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We conjecture that every signed graph of unbalanced girth 2g, whose underlying graph is bipartite and planar, admits
a homomorphism to the signed projective cube of dimension 2g−1. Our main result is to show that for a given g, this
conjecture is equivalent to the corresponding case (k = 2g) of a conjecture of Seymour claiming that every planar
k-regular multigraph with no odd edge-cut of less than k edges is k-edge-colorable. To this end, we exhibit several
properties of signed projective cubes and establish a folding lemma for planar even signed graphs.
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1 Introduction
It is a classic result of Tait from 1890 that the Four-Color Theorem (Conjecture at that time) is equivalent to
the statement that every cubic bridgeless planar graph is 3-edge-colorable. An extension of this equivalent
statement was proposed as a conjecture using the notion of an odd cut, that is a partition (X,Y ) of the set
of vertices where |X| is odd. It is easily observed that if a k-regular multigraph is k-edge-colorable, then
the number of edges with exactly one end in X , assuming |X| is odd, is at least k. Seymour conjectured
in 1975 that for planar multigraphs the converse is also true, which generalizes Tait’s statement:

Conjecture 1.1 (Seymour [13]) Every k-regular planar multigraph with no odd edge-cut of less than k
edges is k-edge-colorable.

A direct extension of the Four-Color Theorem, using the language of graph homomorphisms, was in-
troduced in [10] where it was shown that this conjecture is essentially equivalent to Seymour’s conjecture
for odd values of k. In an unpublished manuscript [5], B. Guenin, after introducing the notion of signed-
graph homomorphisms, provided a further extension of this conjecture and the Four-Color Theorem. He
has then shown relations between his conjecture and several other conjectures.

The theory of homomorphisms of signed graphs includes in particular the theory of graph homomor-
phisms. A first paper on a comprehensive study of this notion was recently written by the authors of
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this work. Here we would like to emphasis on a direct extension of the Four-Color Theorem and its re-
lation with Seymour’s conjecture. We introduce the basic notations but we refer to [12] and references
mentioned there for more details.

Given a graph G, a signature on G is a mapping that assigns to each edge of G either a positive or a
negative sign. A signature is normally denoted by the set Σ of negative edges. Given a signature Σ on a
graph G, resigning at a vertex v is to change the sign of each edge incident with v. Two signatures Σ1 and
Σ2 on G are equivalent if one can be obtained from the other by a sequence of resignings or, equivalently,
by changing the signs of the edges of an edge-cut. A graph G equipped with a signature Σ is a signified
graph, denoted (G,Σ). A signed graph is a maximal class of signified graphs, all of whose signatures are
equivalent. For convenience, a signed graph will also be denoted (G,Σ) where Σ is any member of the
class of equivalent signatures.

An important notion in signed graphs is the following. An unbalanced cycle in a signed graph (G,Σ)
is a cycle having an odd number of negative edges. Note that this is independent of the choice of a
representative signature. Furthermore, the notion of unbalanced cycle is, in some sense, an extension of
the classic notion of an odd cycle (a cycle with odd length), as a cycle of (G,E(G)) is unbalanced if and
only if it is an odd cycle ofG. The unbalanced-girth of (G,Σ) is then the shortest length of an unbalanced
cycle of (G,Σ). A cycle that is not unbalanced, i.e., a cycle that has an even number of negative edges
(possibly none), is called balanced.

Note that if a signed Eulerian graph contains an odd number of negative edges, it must contain an
unbalanced cycle. Therefore, if W is a closed walk in G with an odd number of negative edges in (G,Σ),
then the subgraph induced by the edges of W contains an unbalanced cycle.

One of the first theorems in the theory of signed graphs is that the set of unbalanced cycles (equivalently
the set of balanced cycles) uniquely determines the associated class of signatures. More precisely:

Theorem 1.2 (Zaslavsky [14]) Two signatures Σ1 and Σ2 on a graphG are equivalent if and only if they
induce the same set of unbalanced cycles.

An important subclass of signed graphs, called consistent signed graphs, is the class of signed graphs
whose balanced cycles are all of even length and whose lengths of unbalanced cycles are all of the same
parity. This class itself consists of two parts. When all the unbalanced cycles are of odd length, then
the set of unbalanced cycles of (G,Σ) is exactly the set of odd-length cycles of G, thus in this case, by
Theorem 1.2, E(G) is a signature and (G,Σ) = (G,E(G)). Such a signed graph will then be called an
odd signed graph. When the lengths of all balanced and unbalanced cycles are even, the graph G must be
bipartite, and Σ can be any subset of edges. Such a signed graph will be called a signed bipartite graph.

Given two graphs G and H , a homomorphism of G to H is a mapping φ : V (G) → V (H) such
that if xy ∈ E(G) then φ(x)φ(y) ∈ E(H). We denote by G → H the existence of a homomorphism
of G to H . This notion extends the notion of coloring because a graph G is k-colorable if and only if
G → Kk. Given two signed graphs (G1,Σ1) and (G2,Σ2) we say that (G1,Σ1) admits a signed-graph
homomorphism, or homomorphism for short, to (G2,Σ2) if there are signatures Σ′1 and Σ′2 equivalent
to Σ1 and Σ2, respectively, and a homomorphism ϕ of G1 to G2 such that ϕ also preserves the signs of
edges given by Σ′1 and Σ′2. It is easily observed that the existence of ϕ is independent of the choice of the
signature in the image graph while the choice of the signature of (G1,Σ

′
1) is essential. Thus the binary

relation (G1,Σ1)→ (G2,Σ2), which denotes the existence of a homomorphism of (G1,Σ1) to (G2,Σ2),
is transitive.
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For every integer k ≥ 3, we denote by UCk the unbalanced cycle of length k, that is UCk = (Ck, {e}),
where e is any edge of the cycle Ck. One of the first results in the theory of signed-graph homomorphisms
is the following easy-to-prove lemma.

Lemma 1.3 There is a homomorphism of UCk to UC` if and only if k ≥ ` and k ≡ ` (mod 2).

Another key notion for this work is the notion of minors. A minor of a signed graph (G,Σ) is a signed
graph obtained from (G,Σ) by a sequence of (i) deleting vertices or edges, (ii) contracting positive
edges and (iii) resigning, in any order. In particular, this notion allows to express in terms of (odd) signed
graphs the following conjecture, proposed by Gerards and Seymour (see [7], p. 115), which extends the
celebrated Hadwiger’s Conjecture.

Conjecture 1.4 (Odd Hadwiger’s Conjecture) If (G,E(G)) does not have (Kn, E(Kn)) as a minor,
then χ(G) ≤ n− 1.

Using the definition of signed projective cube from the next section, the following conjecture is the
main concern of this work:

Conjecture 1.5 Every consistent planar signed graph of unbalanced girth k admits a homomorphism to
the signed projective cube of dimension k − 1.

The case k = 3 of this conjecture is indeed the Four-Color Theorem. It is proved in [10] that this is
equivalent to Conjecture 1.1 for every odd k. Here we do the analog for even values of k, i.e. for planar
signed bipartite graphs, and prove the following:

Theorem 1.6 The following two statements are equivalent:

(i) Every planar 2k-regular multigraph with no odd edge-cut of less than 2k edges is 2k-edge-colorable.

(ii) Every planar signed bipartite graph of unbalanced girth at least 2k admits a homomorphism to the
signed projective cube of dimension 2k − 1.

To this end we prove an analog of the “folding lemma” from [9] for the class of planar signed bi-
partite graphs. We note that, as it is shown in [12], the restriction of the notion of signed-graph ho-
momorphism to the class of signed bipartite graphs already captures the notion of graph coloring and
graph homomorphism through simple and natural graph operations. Roughly speaking, we can asso-
ciate a signed bipartite graph (S(G), ES(G)) with any graph G such that (i) χ(G) ≤ k if and only if
(S(G), ES(G))→ (Kk,k,Mk), where Mk is any perfect matching of the complete bipartite graph Kk,k,
and (ii) for any graphs G and H , G→ H if and only if (S(G), ES(G))→ (S(H), ES(H)).

The structure of the paper is as follows: in the next section we define the signed projective cubes
and prove their main properties. Then we prove the folding lemma for planar signed bipartite graphs in
Section 3 and Theorem 1.6 in Section 4.

2 Signed Projective Cubes
Recall that for d ≥ 2, the hypercube of dimension d, denoted Hd, is the graph with vertex set (Z2)d,
two vertices x and y being adjacent if x − y ∈ {e1, e2, . . . , ed}, where ei is the vector of (Z2)d with the
i-th coordinate being 1 and other coordinates being 0. This can be seen as the skeleton of the geometric
hypercube, or as a discrete version of the d-dimensional sphere. The distance between any two vertices
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Fig. 1: Signed projective cubes of dimension 2 and 3

in Hd is thus the number of coordinates in which they differ. Two vertices in Hd are said to be antipodal
if they are at maximum graph distance. Hence, each vertex v has a unique antipode v + J , where J =
(1, 1, . . . , 1), whose distance from v is d.

Equivalenlty, the hypercubeHd is inductively obtained from two disjoint copies ofHd−1 by adding an
edge between each pair of corresponding vertices in the two copies. In this view, to obtain the antipodal
of a vertex x in Hd we must first find its antipodal x∗ in the copy of Hd−1 to which x belongs. Then the
twin of x∗ in the other copy is the antipodal of x inHd.

Projective cubes can be defined in several ways, our first definition is the one that justifies their name.
Just as the projective space of dimension d is built from the sphere of dimension d+ 1, we define the pro-
jective cube of dimension d, denoted PCd, to be the homomorphic image ofHd+1 under the identification
of antipodal pairs. If we consider two copies of Hd which are the building blocks of Hd+1, the above
mentioned projection will map vertices from one copy to another, where adjacencies are also preserved
but the edges of the matching connecting one copy to another will become edges connecting each vertex of
Hd to its antipodal inHd. Thus PCd can also be defined as the graph obtained fromHd by adding a new
edge between each pair of antipodal vertices in Hd. Since in the algebraic definition of Hd two vertices
are antipodal if and only if their difference is J , we can also definePCd as a Cayley graph as follows: PCd
is the graph with vertex set (Z2)d, where vertices u and v are adjacent if u− v ∈ {e1, e2, . . . , ed} ∪ {J}.
We will consider that such an edge uv is labeled by u− v. We will also use the following:

Observation 2.1 For every d ≥ 2, the sum of the edge labels of any cycle in PCd is 0.

It is easy to check that PC2, PC3 and PC4 are isomorphic to K4, K4,4 and the well-known Clebsch
graph, respectively.

Using the Cayley definition of PCd, let J be the set of edges labeled by J . We define the signed
projective cube of dimension d, denoted SPCd, to be the signed graph (PCd,J ). The first two signed
projective cubes are presented in Fig. 1. The presentation of PC4, given in Fig. 2, also shows the method
of construction of the projective cubes. In these figures, dashed edges are negative and solid edges are
positive.

We will first prove that SPCd is a consistent signed graph and determine its unbalanced girth.

Theorem 2.2 All balanced cycles of SPCd are of even length, all unbalanced cycles of SPCd are of the
same parity, and the unbalanced girth of SPCd is d+ 1. Furthermore, for each unbalanced cycle UC of
SPCd and for each x ∈ {e1, e2, . . . , ed} ∪ {J}, there is an odd number of edges of UC labeled by x.

Proof: By the Cayley definition of SPCd, the sum of the edge labels of SPCd is 0. Let UCr be an
unbalanced cycle of length r in SPCd. Thus, by the definition of an unbalanced cycle, there is an odd
number of edges in UCr labeled by J . To sum up the edge labels of UCr to 0, each ei, i = 1, 2, . . . , d,
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Fig. 2: Signed projective cube of dimension 4

must also appear an odd number of times. Thus r ≥ d + 1 and r ≡ d + 1 (mod 2). In particular, this
implies that the lengths of all the unbalanced cycles of SPCd have the same parity.

Similarly, if C is a balanced cycle then C contains an even number of edges labeled by J , by definition.
Since, by Observation 2.1, the sum of the edge labels on each cycle is 0, there should be an even number
of edges labeled by each of the ei’s. Therefore, each balanced cycle is of even length.

To see that SPCd is actually of unbalanced girth d + 1, note that an unbalanced cycle of length d + 1
is induced by the following sequence of vertices: v0 = (0, . . . , 0), vi = vi−1 + ei for 1 ≤ i ≤ d. 2

Corollary 2.3 The signed projective cube SPC2d is equivalent to (PC2d, E(PC2d)).

Proof: By Theorem 2.2 a cycle in (PC2d,J ) is unbalanced if and only if it is of odd length. This
is exactly the set of unbalanced cycles of (PC2d, E(PC2d)). Hence, by Theorem 1.2, (PC2d,J ) and
(PC2d, E(PC2d)) are equivalent. 2

A direct proof of this corollary (using resigning) is worth mentioning: for each i, 1 ≤ i ≤ d, the set of
edges of PCd labeled either by ei or by J forms an edge-cut (X,Y ) where X is the set of vertices with
i-th coordinate being 0 and Y is the set of vertices with i-th coordinate being 1. If for each such edge-cut
we resign all the edges of the cut (by resigning at all the vertices of X), then each edge corresponding to
an ei will have a negative sign (as it will be resigned only once) and each edge corresponding to J will
be resigned d times, so that its sign would return to original negative if and only if d is even. Note that
through this process we have resigned at some vertices more than once. At the end, we have resigned at
vertices with an odd number of coordinates being 0.

Thus if a signed graph (G,Σ) admits a homomorphism to SPC2d then, using the signature E(PC2d)
of SPC2d, we conclude that (G,Σ) must be equivalent to (G,E(G)). On the other hand, since the
underlying graph of SPC2d+1 is bipartite, if (G,Σ) maps to SPC2d+1, then G must also be bipartite.
Thus, in general, consistent signed graphs are the only graphs that can map to signed projective cubes.
The following theorem shows that the problem of finding a mapping of a consistent signed graph to a
signed projective cube is equivalent to a packing problem.

Theorem 2.4 A signed bipartite graph (resp. odd signed graph) admits a homomorphism to SPC2d−1
(resp. SPC2d) if and only if it admits at least 2d− 1 (resp. 2d) edge-disjoint signatures.



6 Reza Naserasr, Edita Rollová, Éric Sopena

Theorem 2.4 in this form first appeared in [5]. For even dimensions, i.e., for the case in brackets, since
all edges being negative is a signature of SPC2d, the problem of finding a homomorphism of (G,Σ) to
SPC2d is reduced to the problem of finding a homomorphism ofG toPC2d. Here, we give an independent
proof for odd dimensions. Our proof can be easily adapted for even dimensions as well.

Proof: First assume that there is a homomorphism of (G,Σ) to SPC2d−1. Then, by Lemma 1.3, for
each unbalanced cycle UC of (G,Σ), there should be an unbalanced cycle in its image in SPC2d−1.
Furthermore, for each ei, the set of edges of UC that are mapped to an edge with label ei, should be of
odd size. On the other hand, for a balanced cycle C of (G,Σ) the set of edges of C that are mapped to an
edge with label ei should be of even size. Therefore, for each ei the set Ei(G) of edges of G which are
mapped to edges of SPC2d−1 with label ei has the property that its intersection with each balanced (resp.
unbalanced) cycle of (G,Σ) is of even (resp. odd) size. Thus, by Theorem 1.2, Ei(G) is equivalent to Σ
and obviously the Ei(G)’s are edge disjoint.

For the converse, suppose E1, E2, . . . , E2d−1 are sets of edge-disjoint signatures equivalent to Σ and
let Ê = E1 ∪ E2,∪ · · · ∪ E2d−1.

We first claim that EJ = E − Ê is also a signature. We use Theorem 1.2 to prove this. If UC is an
unbalanced cycle of (G,Σ), then it contains an odd number of edges from each Ei, 1 ≤ i ≤ 2d− 1 and,
therefore, it contains an odd number of edges from Ê. Since UC is of even length, it has an odd number
of edges from EJ = E − Ê. Now, let C be a balanced cycle of (G,Σ). Clearly, the intersection of C
with each Ei, 1 ≤ i ≤ 2d − 1, and hence with Ê, contains an even number of edges. Again, since C
has an even number of edges, the intersection of C with EJ = E − Ê also has an even number of edges.
Therefore, the set of unbalanced cycles of (G,Σ) is exactly the set of cycles whose intersection with EJ
contains an odd number of edges.

Let now ϕ : E(G) → {e1, e2, . . . , e2d−1} ∪ {J} be defined as follows: if uv ∈ Ei, 1 ≤ i ≤ 2d − 1,
then ϕ(uv) = ei and if uv ∈ EJ , then ϕ(e) = J . It is easy to verify now that given a cycle C of G,∑
uv∈E(C) ϕ(uv) is 0 (in (Z2)2d−1).
A homomorphism of (G,Σ), using its representation (G,EJ), to SPC2d−1 can be now built as follows:

for each connected component G′ of G choose a vertex x and let φ(x) = 0. Then for any other vertex y
choose a path P with x and y being its two ends and let φ(y) =

∑
uv∈E(P ) ϕ(uv). Since ϕ adds up to

zero in each cycle, φ is well defined. Every edge uv of (G,EJ) is mapped to an edge of SPC2d−1 with
label φ(v)− φ(u) and it is easy to check that φ is a homomorphism of (G,EJ) to SPC2d−1. 2

As an easy corollary we get that the homomorphism relation between signed projective cubes them-
selves is very much like that of the homomorphism relation between cycles as given in Lemma 1.3:

Theorem 2.5 There is a homomorphism of SPCd to SPCd′ if and only if d ≥ d′ and d ≡ d′ (mod 2).

Though the theorem easily follows from the previous theorem, we give an independent proof which
explicitely constructs such a homomorphism.

Proof: A homomorphism φ of SPCd+2 to SPCd can be defined as follows. If the last two coordinates
of v are 00 or 11, then φ(v) is the restriction of v to its first d coordinates. Otherwise, to get φ(v), we
first restrict v to its first d coordinates and then add the d-dimensional vector J . To see that φ is indeed a
homomorphism of SPCd+2 to SPCd, one must resign SPCd+2 at every vertex whose last two coordinates
are 01 or 10. Associativity of homomorphisms then implies the existence of a homomorphism of SPCd
to SPCd′ when d ≥ d′ and d ≡ d′ (mod 2). The inverse claim follows from Theorem 2.2 and the fact
that every unbalanced cycle of SPCd must have, in its image, an unbalanced cycle of SPCd′ . 2
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3 Folding lemma
As mentioned before, it has been shown in [12] that the notion of signed homomorphisms on signed
bipartite graphs already captures the notion of graph homomorphisms. The operations used to build this
connection preserves planarity. Thus any homomorphism theory on planar graphs can be strengthened in
the language of signed homomorphisms on planar signed bipartite graphs.

A key lemma in the study of homomorphism properties of a planar graph is the folding lemma of
Klostermeyer and Zhang [9]. This lemma implies that for each planar graph G of shortest odd cycle
length 2r + 1, and for each k ≤ r, there is a planar homomorphic image H of G where every face of
H is of length 2k + 1 and the shortest odd-length cycle of H is also of length 2k + 1. By considering
unbalanced cycles instead of odd-length cycles, we will get the same result for the class of planar signed
bipartite graphs.

Lemma 3.1 (Folding Lemma) Let (G,Σ) be a planar signed bipartite graph of unbalanced girth g. If
C = v0 · · · vr−1v0 is a balanced facial cycle of (G,Σ), or an unbalanced facial cycle of (G,Σ) with
r > g, then there is an integer i ∈ {0, . . . , r − 1} such that the signed graph (G′,ΣG′) obtained from
(G,Σ) by identifying vi−1 and vi+1 (subscripts are taken modulo r) is a homomorphic image of (G,Σ)
of unbalanced girth g.

Proof: We follow notations and ideas of Section 4 in [9]. Suppose that C = v0 · · · vr−1v0 is a balanced
facial cycle of (G,Σ), or an unbalanced facial cycle of (G,Σ) with r > g. For each i ∈ {0, . . . , r− 1}, if
vi−1vivi+1 does not belong to a UC4 — which is always the case if g > 4 — letGi be the graph obtained
from G by identifying vi−1 and vi+1, after having resigned at vi−1 if vi−1vi and vivi+1 have opposite
signs. If such a Gi has unbalanced girth at least g we are done (the mapping that identifies vi−1 and vi+1

is clearly a homomorphism of (G,Σ) to (G′,ΣG′) = (Gi,Σi), where Σi is the signature of Gi induced
by Σ). Otherwise (including the case g = 4), it means that for each i ∈ {0, . . . , r − 1}, G contains
an unbalanced cycle Ci of length g passing through the segment vi−1vivi+1 of C. This kind of cycle is
called a critical cycle of (G,Σ) around C containing vi−1vivi+1. Each critical cycle Ci of length g must
contain a maximal segment vµCvµ+pi = vµvµ+1 · · · vµ+pi with vi−1vivi+1 ⊆ vµCvµ+pi , vµ−1 /∈ Ci
and vµ+pi+1 /∈ Ci, where pi is called the pace of Ci around C.

Let now C` be a critical cycle with the largest pace and vbCvd be the maximal segment of C contained
in C`. Consider another critical cycle Cb that contains the segment vb−1vbvb+1 and let vaCvc be the
maximal segment of C contained in Cb such that vb−1vbvb+1 ⊆ vaCvc. By the choice of C`, vc must be
contained in the segment vbCvd and vb 6= vc 6= vd. Note also that va 6= vb. There are two possibilities:
either va is contained in the segment vbCvd too or not. Let us first suppose the latter case (we will show
later that the former case is not possible). Since C is facial, no critical cycle intersects interior(C). Thus,
since va is not contained in the segment vbCvd, we get that C` and Cb cross each other in exterior(C) on
some vertex, say w (see Fig. 3). Moreover, va, vb, vc and vd appear in this order around the facial cycle
C.

Let x0−x1− · · ·−xn−1−x0 denote a signed Eulerian graph formed by the union of (xi, xi+1)-paths
where i ∈ Zn. ThenC = va−vb−vc−vd−va, C` = vb−vc−vd−w−vb andCb = va−vb−vc−w−va.

Let C ′ = vb − vc −w− vb, where vb − vc is the path belonging to C, vc −w the path belonging to Cb
and w − vb the path belonging to C`. We consider two cases.

1. The cycle C ′ is balanced. We then have:
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vd

vc

vb

va

w

C`

Cb

C ′C

Fig. 3: Configuration for the proof of Lemma 3.1

(i) va − vb −w− va, which is the symmetric difference of Cb and C ′, is an unbalanced Eulerian
graph, so it contains an unbalanced cycle. Since Cb is critical, we get that |vb − w| ≥ |vb −
vc|+ |vc − w|, where |x− y| is the length of the (x, y)-path; and

(ii) vc − vd −w− vc, which is the symmetric difference of C` and C ′, is an unbalanced Eulerian
graph, so it contains an unbalanced cycle. Since C` is critical, we get that |vc − w| ≥ |vb −
vc|+ |vb − w|.

By comparing (i) and (ii) we get that |vb − vc| ≤ 0, a contradiction with the fact that vb 6= vc.

2. The cycle C ′ is unbalanced. We then have:

(i) C ′ contains an unbalanced cycle. SinceCb is critical, we get that |vc−w| ≥ |vc−vd|+|vd−w|.
(ii) va − vb − vc − vd − w − va, which is the symmetric difference of C` and the symmetric

difference of C ′ and Cb, is an unbalanced Eulerian graph, so it contains an unbalanced cycle.
Since Cb is critical, we get that |vc − w| ≤ |vc − vd|+ |vd − w|.

By comparing (i) and (ii) we get that |vc − w| = |vc − vd|+ |vd − w| and the length of va − vb −
vc− vd−w− va is the same as the length of the critical cycle Cb. Thus va− vb− vc− vd−w− va
itself is critical but with a pace larger than the pace of C`, a contradiction.

It remains to show that va cannot be contained in the segment vbCvd. Suppose to the contrary that va
is contained in the segment vbCvd, possibly with va = vd. Since C` is with a largest pace p, we conclude
that 2p > |V (C)|, as otherwise C` would be of larger pace. We distinguish two cases.

1. The cycle C is balanced. Then the symmetric difference of C` and C is an unbalanced Eulerian
graph that contains an unbalanced cycle of length shorter than the length of the critical cycle C`, a
contradiction.

2. The cycle C is unbalanced. Since the length `(C) of C is different from g, we get `(C) ≥ g+ 2; in
particular, `(C) > `(Cb). We consider the symmetric difference ofCb and the symmetric difference
of C` and C. The result is an unbalanced Eulerian graph that contains an unbalanced cycle with a
length shorter than the length of the critical cycle C`, since the (vc, va)-path of C` belonging to C
is replaced by a shorter (vc, va)-path belonging to Cb, again a contradiction.
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We thus get that there is some Gi such that (Gi,Σi) is the required signed graph. 2

By repeated application of this lemma we get the following:

Corollary 3.2 Given a planar signed bipartite graph (G,Σ) of unbalanced girth g, there is a homomor-
phic image (G′,Σ′) of (G,Σ) such that:

• G′ is planar,

• (G′,Σ′) is a signed bipartite graph,

• (G′,Σ′) is of unbalanced girth g,

• every face of (G′,Σ′) is an unbalanced cycle of length g.

Proof: We can assume that G is connected (otherwise, we may pick one vertex in each component and
identify them). If u is a cut-vertex of (G,Σ), with two neighbors v1 and v2 lying on the outerface and not
belonging to the same block, the signed graph (G1,Σ1), obtained by identifying v1 and v2 (after having
resigned at v1 if necessary), is clearly a bipartite homomorphic image of (G,Σ) with unbalanced girth g.
Repeating this procedure for every cut-vertex of (G,Σ), we get a 2-connected signed bipartite graph, say
(Gk,Σk), which is a homomorphic image of (G,Σ) with unbalanced girth g. Every face of (Gk,Σk) is
then either a balanced cycle or an unbalanced cycle of length at least g. We can then apply Lemma 3.1
until every face is an unbalanced cycle of length g, and get the desired result. 2

4 An extension of the Four-Color Theorem
In this section, we prove Theorem 1.6.

Proof: First assume that every planar signed bipartite graph of unbalanced girth at least 2k admits a
homomorphism to SPC2k−1 and let G be a planar 2k-regular multigraph with no odd edge-cut of less
than 2k edges. Using Tutte’s matching theorem we can easily verify that G admits a perfect matching.
Let M be a perfect matching of G. Let GD be the dual of G with respect to some embedding of G on the
plane. Since G is 2k-regular, GD is clearly bipartite. Let MD be the edges in GD corresponding to the
edges of M . It is now easy to check that (GD,MD) is a planar signed bipartite graph of unbalanced girth
2k. Therefore, by our main assumption, (GD,MD) admits a homomorphism to SPC2k−1. This mapping
induces a 2k-edge-coloring onGD (not necessarily a proper edge-coloring) using colors e1, . . . , e2k−1, J .
By Theorem 2.2 every unbalanced cycle has received exactly 2k different colors. In particular each face
of GD, which is an unbalanced cycle of length 2k, has received all 2k colors. Thus reassigning these
colors to their corresponding edges in G will result in a proper 2k-edge-coloring of G.

Now we assume that every planar 2k-regular multigraph with no odd edge-cut of less than 2k edges is
(properly) 2k-edge-colorable. Let (G,Σ) be a plane signed bipartite graph of unbalanced girth 2k. We
would like to prove that this signed graph admits a homomorphism to SPC2k−1. By Corollary 3.2 we
may assume that each face of (G,Σ) is an unbalanced cycle of length exactly 2k. Let GD be the dual
of G with respect to its embedding on the plane. Obviously GD is a 2k-regular multigraph, furthermore
it is easy to check that GD has no odd edge-cut of strictly less than 2k edges (this is the dual of having
unbalanced girth at least 2k). Thus, by our main assumption, GD is 2k-edge colorable. Let Mi be one of
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the color classes, which, therefore, is a perfect matching. Let Σi be the edges of G corresponding to the
edges of GD in Mi. We first claim that Σi is equivalent to Σ. This is the case because in both (G,Σi)
and (G,Σ) each face is an unbalanced cycle, and any other cycle is unbalanced if and only if it bounds an
odd number of faces. That means that the sets of unbalanced cycles in both signatures are the same and
the claim follows by Theorem 1.2. To complete the proof note that we have partitioned edges of G into
2k sets Σi each being a signature of (G,Σ). Thus, by Theorem 2.4, (G,Σ) admits a homomorphism to
SPC2k−1. 2

Since Seymour’s conjecture is verified up to k ≤ 8, see [6], [3], [4] and [2], we conclude that:

Corollary 4.1 Every planar signed bipartite graph of unbalanced girth 4 (6 and 8, respectively) admits
a homomorphism to SPC3 (SPC5,SPC7, respectively).

Note that ifG is a simple bipartite graph, then the unbalanced girth of (G,Σ) is at least 4. Furthermore,
note that SPC3 is isomorphic to (K4,4,M) where M is a perfect matching of K4,4. Therefore:

Corollary 4.2 Every planar signed bipartite graph admits a homomorphism to (K4,4,M).

Using Theorem 6.2 of [12] it follows that this corollary is stronger than the Four-Color Theorem. A
fact that, in the edge-coloring formulation, was already proved by P. Seymour [13].

5 Remarks
1. B. Guenin [5] conjectured that in Conjecture 1.5 the condition of planarity can be replaced with the
weaker condition of having no (K5, E(K5)) as a minor, which, if true, would imply the same results for
a larger class.
2. If Conjecture 1.5 holds, i.e., if every planar signed bipartite graph or planar odd signed graph of
unbalanced girth g admits a homomorphism to a signed projective cube of unbalanced girth g, then,
by Theorem 2.5, any such planar signed graph also admits a homomorphism into projective cubes of
unbalanced girth g − 2i.

We believe that for this latter case, when i ≥ 1, not all vertices of the signed projective cube are needed.
Indeed it is shown in [11] that, for planar odd signed graphs, determining minimal subgraphs of the signed
projective cube SPC2g that would bound the class of planar odd signed graphs of unbalanced girth at least
2k + 1, k ≥ g, would relate to questions such as determining the supremum of the fractional and circular
chromatic numbers of planar graphs of given odd girth.

We believe an analog question for the case of signed bipartite graph would result in development of
further theories and discovery of signed bipartite graphs with high symmetries. Thus we ask:

Problem 5.1 What are the minimal subgraphs of SPC2g−1 to which every planar signed bipartite graph
of unbalanced girth 2g + 2i, i ≥ 1, admits a homomorphism?

A particular case of this question, which is the bipartite analog of Grötzsch’s theorem and Jaeger-
Zhang’s conjecture, is studied in [1].
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