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We introduce a variation of chip-firing games on connected graphs. These ‘burn-off’ games incorporate the loss of
energy that may occur in the physical processes that classical chip-firing games have been used to model. For a graph
G = (V,E), a configuration of ‘chips’ on its nodes is a mapping C : V → N. We study the configurations that can
arise in the course of iterating a burn-off game. After characterizing the ‘relaxed legal’ configurations for general
graphs, we enumerate the ‘legal’ ones for complete graphs Kn. The number of relaxed legal configurations on Kn

coincides with the number tn+1 of spanning trees of Kn+1. Since our algorithmic, bijective proof of this fact does
not invoke Cayley’s Formula for tn, our main results yield secondarily a new proof of this formula.
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1 Introduction
Chip-firing games on graphs by now enjoy a rich literature. This is due not only to their surprising array
of mathematical connections but also to their utility in modeling certain kinds of physical systems. For
the former, we find ties, e.g., to discrepancy theory [21], the Tutte polynomial [16], critical groups of
graphs [5], G-parking functions [3], and stochastic processes [11]. For the latter, these games connect to
earthquakes [1], sandpiles [10], traffic [19], and the brain [22].

This article continues the published account of [20]—initiated in [15]—where we study a variant of
chip-firing in which all games have finite length. These ‘burn-off’ games incorporate the loss of en-
ergy that may occur in the physical processes that classical chip-firing games have been used to model.
Whereas, classically, when a node v ‘fires’, it sends one chip to each of its neighbors, our game modi-
fies this action by additionally eliminating one chip at v; see Section 1.1 for a precise definition of these
games.

It’s worth noting the analogy between burn-off games and graph pebbling, sometimes used in modeling
the movement of expendable resources. Here, ‘pebbles’ are placed on the nodes of a graph, then moved
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around subject to the condition that if v contains (at least) two pebbles, then one of them may be moved to
a neighbor of v at a cost of permanently removing another from v; see [14] for an early pebbling survey
and [13] for a dynamic record of related references. Though we don’t make use of the pebbling/burn-off
game connection, the recent explosion in pebbling research suggests that our chip-firing approach could
also prove to be fruitful.

Björner et al. [7] are generally credited with initiating the study of chip-firing games on general (con-
nected, undirected) graphs, although a subset of these authors in [6] points to antecedents in [11] and
[21]. It’s historically interesting that an early result for general graphs, in [23], predates the purported
initiator [7]. We offer some of this as evidence that a thorough literature review is beyond our scope and
instead point the reader to [17] for a chip-firing survey, to [12] for a textbook account of the algebraic
aspects of chip firing, and to [3] for a few more recent related citations.

This paper is organized as follows. Section 2 presents our results for general graphs, while Section 3
focuses on complete graphs. After characterizing the ‘relaxed legal’ chip configurations (§2.1), we give an
algorithm to check a configuration for ‘legality’ (§2.2) and then prove that the set of ‘legal’ configurations
is up-closed in the poset of all configurations on a fixed graph (§2.3). In §3.1, we enumerate the ‘legal’
chip configurations for complete graphs Kn. The number of relaxed legal configurations on Kn coincides
with the number tn+1 of spanning trees of Kn+1. Since our algorithmic, bijective proof of this fact (§3.2)
does not invoke Cayley’s Formula for tn, our results in Section 3 yield a new proof of this formula.

We are not the first authors to observe a connection between chip-firing games and spanning tree enu-
meration. Indeed, Biggs and Winkler [4] present bijections between their set of ‘critical’ configurations
and the set of trees spanning their underlying graph. Benson et al. [3], who “present the[ir] article in an
expository self-contained form”, provide somewhat of a related mini-survey, including a citation to [4].
(Their scope also includes connections with parking functions and sandpile models.) Even more recently,
Baker and Shokrieh [2] further explore these latter connections and obtain a bijective proof of the Matrix-
Tree Theorem. We ourselves, in [15], have even touched on the chip-firing/spanning tree connection.
Nevertheless, since burn-off games comprise a non-trivial variation of chip-firing, it seems worthwhile to
illuminate this connection in the new context.

Notation and terminology
We generally follow ‘standard’ graph theory conventions and make attempts to produce a self-contained
treatment of our results. For any basics we may have omitted, we point the reader to [8].

1.1 Description of the game
The ‘game board’ is a connected graph G = (V,E). For each node v ∈ V , we begin with a nonnegative
number C(v) of chips on v; the function C : V → N is a configuration. Each v ∈ V has an associated
critical number kv ≥ degG(v). Every node v for which C(v) ≥ kv is live and may be ‘fired’. Formally,
when v fires, C is modified to a configuration C ′ such that

C ′(u) =

 C(v)− degG(v) if u = v,
C(u) + 1 if uv ∈ E(G),
C(u) if v 6= u 6∼ v;

(1)

loosely speaking, v sends a chip to each of its neighbors. A configuration in which no node is live is
relaxed. Starting with a configuration C on G, a chip-firing game is played as follows. If there exists a
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live node, fire it; this constitutes a turn of the game. The game proceeds in turns, wherein live nodes are
successively chosen and fired. If, at any point in this process, no node is live, the game ends, its length
being the number of turns taken starting from C until the end. If C is relaxed, the game has length zero;
otherwise, the process of passing from C through a C ′ and eventually to a relaxed configuration on G is
relaxing C.

Björner et al. [7] took each kv to be the minimum natural value degG(v). They observed that some
chip-firing games may be of infinite length. For example, if the total number of chips on G exceeds twice
the number of edges, then, by the pigeonhole principle, one can always find at least one live node. This
paper also established, among other results, that if the total number of chips on G is less than |E|, then
every chip-firing game on G is of finite length.

Another way to ensure finite game lengths is to decrease the total number of chips at each turn. A
‘burn-off game’ differs from the chip-firing game of [7] in two ways: first, we take each kv , for v ∈ V , to
be degG(v) + 1; second, we modify the firing rule (1) to

C ′(u) =

 C(v)− degG(v)− 1 if u = v,
C(u) + 1 if uv ∈ E(G),
C(u) if v 6= u 6∼ v;

(2)

notice that when v is fired, one of its chips effectively vanishes. A burn-off game is a chip-firing game
with the adjusted critical numbers and following the modified firing rule (2). The game just defined is
equivalent to the ‘dollar game’ of Biggs [5] in the particular case when his ‘government’ node is adjacent
to every other node in the underlying graph; see also [4]. In our burn-off games, we call a node v
supercritical when C(v) takes a value larger than degG(v).

During a chip-firing or burn-off game, chips from the neighbors of a node v may cause v to become
supercritical. If, during one of these games, several nodes simultaneously become live in this fashion, one
may wonder how to decide which node to fire next. The paper [7] established that for the chip-firing game
described above, this decision has no bearing on the game length or the final chip configuration. Using a
similar approach, this paper’s second author showed in [20] that the analogous result for burn-off games
also holds.

1.2 Reverse-firing and legal configurations
Our primary purpose is to study the configurations that can arise in the course of iterating a burn-off game,
i.e., incrementing C at a chosen node, relaxing the resulting configuration, and repeating these two steps
indefinitely. Of course, the set of configurations that arise in this way depends on the initial configuration.
Though it may seem natural to begin with the empty configuration, C ≡ 0, this configuration will never
recur during a burn-off game sequence because each firing event redistributes chips to the neighbors of
the firing node.

Instead, we seek to begin with a configuration typical of those that will be encountered in a long
sequence of burn-off games. Here, we follow [1], wherein the authors investigated an earthquake model
based on chip-firing on a grid.

We define a configuration to be supercritical if every node is supercritical. In the spirit of [1], we
shall focus on the configurations that can result from relaxing a supercritical configuration. To understand
these, it is instructive to consider what happens when a burn-off game is played in reverse.

A reverse-firing game is defined so as to undo the firing rule of the chip-firing game under consideration.
Thus, for burn-off games, considering (2), we see that to reverse-fire a node v (each of whose neighbors
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u of necessity satisfies C ′(u) ≥ 1) means to modify C ′ to a configuration C such that

C(u) =

 C ′(v) + degG(v) + 1 if u = v,
C ′(u)− 1 if uv ∈ E(G),
C ′(u) if v 6= u 6∼ v.

(3)

Informally, starting from C ′, when a node v reverse-fires, it pulls one chip from each of its neighbors and
one out of thin air.

Now a configuration C is legal if there exists a reverse-firing sequence starting with C and ending
with a supercritical configuration. A legal configuration containing no live nodes is a relaxed legal con-
figuration. Notice that the empty configuration is relaxed but not legal, while the configuration with
C(v) = degG(v) + 1, for each v ∈ V , is legal but not relaxed. We leave it as an (easy) exercise to
construct a configuration that is neither legal nor relaxed.

2 Results for general graphs
2.1 Characterizing relaxed legal configurations
Our first result characterizes the relaxed legal configurations on general (connected simple) graphs. Its
statement uses NG to denote the ‘earlier neighbor set’; i.e., given an ordering (w1, w2 . . . , wn) of V , we
define NG(wi) := {wh ∈ V : whwi ∈ E(G) and h < i}.

Proposition 2.1 A relaxed configuration C : V → N is legal if and only if it is possible to relabel V as
w1, w2, . . . , wn so that

C(wi) ≥ |NG(wi)| for 1 ≤ i ≤ n. (4)

Proof: Suppose that we have a relaxed legal configuration C. Since C is legal, it can be reverse-fired into a
configuration where all nodes are supercritical. Further, since C is relaxed, no node is supercritical. Thus,
in any reverse-firing sequence that certifies the legality of C, all nodes must reverse-fire (this being the
only way for a node to gain chips during a reverse-firing game). Consider such a reverse-firing sequence.
Listing only the first time each node reverse-fires during the game, suppose that they are reverse-fired
in the order w1, w2, . . . , wn. Any given node wj reverse-fires only after each node w1, w2, . . . , wj−1
reverse-fires at least once. Each of these nodes which is a neighbor of wj takes a chip from wj when it
reverse-fires. Thus, we must have C(wj) ≥ |NG(wj)|, and (4) follows since j was arbitrary.

To establish the converse, suppose that it is possible to relabel the nodes w1, w2, . . . , wn so that (4)
holds. We claim that reverse-firing the nodes in increasing subscript order results in each node increasing
its chip-count by one.

Consider a node wj for some j with 1 ≤ j ≤ n, and define s := |NG(wj)|. Each of the s nodes in
NG(wj) reverse-fires before wj does, and each reverse-firing will pull one chip from wj . This leaves
C(wj) − s ≥ 0 chips on wj . When wj reverse-fires, it pulls a chip from each of its deg(wj) neighbors
and receives one extra chip for the reverse burn-off. Finally, the nodes wj+1, . . . , wn reverse-fire, and
each neighbor of wj in this set (say there are ` of these) pulls a chip from wj . Therefore, after each node
has been reverse-fired once, the number of chips on wj is decreased by s + ` = deg(wj) and increased
by deg(wj) + 1 (while never becoming negative), for a net increase of one, as claimed.

Notice that reverse-firing each node once, as described in the preceding paragraph, preserves (4). Thus,
this process may be repeated until all nodes become supercritical. That is, if t := maxv∈V {deg(v) −
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C(v)}, then repeating the process t + 1 times will result in every node v containing at least deg(v) + 1
chips. Therefore, the original configuration was legal. 2

2.2 Checking the legality of a configuration
Given a configuration C (not necessarily relaxed) on a graph G, we may check if C is legal using the
following algorithm. The proof of its efficacy leans on Proposition 2.1.

Algorithm 2.2

INPUT: a graph G = (V,E) and a chip configuration C : V → N on G

OUTPUT: an answer to the question ‘Is C legal?’

(1) Let G∗ = G.
(2) If C(v) < degG∗(v) for all v ∈ V (G∗), then stop. Output ‘No.’
(3) Choose any v ∈ V (G∗) with C(v) ≥ degG∗(v).
(4) Delete v and all incident edges from G∗ to create a graph G−.
(5) If V (G−) = ∅, then stop. Output ‘Yes.’
(6) Let G∗ = G− and go to step 2.

In the proof of Proposition 2.4, which asserts that Algorithm 2.2 works correctly, we also need the
following lemma. For a configuration C : V (G)→ N on G and a subgraph H of G, the notation C|V (H)

as usual denotes the configuration restricted to H .

Lemma 2.3 If C is legal on G, then C|V (H) is legal on H .

Proof: By Proposition 2.1, the legality of C on G implies that it is possible to relabel the nodes w1, . . . , wn

so that each wi (considered in G) contains at least as many chips as it has neighbors with smaller sub-
scripts. In H , a node wi may have fewer such neighbors, but it certainly cannot have more. Thus,
C(wi) ≥ |NG(wi)| ≥ |NH(wi)|, so (4) holds for each wi (considered now in H). Therefore, Proposi-
tion 2.1 shows that C|V (H) is legal on H . 2

Now we are ready to establish the correctness of Algorithm 2.2.

Proposition 2.4 Given a graph G = (V,E) and a configuration C : V → N on G, Algorithm 2.2 cor-
rectly determines whether C is a legal configuration on G.

Proof: First, we show that if at any point during the operation of Algorithm 2.2 (say, when we have arrived
at a subgraph G∗) every node v contains fewer than degG∗(v) chips, then the original configuration is not
legal. Suppose, for a contradiction, that an original configuration C∗ leading to this situation on G∗

is legal. By Lemma 2.3, C∗|V (G∗) is legal; letting k := |V (G∗)|, then by Proposition 2.1 the nodes
of G∗ may be relabeled w1, w2, . . . , wk so that C(wi) ≥ |NG∗(wi)| for all i with 1 ≤ i ≤ k. But
C(wk) ≥ |NG∗(wk)| = degG∗(wk) contradicts our assumption in the first sentence. Thus, if every
v ∈ V (G∗) contains fewer than degG∗(v) chips, then C∗ is not legal.

Second, we show that if Algorithm 2.2 proceeds until all nodes are deleted, then C is legal. Suppose
we relabel the nodes so that the algorithm’s deletion order is un, un−1, . . . , u1. For n ≥ j ≥ 1, let
G∗(uj) be the subgraph of G remaining just before the deletion of uj . For uj to be deleted from G∗(uj)
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by Algorithm 2.2, it must contain at least as many chips as it has neighbors in G∗. Thus, the relabeling
un, un−1, . . . , u1 that gives the deletion order also suffices to show that (4) holds for C. Therefore, C is
legal. 2

2.3 The poset of legal configurations
In the next section, we shall find it useful to consider the set B of all configurations on a fixed graph G as
a poset (B,�) whose ordering relates to the numbers of chips on the nodes of G as follows: for P,Q ∈ B
and ≤ the usual (total) ordering on N, let

P � Q if and only if each v ∈ V (G) satisfies P (v) ≤ Q(v).

Proposition 2.5 If P is a legal configuration, then any Q with P � Q is also legal.

Proof: We clearly need only consider those configurations Q with P ≺ Q (i.e., P � Q but P 6= Q).
Such a Q has at least as many chips on any given node v as does P , and since P ≺ Q, there exists a node
x with P (x) < Q(x). Starting from the configuration P , add one chip to x to create a new configuration
P ′.

Since P is legal, there exists a reverse-firing sequence that results in a supercritical configuration.
‘Freeze’ the new chip on x, and carry out the same reverse-firing sequence starting with P ′. The frozen
chip will not affect the reverse-firing game, and once P is reverse-fired to a supercritical configuration,
the chip may be ‘thawed’. The resulting supercritical configuration shows that P ′ is legal.

If P ′ = Q, the assertion is proved; if not, the argument above can be repeated with P ′ in the role of P .
2

3 Results for complete graphs
After specializing Proposition 2.1 to complete graphs, we enumerate certain legal configurations on these
graphs. Then we present a pair of algorithms that give a one-to-one correspondence between relaxed legal
configurations on Kn and spanning trees of Kn+1. These algorithms provide our new proof of Cayley’s
Formula (see [9] or, e.g., [8]).

3.1 Enumerating legal configurations
Lemma 3.1 A relaxed configuration C : V → N on Kn is legal if and only if it is possible to relabel the
nodes w1, w2, . . . , wn so that

C(wi) ≥ i− 1 for 1 ≤ i ≤ n. (5)

Proof: We simply observe that condition (5) is equivalent to condition (4) because in a complete graph,
each wi satisfies |NKn

(wi)| = i− 1. 2

The following formulation of Lemma 3.1 is needed in Section 3.2.

Corollary 3.2 A relaxed configuration C : V → N on Kn is legal if and only if for each ` ∈ {1, 2, . . . , n},
at least n− ` nodes contain at least ` chips.
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Now we develop a formula for L(Kn), the number of relaxed legal configurations C on Kn. We first
count the legal (but not necessarily relaxed) configurations; here our determination includes a parameter
to bound the maximum value of C(v) for v ∈ V := V (Kn). For n ≥ 1 and m ≥ n − 1, let Ln,m be the
number of legal configurations satisfying C(v) ≤ m for each v ∈ V . For convenience, we also define
L0,m := 1 for all m ≥ 0. The proof of the next result makes implicit use of Proposition 2.5.

Theorem 3.3 For all n ≥ 1 and m ≥ n− 1, we have

Ln,m = (m− n + 2)(m + 2)(n−1). (6)

Proof: We proceed by induction on n and m. Since L0,m := 1, this satisfies (6). For each m ≥ 0,
we include in our base case L1,m, which counts the number of legal configurations on K1. By (5), the
single node must contain at least zero chips. Thus, the number of chips occupying this node lies in the
set {0, 1, . . . ,m}; so L1,m = m + 1, which satisfies (6). Finally, we observe that for n ≥ 2, the symbol
Ln,n−2 enumerates the legal configurations in which all n nodes contain at most n − 2 chips; since (5)
requires C(wn) ≥ n − 1, we have Ln,n−2 = 0 for all n ≥ 2. This satisfies (6), and we include it in our
base case.

Now fix n ≥ 2 and m ≥ n− 1, and assume that (6) is valid for each Ln−k,m−1 with k ∈ {0, 1, . . . , n}.
To determine Ln,m, we let k ∈ {0, 1, . . . , n} count the number of nodes containing exactly m chips; there
are
(
n
k

)
ways to choose these k nodes. Consider the configuration on the remaining n − k nodes of Kn.

Focusing on these nodes, we know from Lemma 2.3 that C|V (Kn−k) must be legal on Kn−k, with at most
m− 1 chips on each node. Since the number of such configurations is Ln−k,m−1, we have

Ln,m =

n∑
k=0

(
n

k

)
Ln−k,m−1.

Now we apply our inductive hypothesis to simplify the sum:

Ln,m =

n∑
k=0

(
n

k

)
((m− 1)− (n− k) + 2) ((m− 1) + 2)(n−k)−1

=

n∑
k=0

(
n

k

)(
k

n
[(m + 1)− (m− n + 1)] + (m− n + 1)

)
(m + 1)n−k−1

=

n∑
k=0

[
k

n

(
n

k

)
(m + 1) +

n− k

n

(
n

k

)
(m− n + 1)

]
(m + 1)n−k−1

=

n∑
k=1

(
n− 1

k − 1

)
(m + 1)n−k +

n−1∑
k=0

(
n− 1

k

)
(m− n + 1)(m + 1)n−k−1

= (m− n + 2)

n−1∑
k=0

(
n− 1

k

)
(m + 1)(n−1)−k

= (m− n + 2)((m + 1) + 1)n−1;

induction gives the result. 2

Since L(Kn) = Ln,n−1, we obtain the immediate
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Corollary 3.4 L(Kn) = (n + 1)n−1.

This last observation led us to the connection between burn-off games on complete graphs and the enu-
meration of spanning trees therein.

3.2 Connections with spanning trees
A direct proof that the number of relaxed legal configurations on Kn coincides with the number of span-
ning trees of Kn+1, without resort to Cayley’s Formula, will yield a proof of the latter.

Theorem 3.5 The number of relaxed legal configurations on Kn equals the number of spanning trees of
Kn+1.

Proof: We establish algorithmically injections between the set R of relaxed legal configurations on Kn

and the set S of spanning trees of Kn+1. Define A : R → S via Algorithm 3.6 and B : S → R via
Algorithm 3.7 (both below). Regarding these algorithms, score refers to a numeric label assigned to a
node. Define F : V (Kn)→ N as the function that makes this assignment.

Our first algorithm injectively mapsR to S.

Algorithm 3.6

INPUT: a complete graph Kn and relaxed legal configuration C : V (Kn)→ N
OUTPUT: a spanning tree of Kn+1

(1) Let V (Kn) = {v1, v2, . . . , vn}.
(2) Delete all edges from Kn and introduce a new node v0.
(3) Let M0 = (v0) and M0 = {v0}.
(4) Let F (v0) = n− 1.
(5) Let Q0 = 0 and i = 0.

Until all vk have been included in some sequence Mi, do the following:

(6) i←[ i + 1.
(7) Let Qi = Qi−1 + |M i−1|.
(8) Let Mi = (vi1 , vi2 , . . . , vit), for some t ≥ 1, be the sequence (in increasing subscript

order) of all nodes v for which C(v) = F (u) for some u ∈ M i−1. Let M i = {x : x
is an entry of Mi}.

(9) Add an edge from each vk in M i to the node u ∈M i−1 for which C(vk) = F (u).
(10) For each j = 1, 2, . . . , |M i|, let F (vij ) = n−Qi − j.

The purpose of the variables Qi is to record the number of nodes that have been included in an earlier Mj .
In fact,

Qi =
∣∣∣ i−1⋃

j=0

Mj

∣∣∣.
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Thus, in step (10), each score is given to exactly one node. Therefore, “the node” selected in step (9) is
indeed unique.

Proof that A is well-defined: Algorithm 3.6 will fail if, during any iteration, M i is empty, because no
further edges can then be added in step (9). We demonstrate below that no M i is ever empty, but assume
for now that this is true. Step (9) adds an edge from each vk ∈ M i to a node that is already part of a
single growing component of the subgraph of Kn+1 being constructed. The algorithm continues until all
nodes of Kn+1 are members of some M i, so all nodes of Kn+1 are eventually connected to the growing
component. Note also that exactly n edges are created by step (9), one for each node except v0. A
spanning connected subgraph (of an (n+ 1)-node graph G) with n edges is necessarily a spanning tree of
G; thus, the algorithm certainly constructs a spanning tree of Kn+1.

It remains to prove that no M i is empty. We proceed by induction. It is clear in step (3) that M0 is
not empty; suppose that M i−1 is not empty for some fixed i > 0. (By definition of M i−1, it is clear
that M i−2 is also not empty.) As Algorithm 3.6 proceeds, the scores assigned to the nodes in step (10)
descend from n − 1. We must show that at least one value of C(vk), for 1 ≤ k ≤ n, is large enough to
equal the score of one of the nodes in M i−1. This will guarantee that M i contains at least one element.

When, in step (8), the nodes are checked to see if they will be members of Mi, the algorithm inspects
the scores assigned to the nodes in Mi−1 (our induction hypothesis ensures that there are nodes in Mi−1
to inspect). These scores were assigned (during the preceding iteration) in the following order:

n−Qi−1 − 1, n−Qi−1 − 2, . . . , n−Qi−1 − |M i−1| = n−Qi.

Thus, the lowest score assigned to a node of Mi−1 is n−Qi.
Since C is a legal configuration on Kn, we know that for each ` ∈ {1, 2, . . . , n}, at least n − ` nodes

contain at least ` chips (see Corollary 3.2). Substituting n−Qi for `, we see that our legal configuration
C is such that at least Qi nodes contain at least n−Qi chips.

Since Qi − 1 nodes have been assigned scores (we subtract 1 because v0 6∈ V (Kn)), there is at least
one unassigned node vk containing at least n−Qi chips (i.e., C(vk) ≥ n−Qi); this number is at least as
big as the lowest score found in Mi−1. We also know that C(vk) is one of the scores assigned to a node
in Mi−1, for if C(vk) exceeded all of those scores, then vk would have already been assigned to an earlier
sequence. It follows by induction that no M i is empty and, by our earlier remarks, that A is well-defined.

2

Proof that A is an injection: Let C : V (Kn) → N and C∗ : V (Kn) → N be two distinct relaxed legal
configurations on Kn. Let A(C) = T and A(C∗) = T ∗. We will prove that A is an injection by showing
that T and T ∗ must be distinct.

As C 6= C∗, Algorithm 3.6 must encounter C(vi) 6= C∗(vi) for some i ∈ {1, 2, . . . , n}. Choose i to
index the earliest such encounter; since Algorithm 3.6 assigns the scores in order of decreasing value, i
is the index witnessing max{max{C(vj), C

∗(vj)} : 1 ≤ j ≤ n and C(vj) 6= C∗(vj)}. Without loss of
generality, we may suppose that C∗(vi) > C(vi).

We will show that vi has different neighbors in T and T ∗, so that T 6= T ∗. Suppose that as Algo-
rithm 3.6 operates on C, the sequences constructed in step (8) are M1,M2, . . . ,Mj , and suppose that as
it operates on C∗, the corresponding sequences are M∗1 ,M

∗
2 , . . . ,M

∗
k . Now suppose that vi ∈ Ms (for

some s ∈ {1, 2, . . . , j}) and vi ∈M
∗
t (for some t ∈ {1, 2, . . . , k}). We distinguish two cases.
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Case 1: s = t.

Since C(vi) and C∗(vi) are the earliest unequal entries considered, we have Ms−1 = M
∗
t−1.

Since C(vi) 6= C∗(vi), the node vi must be assigned different neighbors, say x, y, from among
the nodes of Ms−1 and M

∗
t−1, respectively. Then the edge {vi, x} belongs to E(T ) r E(T ∗),

implying that T 6= T ∗.

Case 2: s 6= t.

Algorithm 3.6 adds an edge between vi and some node w∗ in M
∗
t−1. Since C(vi) and C∗(vi) are

the earliest unequal entries encountered, we know that M t−1 = M
∗
t−1. But we have assumed

that C∗(vi) > C(vi), so t < s; this implies that Ms−1 6= M
∗
t−1. Thus, the edge {vi, w∗}

belongs to E(T ∗) r E(T ), again implying that T 6= T ∗.
2

Our second algorithm injectively maps S toR.

Algorithm 3.7

INPUT: a spanning tree T of Kn+1

OUTPUT: a relaxed legal configuration C : V (Kn)→ N on Kn

(1) Fix a node v0 in Kn+1.
(2) Label the remaining nodes v1, v2, . . . , vn.
(3) Let N0 = (v0), N0 = {v0}, and i = 0.

Until all vk have been included in some sequence Ni, repeat steps (4) and (5):

(4) i←[ i + 1.
(5) Define Ni = (vi1 , vi2 , . . . , vit), for t ≥ 1, as the sequence (in increasing subscript

order) of all unassigned nodes that are neighbors in T of a node in Ni−1. Let N i =
{x : x is an entry of Ni}.

(6) Define N = (uk)n+1
k=1 as the concatenation of all the Ni’s, in their natural order.

(7) For k = 1, 2, . . . , n, set F (uk) = n− k (note that the (n + 1)st entry is not assigned
a score).

(8) a. For each i = 1, 2, . . . , n, the node vi is an entry of some Nj , and is thus the
neighbor in T of some vk ∈ N j−1.
b. Let C(vi) = F (vk).

It’s worth noting that in step (5) we are performing a breadth-first search (see, e.g., [8]) from v0 to deter-
mine the Ni’s.

Proof that B is well-defined: Step (7) makes it clear that C is relaxed, since the maximum assigned
score is n − 1. In order to show that C is legal, we demonstrate that for each ` ∈ {1, 2, . . . , n}, at least
n − ` nodes contain at least ` chips (again, see Corollary 3.2). In step (7), a node vk receives the score
`′ after (n− 1)− `′ other nodes have been assigned scores. As vk has n neighbors in Kn+1, it will have
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n − ((n − 1) − `′) = `′ + 1 unlabeled neighbors in T . These are the only nodes that can be assigned
C-values at most F (vk) = `′ in step (8b). Thus, for `′ ∈ {0, 1, . . . , n − 1}, at most `′ + 1 nodes of Kn

are assigned C-values at most `′. Complementation and Corollary 3.2 imply that C is indeed legal. 2

Proof that B is an injection: Let T and T ∗ be two distinct spanning trees of Kn+1. Let V (Kn+1) =
{v0, v1, . . . , vn}. Let B(T ) = C and B(T ∗) = C∗. We will prove that B is an injection by showing that
the configurations C and C∗ must be distinct.

For v ∈ V (T ), let ΓT (v) denote the set of neighbors of v that are assigned the value F (v) in step (8b);
in other words, ΓT (v) is the set of nodes adjacent to v, and one edge further from v0, in T . Define ΓT∗(v)
analogously.

Since T 6= T ∗, we infer that ΓT (v) 6= ΓT∗(v) for some v ∈ V (Kn+1). With Ni, N∗i denoting the
sequences constructed by step (5) for T , T ∗ respectively, let r := min{i : there exists v ∈ N i ∩N

∗
i with

ΓT (v) 6= ΓT∗(v)}. Choose any v ∈ Nr ∩ N
∗
r with ΓT (v) 6= ΓT∗(v). Step (8b) assigns the value F (v)

to all x ∈ ΓT (v) and the value F ∗(v) to all y ∈ ΓT∗(v). By the choice of r (as a minimum), we have
F (v) = F ∗(v); by step (7), we know that this score is assigned exclusively to v. To receive this score in
step (8b) (as a chip count), a node must be a member of either ΓT (v) or ΓT∗(v). Since ΓT (v) 6= ΓT∗(v),
we have C 6= C∗; thus, B is injective. 2

Now that we have demonstrated injections between the setR of relaxed legal configurations on Kn and
the set S of spanning trees of Kn+1, we have |R| = |S|, which finally completes the proof of Theorem 3.5.

2

As noted at the start of this section, our results yield a new proof of Cayley’s Formula, for combining
Theorem 3.5 with Corollary 3.4 gives |S| = |R| = L(Kn) = (n + 1)n−1. We view this as somewhat
of a curiosity because it is certainly not the most efficient published proof of this identity (see, e.g., [18]).
Nevertheless, it ties our results on burn-off games to spanning tree enumeration much as conventional
chip-firing games have been likewise linked.

We intend to present further results on burn-off games from [20] in a future paper, for which the present
article will form a foundation.
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