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Descents after maxima in compositions
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We consider compositions of n, i.e., sequences of positive integers (or parts) (σi)
k
i=1 where σ1 +σ2 + · · ·+σk = n.

We define a maximum to be any part which is not less than any other part. The variable of interest is the size of the
descent immediately following the first and the last maximum. Using generating functions and Mellin transforms,
we obtain asymptotic expressions for the average size of these descents. Finally, we show with the use of a simple
bijection between the compositions of n for n > 1, that on average the descent after the last maximum is greater than
the descent after the first.
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1 Introduction
Compositions of n are finite sequences of positive integers (σi)

k
i=1 with k parts such that

σ1 + σ2 + · · ·+ σk = n.

We define the first maximum σm to be that part satisfying σm > σi for all i with 0 < i < m and σm ≥ σi
for all i such that m ≤ i ≤ k. Informally, the first maximum is the part which is larger than any parts to
its left and not less than any parts to its right.

The variable of interest here is the size of the descent after the first maximum. We define the descent to
be {

σm − σm+1, if m < k

σm, if m = k.
,

where k is the number of parts.

Analogously we define the last maximum and the descent following it.
Two examples for the compositions of 17 illustrating these descents are:
Firstly, 1 3 5 1 4 3. There is only one maximum, σ3 = 5, so clearly the descent after the first or the last

maximum is the same; it is 4.
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Secondly, 1 3 3 5 5. There are two consecutive maxima where σ4 = σ5 = 5. The descent after the first
maximum is 0 whereas the descent after the last maximum is 5.

Much recent work has been done on compositions. For example, see the book [9] and [1, 2, 7, 10].
In particular, ascents and descents in compositions were studied in [3] and maxima have been studied in
[12].

We obtain generating functions for the descents occurring immediately after the first and the last max-
ima, by splitting these compositions into blocks that occur before and after these maxima. From this, we
obtain generating functions for the average descents after the first or last maximum in compositions of n.

Using the Mellin transform, we find asymptotic expressions for these averages. In Section 5, we specify
a simple bijection between the compositions of n in order to show that, on average, the descent after the
last maximum is greater than the descent after the first maximum for compositions where n > 1.

2 Descent after the first maximum
2.1 Symbolic decomposition
We split the compositions of n into 2 cases, depending on where the first maximum occurs. It can either
be before or at the end. Fixing h as the height of the maximum, we represent these cases symbolically in
the diagram below:

< h

h

≤
h

≤ h

or
< h

h
@
@
@R

σ1 · · ·σi−1

@
@
@R

Maximum: σi

���
σi+1

@
@
@R

σi+2 · · ·σk

@
@
@R

σ1 · · ·σk−1

@
@
@R

Maximum: σk

Fig. 1: The first maximum decomposition where the maximum height is h

In both cases, the three sub-compositions σ1 · · ·σi−1, σi+2 · · ·σk and σ1 · · ·σk−1 allow the possibility of
the empty composition. In the first case, if the sub-composition σ1 σ2 · · ·σi−1 is empty, the first maximum
is at the start and the part σi+1 ensures that the maximum is before the end. The second case indicates
that the only maximum occurs at the end.

2.2 Generating function for the descent after the first maximum
Our aim is to find the generating function F (x, y, u) where x counts the size of the composition, y the
number of parts and u the size of the descent after the first maximum. (This, by symmetry, is equivalent
to the generating function for the size of the ascent before the last maximum).

We need the following well-known lemma, see [8, 9].
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Lemma 1 The generating function for compositions with largest part less than or equal to h where h ≥ 0,
is

Ch(x, y) =
1

1− y
∑h
j=1 x

j
=

1− x
1− x− xy + yxh+1

.

For a non-empty composition, let the size of the first maximum be h ≥ 1. Firstly, consider the left case in
Figure 1, the generating function for the single part σi+1 that is situated just after the first maximum is

y(xuh−1 + x2uh−2 + · · ·+ xh) =
xy(uh − xh)

u− x
.

Incorporating this term, the generating function Fh(x, y, u) that covers both cases shown in Figure 1 is

Fh(x, y, u) = Ch−1(x, y)yxh · xy(uh − xh)

u− x
· Ch(x, y) + Ch−1(x, y)yxhuh. (2.1)

Since this is for a fixed h, we need to sum over all possible values of h. Thus

F (x, y, u) = 1 +

∞∑
h=1

Fh(x, y, u)

= 1 +

∞∑
h=1

Ch−1(x, y)yxh
(
uh + xy

uh − xh

u− x
Ch(x, y)

)
where the first term is for the empty composition. Thus by Lemma 1, we have our first result:

Theorem 1 The generating function for compositions of n where x counts the size of the composition, y
the number of parts and u the size of the descent after the first maximum is

F (x, y, u) = 1 +

∞∑
h=1

1− x
1− x− xy + yxh

yxh
(
uh + xy

uh − xh

u− x
1− x

1− x− xy + yxh+1

)
.

Putting y = 1, i.e., ignoring the number of parts, the generating function becomes

F (x, 1, u) = 1 +
∞∑
h=1

1− x
1− 2x+ xh

xh
(
uh + x

uh − xh

u− x
1− x

1− 2x+ xh+1

)
. (2.2)
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3 Sum of the descents after the first maximum
We are now in a position to find the sum of the descents after the first maximum in all the compositions
of n. This is given by [xn]∂F (x,1,u)

∂u

∣∣
u=1

.
The derivative obtained from (2.2) is

A(x) : =
∂F (x, 1, u)

∂u

∣∣∣∣
u=1

=

∞∑
h=1

(
h(1− x)xh

1− 2x+ xh
+

h(1− x)xh+1

(1− 2x+ xh)(1− 2x+ xh+1)
− xh+1(1− xh)

(1− 2x+ xh)(1− 2x+ xh+1)

)

=

∞∑
h=1

(
1 + h− hx+

−h+ 2x+ 2hx− 2hx2

1− 2x+ xh
− 1− hx

1− 2x+ xh+1

)
. (3.1)

We simplify this series by considering the finite sum to N and thereafter choosing N sufficiently large.

AN (x) : =

N∑
h=1

(
1 + h− hx+

−h+ 2x+ 2hx− 2hx2

1− 2x+ xh
− 1− hx

1− 2x+ xh+1

)

=

N∑
h=1

(
1− hx+ xh + hxh − hxh+1

1− 2x+ xh
− 1− hx

1− 2x+ xh+1

)

=

N∑
h=1

(
1− hx+ xh + hxh − hxh+1

1− 2x+ xh

)
−
N+1∑
h=2

(
1− (h− 1)x

1− 2x+ xh

)

=
1 + x− x2

1− x
+

N∑
h=2

(
1− hx+ xh + hxh − hxh+1

1− 2x+ xh

)
−

N∑
h=2

(
1− (h− 1)x

1− 2x+ xh

)
− 1−Nx

1− 2x+ xN+1

=

N∑
h=2

(
−x+ xh + hxh − hxh+1

1− 2x+ xh

)
+

1 + x− x2

1− x
− 1−Nx

1− 2x+ xN+1
. (3.2)

To find the coefficient of xn in A(x), we may choose any N with N ≥ n. Since we are only interested
in the terms up to xn, the last term 1−Nx

1−2x+xN+1 can be replaced by 1−Nx
1−2x . Thus, we wish to find the

coefficient of xn in

fN (x) :=
1 + x− x2

1− x
− 1−Nx

1− 2x
−

N∑
h=2

x− (h+ 1)xh + hxh+1

1− 2x+ xh
, (3.3)

where N ≥ n. Here [xn]fN (x) = [xn]AN (x) = [xn]A(x) for n ≤ N .
For example, for N = 10, both series expansions for fN (x) and A(x) begin with

x+ 2x2 + 6x3 + 13x4 + 29x5 + 61x6 + 131x7 + 274x8 + 576x9 + 1199x10. (3.4)

We illustrate what is counted by the term 13x4 in (3.4) in the table below:
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Compositions of n = 4 1111 211 121 112 13 31 22 4 Total

Size of descent after first maximum 0 1 1 2 3 2 0 4 13

3.1 Asymptotics
We rewrite the generating function (3.3) in the form

fN (x) :=
1 + x− x2

1− x
+
−1 + x

1− 2x
+

N∑
h=2

(
x

1− 2x
− x

1− 2x+ xh

)
+

N∑
h=2

(h+ 1)xh − hxh+1

1− 2x+ xh
.

The coefficients of xn in the first two terms of fN (x) are 1 and −2n−1, respectively for n > 1.
We next consider

∑N
h=2

(
x

1−2x −
x

1−2x+xh

)
. For h > 2, let ρh be the smallest positive root of 1 −

2x+ xh that lies between 1
2 and 1. An application of the principle of the argument shows such a root ρh

exists, with all other roots being of larger modulus. By dominant pole analysis, see [5, 6],

qn,h := [xn]
x

1− 2x+ xh
∼ chρ−nh with ch =

1

2− hρh−1h

,

for large n.
The denominator 1− 2x+ xh behaves like a perturbation of 1− 2x near x = 1

2 , so one expects ρh to
be approximated by 1

2 as h→∞. By “bootstrapping” we find that

ρh =
1

2
(1 + 2−h +O(h2−2h)) (3.5)

and hence ch = 1
2 (1+O(h2−h)). As in Knuth [11] or Chapter 5 of [6], the dominant terms of

∑n
h=2 qn,h

occurs for a restricted range of h such as n−3 ≤ 2−h ≤ logn
n , for which

qn,h ∼ 2n−1(1− 2−h)n ∼ 2n−1e−n/2
h

.

Again, as in Knuth [11], we may incorporate the asymptotically small tails of the sums to show

fn := [xn]

n∑
h=2

(
x

1− 2x
− x

1− 2x+ xh

)
= 2n−1

( ∞∑
h=2

(1− e−n/2
h

) + o(1)

)
.

Let

g(x) :=

∞∑
h=2

(1− e−x/2
h

).

For x ∈ R, the Mellin transform of the function g(x) is

g∗(s) =

∫ ∞
0

g(x)xs−1dx =

∑
k≥2

2sh

Γ(s) =
22s

1− 2s
Γ(s), where − 1 < Re(s) < 0.
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Here, we have used the fact that the Mellin transform of 1 − e−x is Γ(s) =
∫∞
0
e−xxs−1dx, for −1 <

Re(s) < 0. To estimate the sum g(n) and hence fn we use the Mellin inversion formula,

g(x) =
1

2πi

∫ −1/2+i∞
−1/2−i∞

g∗(s)x−sds.

We move the contour of integration to the right and must compute some residues as compensation.
Let χk = 2kπi/ log 2. There are simple poles of the integrand at s = χk for each k ∈ Z \ {0}, with

negative residue

− 1

log 2
22χkΓ(χk)x−χk = − 1

log 2
Γ(χk)e−2kπi log2 x.

For s = 0, we have a double pole with negative residue

log2 x−
3

2
+

γ

log 2
,

where γ is Euler’s constant.
Combining the contributions for all k ∈ Z, we find that

g(n) ∼ log2 n−
3

2
+

γ

log 2
− 1

log 2

∑
k 6=0

Γ(χk)e−2kπi log2 n.

There remains to compute

rn := [xn]

N∑
h=2

(h+ 1)xh + hx1+h

1− 2x+ xh
= O

(
[xn]

n∑
h=2

hxh

1− 2x+ xh

)
.

As before, we can show that for the dominant range of terms in 2 ≤ h ≤ n,

[xn]
hxh

1− 2x+ xh
∼ h2n−he−n/2

h

.

Thus

rn = O

(
2n
∞∑
h=2

h2−he−n/2
h

)
.

Estimating the latter sum using Mellin transforms yields

rn = O

(
2n log n

n

)
.

For the mean value, we must divide by the number (2n−1) of compositions of n. In particular rn
2n−1 → 0

and we find
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≤ h h

Last maximum before the end

@
@
@R

Last maximum at the end

�
�
�	

@
@
@R

Non-empty part

or<
h < h

≤ h h

Fig. 2: Decomposition of descents after the last maximum

Theorem 2 The average descent after the first occurrence of the maximum in a composition of n is
asymptotic to

log2 n−
5

2
+

γ

log 2
− δ(log2 n) as n→∞

where δ(x) is a continuous periodic function of period 1, mean zero, small amplitude and Fourier expan-
sion

δ(x) =
∑
k 6=0

Γ(χk)e−2kπix.

4 Descent after the last maximum
Up to now, we have considered the descents after the first maximum in compositions of n. In this section,
we consider the descents after the last maximum. A comparison of the series expansion (3.4), for the
sum of descents after the first maximum, and (4.3) below, for the sum of descents after the last maximum
shows that the two problems are not equivalent.

In symbolic notation, we have two cases depending on whether the last maximum occurs at the end or
not. For the left case in Figure 2, we need the generating function for the single part of size less than h
that immediately follows the maximum. This is given by

y
(
xuh−1 + x2uh−2 + · · ·+ xh−1u

)
= yux

uh−1 − xh−1

u− x
,

where x marks the size of the part, y the number of parts and u the size of the descent after the last max-
imum. Thus, combining the two cases and summing over h we obtain the generating function G(x, y, u)
analogous to F (x, y, u) in Section 2.

G(x, y, u) = 1 +

∞∑
h=1

Ch(x, y)yxh
(
uh + Ch−1(x, y)yux

uh−1 − xh−1

u− x

)
,

where C(h) is from Lemma 1. After substituting y = 1 and the expressions for Ch(x, 1) and Ch−1(x, 1),
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we have

G(x, 1, u) = 1 +

∞∑
h=1

(1− x)xh
(
uh + ux(1−x)(uh−1−xh−1)

(u−x)(1−2x+xh)

)
1− 2x+ xh+1

.

Then the generating function for the sum of the descents after the last maximum is

B(x) :=
∂G(x, 1, u)

∂u

∣∣∣∣
u=1

=

∞∑
h=1

(1− x)xh
(
h+ (h−1)x

1−2x+xh + x(1−xh−1)
1−2x+xh − x(1−xh−1)

(1−x)(1−2x+xh)

)
1− 2x+ xh+1

=

∞∑
h=1

xh
(
−x(1− xh) + h(1− x)(1− x+ xh)

)
(1− 2x+ xh)(1− 2x+ xh+1)

=

∞∑
h=1

(
h+ x− hx

x
+

x(2− h)

1− 2x+ xh
− h+ x− 3hx+ hx2

x(1− 2x+ xh+1)

)
.

Thus we have shown

Theorem 3 The generating function for the sum of the descents after the last maximum in compositions
of n is

∞∑
h=1

(
h+ x− hx

x
+

x(2− h)

1− 2x+ xh
− h+ x− 3hx+ hx2

x(1− 2x+ xh+1)

)

where x marks the size of the composition.

To proceed with our calculations, we let the upper limit of the sum beN and later chooseN sufficiently
large. Thus, we consider

BN (x) : =

N∑
h=1

(
h+ x− hx

x
+

x(2− h)

1− 2x+ xh
− h+ x− 3hx+ hx2

x(1− 2x+ xh+1)

)

=

N∑
h=1

(
h+ x− 3hx+ hx2 + hxh + xh+1 − hxh+1

x(1− 2x+ xh)
− h+ x− 3hx+ hx2

x(1− 2x+ xh+1)

)

=

N∑
h=2

(
h+ x− 3hx+ hx2 + hxh + xh+1 − hxh+1

x(1− 2x+ xh)
− h− 1 + x− 3(h− 1)x+ (h− 1)x2

x(1− 2x+ xh)

)
+

1− x+ x2

x(1− x)
− N + x− 3Nx+Nx2

x(1− 2x+ xN+1)

(4.1)
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for N ≥ n. This has the same coefficient of xn as

bN (x) : =

N∑
h=2

1− 3x+ x2 + hxh + xh+1 − hxh+1

x(1− 2x+ xh)
− N(1− 3x+ x2)

x(1− 2x)
− 1

1− 2x
+

1− x+ x2

x(1− x)

=

N∑
h=2

(
−1− 3x+ x2

x(1− 2x)
+

1− 3x+ x2 + hxh + xh+1 − hxh+1

x(1− 2x+ xh)

)
+

1− x+ x2

x(1− x)
+

(x− 1)2

x(2x− 1)
.

(4.2)

Thus [xn]B(x) = [xn]bN (x) for N ≥ n. For example, for N = 10, the series expansion for the
expressions for B(x) and b10(x) both begin with

x+ 3x2 + 7x3 + 16x4 + 34x5 + 73x6 + 152x7 + 318x8 + 658x9 + 1360x10. (4.3)

The coefficient of x4 is illustrated in the table below:

Compositions of n = 4 1111 211 121 112 13 31 22 4 Total

Size of descent after last maximum 1 1 1 2 3 2 2 4 16

4.1 Asymptotics
Here, we use Mellin transforms to study the average size of the descent after the last maximum in a
composition of n.

Theorem 4 The average descent after the last occurrence of the maximum in a composition of n is asymp-
totic to

log2 n−
5

2
+

γ

log 2
− δ(log2 n)

where δ(x) is a continuous periodic function of period 1, mean zero, small amplitude and Fourier expan-
sion

δ(x) =
∑
k 6=0

Γ(χk)e−2kπix.

Proof: We rewrite the generating function in (4.2) in the form

1− x+ x2

x(1− x)
+

(x− 1)2

x(2x− 1)
+

N∑
h=2

(
−1− 3x+ x2

x(1− 2x)
+

1− 3x+ x2

x(1− 2x+ xh)

)
+

N∑
h=2

hxh + xh+1 − hxh+1

x(1− 2x+ xh)
,

where the coefficients of xn in the first two terms are 1 and −2n−1 respectively for n ≥ 1. Given n we
choose N such that N ≥ n.

As before, let ρh = 1
2 (1 + 2−h +O(h2−2h)) be the smallest positive root of 1− 2x+ xh. Then

[xn]

(
−1− 3x+ x2

x(1− 2x)

)
= 2n−1
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and

q̂n,h := [xn]

(
− 1− 3x+ x2

x(1− 2x+ xh)

)
∼ chρ−nh

with
ch =

1

2
(1 +O(h2−h)).

Thus, once again q̂n,h ∼ 2n−1e−n/2
h

for the dominant range of h with h ≤ n .
Then, for any n and N chosen such that N ≥ n, we have

en : = [xn]

N∑
h=2

(
−1− 3x+ x2

x(1− 2x)
+

1− 3x+ x2

x(1− 2x+ xh)

)

= 2n−1

( ∞∑
h=2

(1− e−n/2
h

) + o(1)

)
.

This is precisely the same as the sum estimated by Mellin transforms in the proof of Theorem 2.
Also as in the proof of Theorem 2, we find

[xn]

N∑
h=2

hxh + xh+1 − hxh+1

x(1− 2x+ xh)
= O

(
2n

log n

n

)
.

Dividing by 2n−1 to obtain the mean value yields the same asymptotic result as in Theorem 2. 2

Remark: Even though we have the same asymptotic results in Theorems 2 and 4, the series expansions
(3.4) and (4.3) illustrate the fact that the sum of descents are in fact greater in the case of the last maximum,
than they are for the first maximum, for n > 1.

5 Bijection to show that on average the descent after the last
maximum is greater than the descent after the first

In this section, we show with the use of a simple bijection f between the compositions of n > 1, that the
average descent after the last maximum is greater than the average descent after the first maximum.

The bijection is defined as follows:
The composition is mapped to itself if it is one of the following 3 types:
Type 1: the composition has only one maximum.
Type 2: the composition has 2 or more maxima, where one of them occurs at the end.
Type 3: the composition has 2 or more maxima, none of which occur at the end and the first maximum

is immediately followed by a maximum.
However, if we have
Type 4: the composition has 2 or more maxima, none of which occur at the end and the first one is not

followed immediately by a maximum, then the bijection swaps the positions of the two elements which
occur after the first and last maxima and preserves the rest.

We illustrate the bijection for a composition of type 4 below.
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Consider the composition 26136651. It has 3 maxima, none occur at the end and the first maximum
σ2 = 6 is not followed directly by another maximum. We swap σ3 = 1 with σ7 = 5 and therefore the
composition is mapped to 26536611 as illustrated using bargraphs below:

-

�

A
A
AU

A
A
AU

A
A
AU

A
A
AU

First max Last max First max Last max

A

B B

A

2 6 1 3 6 6 5 1 2 6 5 3 6 6 1 1
Fig. 3: Bijection for Type 4. Parts A and B are interchanged

We define Fi (resp. Li) to be the sum of the descents after the first (resp. last) maximum of compositions
of type i = 1, 2, 3, 4. Thus, for i = 1 and 4 we have Fi = Li and for i = 2 and 3 we have Fi < Li.

So, collectively, we have

∂F

∂u

∣∣∣∣
u=1

=

4∑
i=1

Fi, and
∂G

∂u

∣∣∣∣
u=1

=

4∑
i=1

Li

for the first descents and last descents respectively.
It is clear that f is a bijection on each of the disjoint types. Thus

∂G

∂u

∣∣∣∣
u=1

− ∂F

∂u

∣∣∣∣
u=1

= (L2 − F2) + (L3 − F3) > 0

which is our required result.
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