∈ Σ∗ and every w ∈ Σ∗ the following implication holds: if |Y | > 1 and |Y w| = 1,
then there exists i ≤ m such that Y ⊆ Xi and |Xiw| = 1. In other words, if C collapses under uw, then
the image Cu, if nontrivial, may be extended to a member of F that still collapses under w.

Lemma 3.1 If F = {X1, . . . , Xm} is a Černý family for a set C ⊂ Q, |C| > 1, then there exists w ∈ Σ∗

of length not exceeding m = |F| such that |Cw| = 1.

Proof: Since A is synchronizing, there is a word v = a1 · · · at such that C collapses under v. We assume
that v is the shortest possible word with this property. Denote Yi = Qa1 · · · ai for i ∈ {1, . . . , t− 1}, and
Y0 = C. Then, for all i ≤ t− 1, |Yi| > 1. For each i ∈ {0, . . . , t− 1} choose Zi ∈ F such that Yi ⊆ Zi

and |Ziaj+1 · · · at| = 1. We show that if i < j, then Zi 6= Zj . Indeed, if i < j and Zi = Zj , then we
have Ca1 · · · ai = Yi ⊆ Zj , and consequently, |Ca1 · · · aiaj+1 · · · at| = 1, contradicting the fact that v is
the shortest word with this property. Thus, t ≤ m, as required. 2

Our main result is the following
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Theorem 3.2 Let A = 〈Q,Σ, δ〉 be a strongly connected automaton respecting the intervals of an scc-
dense digraph D on Q, and let ∼ denote the congruence on A induced by weakly connected components
of D. Then, if A/∼ satisfies the Černý conjecture, then so does A.

Proof: Denote by n the number of strongly connected components, and by k the number of weakly
connected components (wc-components). If there is a wc-component of D consisting of a single vertex,
then by Proposition 1.1 the theorem is true. Hence we may assume that each wc-component has at least
two vertices. Assume also thatA/∼ is synchronizing and satisfies the Černý conjecture. Recall that, since
A respects the intervals, wc-components are mapped by transformations of A into wc-components, and
sc-components are mapped into sc-components. We first show that

Claim 1. There exists a word v ∈ Σ∗ of length not exceeding (n − 1)2 such that Qv is contained in a
single sc-component of D.

By assumption on A/∼, there is a word w of the length at most (k − 1)2 that resets A/∼. The word w
maps all the states of A into one wc-component B of D. Since A/∼ is strongly connected there is a word
u of the length at most k − 1 mapping B on any chosen wc-component Bi. In particular, if there exists a
wc-component consisting of a single sc-component, we are done. Indeed, in such a case wu maps Q into
a single sc-component and it has length

(k − 1)2 + (k − 1) = (k − 1)k < (n− 1)2.

(We note that for k = 1 w is simply the empty word and the argument works, as well).
Thus, we may assume that every wc-component ofD has at least two sc-components. The sc-components

are partially ordered by D, so we may speak of maximal and minimal sc-components. Let B1, . . . , Bk

denote the wc-components of D (this set includes B defined above). Then, by Mi we denote the num-
ber of maximal sc-components in Bi, and by mi the number of minimal sc-components of Bi. Since
each Bi has at least two sc-components, no sc-component is both maximal and minimal. Therefore∑k

i=1(Mi +mi) ≤ n. Let us define

p = min{Mi,mi : i ∈ {1, . . . , k}}.

Then, p ≤ n/2k. To fix attention, we may assume without loss of generality that p = M1, and that the
word u of length at most k − 1, mentioned above, maps B into B1.

Let C1, . . . , Cp denote the maximal sc-components of B1. We define inductively a sequence of words
u0, . . . , ut, with t ≤ p, and such that B1ut is contained in a single sc-component of D. Let u0 be the
empty word. Given the word ui, we define Ji to be the set of those j ∈ {1, . . . , p} for which none of the
images Cju1, Cju2, . . . , Cjui is contained in a minimal sc-component of D. Further, let Xi be the set of
those sc-components of D that contain Cjui for some j ∈ Ji. In particular, we have J0 = {1, 2, . . . , p}
and X0 = {C1, . . . , Cp}. The word ui+1 is now defined as follows.

We look first for a word vi+1 that maps at least one sc-component in Xi into some minimal sc-
component of D, Such a word exists, since A is strongly connected. We may assume that the length
of vi+1 is at most n− (m− 1)−|Xi|, where m =

∑k
j=1mi. Indeed, let I1, I2, . . . , Ir be the sequence of

images of an sc-component in Xi obtained by applying successive letters of word vi+1. Obviously, each
such image is contained in an sc-component, so we have a sequence of corresponding sc-components. We
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may assume that in this sequence no sc-component appears twice, no sc-component of Xi occurs, and
except for the last term, no minimal sc-component occurs. This yields the length bound above. We define
ui+1 = uivi+1. Then obviously |Xi+1| < |Xi|, unless Xi is empty. It follows that Xt is empty for some
t ≤ p, and consequently, for each j ∈ {1, 2, . . . , p} there exists i ≤ t such that Cjui is contained in a
minimal sc-component of D.

Claim 2. The image B1ut is contained in a single sc-component.

Let � denotes the partial ordering of sc-components in D. Since B1 is weakly connected, it is enough
to show that for every pair of sc-components Z, Y ∈ B1 such that Z covers Y in �, the images Zut and
Y ut are contained in the same sc-component. To this end, let Cj ∈ X0 be the maximal sc-component of
B1 with Z � Cj . Now, since for some i, Cjui is contained in a minimal sc-component, and A preserves
�, the images Zui and Y ui are contained in the same minimal sc-component. Since ut = w1uiw2, for
some w1, w2, the claim follows.

Thus, the word v = wuut maps Q into a single sc-component. Let us denote this component by C. To
complete the proof of Claim 1 we need to prove now the following.

Claim 3. The length |v| ≤ (n− 1)2.

By construction, we have

|v| ≤ (k − 1)2 + k − 1 +

p−1∑
i=0

(n−m− p+ i+ 1) ≤ k(k − 1) + pn− kp2 − p(p− 1)

2
.

(In the later inequality, we have used the fact that m =
∑k

j=1mi ≥ kp).
If p = 1, then

|v| ≤ k(k − 2) + n ≤ n

2

(n
2
− 2
)

+ n ≤ (n− 1)2.

So, we may assume that p ≥ 2. Since 2kp ≤ n, we have

p(n− kp) ≤ n2

2k
.

It follows that

|v| ≤ k(k − 1) +
n2

2k
.

Consider the function f(k) = k(k − 1) + (n2/2k). We know that 1 ≤ k ≤ n/2, yet we consider it on
the interval [1, n − 1]. Since f ′(k) is continuous and increasing on the interval [1, n − 1], f(k) have the
maximal value, in this interval, either for k = 1 or for k = n− 1. For k = 1, since n ≥ 2kp ≥ 4, we have

|v| ≤ n2

2
< (n− 1)2.

For k = n− 1, we have

|v| ≤ (n− 1)(n− 2) +
n2

2(n− 1)
,
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and again, using n ≥ 4,

|v| < (n− 1)2.

This completes the proofs of Claim 3 and Claim 1.

Now, if all the sc-components in D are trivial (one-element), then the proof of the theorem is finished.
Otherwise, let N denote the number of vertices in D (states in A). Then N > n. If there is at least one
trivial sc-component consisting of a single state q, then there is a word v0 of length ≤ (n − 1) mapping
the sc-component C containing B1ut onto q. Consequently, the word vv0 resets A and it has the length
not exceeding

(n− 1)2 + (n− 1) = n(n− 1) < (N − 1)2,

as required. Hence, we may assume that each sc-component contains at least two vertices. Then N ≥ 2n.
We show that there exists a small enough Černý family of sets for C. Suppose that Y = Cu is an image

of C by a word u. Then, Y is contained in some sc-component of D. Let w be such that |Y w| = 1. By
Lemma 2.4, there exist x, y ∈ Y such that Y ⊆ [x, y] and [x, y] collapses under w. This means that the
family F of sets [x, y] with x 6= y belonging to the same sc-component in D forms a Černý family of sets
for C. We estimate the cardinality m = |F| of this family.

Let ci = |Ci|. Then m =
∑n

i=1 ci(ci − 1). Clearly, for a fixed n and N , this sum has the maximal
value when c1 is as large as possible and the remaining values of ci are as small as possible. Since, by
assumption ci > 1, we have

m =

n∑
i=1

ci(ci − 1) ≤ (N − 2(n− 1))(N − 2n+ 1) + 2(n− 1),

and consequently,

m ≤ N2 − 4Nn+ 4n2 + 3N − 4n.

This may be written as

m ≤ (N − 1)2 − (n− 1)2 − (4Nn− 5n2 − 5N + 6n).

The latter term in parentheses equals

(3N − 5n)(n− 1) +Nn− 2N + n,

and since N ≥ 2n and n > 1, it is positive. Therefore,

m ≤ (N − 1)2 − (n− 1)2.

Combining Lemma 3.1 with Claim 1 completes the proof. 2
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4 Corollaries and applications
First note that if an scc-dense graph D on Q is weakly connected, then A/∼ in Theorem 3.2 has one ele-
ment and trivially satisfies the Černý conjecture (see a remark at the beginning of the proof of Theorem 3.2
concerning the case k = 1). Therefore we have the following

Corollary 4.1 If a strongly connected automaton A = 〈Q,Σ, δ〉 respects the intervals of an scc-dense
weakly connected digraph D on Q, then A satisfies the Černý conjecture.

Obviously, a (simple directed) cycle is scc-dense, and so, as a particular case of the corollary above, we
obtain Eppstein’s result [6] that oriented automata (called in [6] monotonic) satisfy the Černý conjecture.
The following is a natural generalization of the Eppstein result.

Let us call a directed graph D a digraph with unique return paths, if whenever there is a path from x to
y in D, and there is a return path from y to x, then the latter is unique, and in consequence the former is
also unique. Since we allow on paths repeated occurrences of vertices (other than end vertices), it means
that on each of the paths every next step is uniquely determined until we reach the end vertex. This leads
easily to the conclusion that every two cycles in D are disjoint. Thus, a digraph with unique return paths
consists of a collection of disjoint cycles and, possibly, additional edges between them inducing a partial
ordering on the cycles. In a sense, this is a class of digraphs next to the acyclic digraphs (and thus a
natural generalization of simple cycles). Note that preserving intervals of D in this case means that cycles
are mapped into cycles, orientation of vertices on each cycle is preserved and the existence of a directed
path between cycles is preserved. We abbreviate it saying that the induced partial order and orientation of
cycles are preserved. Then we may formulate the following simple generalization of Eppstein result.

Corollary 4.2 Let D be a weakly connected digraph on Q with unique return paths. If a strongly con-
nected automaton A = 〈Q,Σ, δ〉 preserves the partial ordering on the cycles induced by D and orienta-
tion of the cycles, then A satisfies the Černý conjecture.

Now, it is easy to construct examples of automata (using, for instance, Černý automata as components)
that are neither orientable nor weakly monotonic and satisfy the Černý conjecture due to the corollary
above.

We proceed to show that our results also include all weakly monotonic automata. This leads to a
different (and perhaps simpler) way to handle weakly monotonic automata and to a generalization of
these constructions. First let us recall the definition from [14]. Given an automaton A = 〈Q,Σ, δ〉, a
binary relation ρ on Q is stable if (p, q) ∈ ρ implies (pa, qa) ∈ ρ for all p, q ∈ Q and a ∈ Σ. Then, A is
called weakly monotonic of level ` ≥ 1 if there exists a strictly increasing chain of stable binary relations

ρ0 ⊂ ρ1 ⊂ . . . ⊂ ρ`,

such that ρ0 is the equality relation, the transitive closure of ρ` is the universal relation, and for each
i = 0, . . . , `− 1 the following condition is satisfied:

(∗) the transitive closure πi of ρi is contained in ρi+1 and the relation ρi+1/πi induced by ρi+1 on the
set of equivalence classes Q/πi is a partial ordering.

Note that the equivalence classes of the transitive closure of a partial ordering relation τ are just the
weakly connected components of any digraph D inducing τ . Recall that if A = 〈Q,Σ, δ〉 preserves the
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partial order τ (defined on Q) then the weakly connected components of τ form a congruence on A. It
is natural to write simply A/τ to denote the corresponding quotient automaton. Then, we may define
weakly monotonic automata by recursion as follows.

(i) The trivial automata with one state are weakly monotonic of level 0;

(ii) for ` > 0, A = 〈Q,Σ, δ〉 is a weakly monotonic of level `, if there exists a partial order τ on Q,
such that A/τ is a weakly monotonic automaton of level `− 1.

A = 〈Q,Σ, δ〉 is a weakly monotonic automata of level 1, if if there exists a weakly connected partial
order τ on Q preserved by A;

It should be clear that in both the definitions the classes of weakly monotonic automata of level not
exceeding ` coincide. In particular, the weakly monotonic automata of level 1 are just the automata
preserving a connected partial order. The fact that each strongly connected weakly monotonic automaton
of level ` satisfies the Černý conjecture follows now by `-fold application of Theorem 3.2. We note, that
Volkov [14] proved this result for all (not necessarily strongly connected) weakly monotonic automata.
This can be also obtained using the proof of Theorem 3.2 (since the assumption that the automaton in
question is strongly connected is necessary only for the case when D has cycles). It should be noted
however, that in [14], for strongly connected automata a stronger bound for a reset word is established.
It has been also observed in [14] that Trahtman [12] proved that each aperiodic automaton preserves a
nontrivial partial order, and therefore each such automaton is weakly monotonic (the latter can be seen
immediately from our recursive definition).

These observations may be generalized for strongly connected automata as follows. For an automaton
A = 〈Q,Σ, δ〉 respecting the intervals of a digraph D, by A/D we denote the quotient automaton of
the congruence induced by the weakly connected components of D. For an arbitrary class of strongly
connected automata C, we define recursively the class I`(C):

(i) I0(C) = C;

(ii) for each ` > 1, I`(C) is the class of all strongly connected automata A = 〈Q,Σ, δ〉 such that, for
some digraph D on Q, A respects the intervals of D and A/D ∈ I`−1(C).

Our main result Theorem 3.2 yields

Corollary 4.3 If C is a class of strongly connected automata satisfying the Černý conjecture, then every
automaton A ∈ I`(C), for some ` ≥ 0, satisfies the Černý conjecture.

In particular, if C0 consists of one-element automata, then the class I`(C0) contains, in particular, all
strongly connected weakly monotonic automata of level `. Yet, one may start from a broader class of
automata C for which the Černý conjecture has been already verified. Then, one may easily construct
many new examples of strongly connected automata not covered by the results on the Černý conjecture
established so far.
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345-352.
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