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The implicit signature κ consists of the multiplication and the (ω − 1)-power. We describe a procedure to trans-
form each κ-term over a finite alphabet A into a certain canonical form and show that different canonical forms have
different interpretations over some finite semigroup. The procedure of construction of the canonical forms, which
is inspired in McCammond’s normal form algorithm for ω-terms interpreted over the pseudovariety A of all finite
aperiodic semigroups, consists in applying elementary changes determined by an elementary set Σ of pseudoiden-
tities. As an application, we deduce that the variety of κ-semigroups generated by the pseudovariety S of all finite
semigroups is defined by the set Σ and that the free κ-semigroup generated by the alphabet A in that variety has
decidable word problem. Furthermore, we show that each ω-term has a unique ω-term in canonical form with the
same value over A. In particular, the canonical forms provide new, simpler, representatives for ω-terms interpreted
over that pseudovariety.

Keywords: Pseudovariety, implicit signature, κ-term, word problem, McCammond’s normal form, finite semigroup,
κ-semigroup, regular language

1 Introduction
A κ-term is a formal expression obtained from the letters of an alphabet A using two operations: the
binary, associative, concatenation and the unary (ω − 1)-power. Instead of working only with κ-terms,
we will operate in a larger set T κ̄A of terms, called κ̄-terms in [4] (in which κ̄ is called the completion of
κ), obtained from A using the binary concatenation and the unary (ω + q)-power for each integer q. Any
κ̄-term can be given a natural interpretation on each finite semigroup S: the concatenation is interpreted
as the semigroup multiplication while the (ω+ q)-power is the unary operation which sends each element
s of S to: sω , the unique idempotent power of s, when q = 0; sωsq , denoted sω+q , when q > 0; the
inverse of sω−q in the maximal subgroup containing sω , when q < 0. For a class C of finite semigroups
and κ̄-terms α and β, we say that C satisfies the κ̄-identity α = β, and write C |= α = β, if α and
β have the same interpretation over every semigroup of C. The κ̄-word (resp. κ-word) problem for C
consists in deciding, given a κ̄-identity (resp. a κ-identity) α = β, whether C |= α = β. The κ-word
problem for C is certainly a subproblem of the κ̄-word problem for C. Conversely, each finite semigroup
verifies xω+q = xω−1xq+1 for q ≥ 0 and xω+q = (xω−1)−q for q < 0. This means that for each κ̄-
term there exists a well determined κ-term with the same interpretation over every finite semigroup. As a
consequence, the word problems for κ-terms and for κ̄-terms over C are equivalent problems.
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160 José Carlos Costa

A pseudovariety of semigroups is a class of finite semigroups closed under taking subsemigroups, ho-
momorphic images and finite direct products. We also remember that κ and κ̄ are instances of so called
implicit signatures [7], that is, sets of implicit operations on finite semigroups containing the multipli-
cation. A motivation to prove the decidability of the σ-word problem, for an implicit signature σ and a
pseudovariety V, is that this is one of the properties required for V to be a σ-tame pseudovariety. The
tameness property of pseudovarieties was introduced by Almeida and Steinberg [7] with the purpose of
solving the decidability problem for iterated semidirect products of pseudovarieties. Although that ob-
jective has not yet been reached, tameness has proved to be of interest to solve membership problems
involving other types of operators [5]. For pseudovarieties of aperiodic semigroups it is common to use
the signature ω, consisting of the multiplication and the ω-power. A solution to the ω-word problem has
been obtained for the pseudovariety A of all finite aperiodic semigroups [15, 16] as well as for some of its
most important subpseudovarieties such as J of J -trivial semigroups [1], LSl of local semilattices [10]
and R ofR-trivial semigroups [9]. For non-aperiodic examples, in which the ω-power is not enough, we
refer to the pseudovarieties CR of completely regular semigroups [8] and LG of local groups [12] for
which the κ-word problem is solved.

In this paper, we study the κ̄-word problem (and so, equivalently, the κ-word problem) for the pseu-
dovariety S of all finite semigroups. A positive solution to this problem has been announced and outlined
by Zhil’tsov in [17] but, unfortunately, the author died without publishing a full version of that note. Our
approach is completely independent and consists of three stages. First, we declare some elements of T κ̄A to
be in a certain canonical form. Next, we show that an arbitrary κ̄-term can be algorithmically transformed
into one in canonical form and with the same value over S. Finally, we prove that distinct canonical
forms have different interpretations on some finite semigroup. This shows that for each κ̄-term there is
exactly one in canonical form with the same value over S. To test whether a κ̄-identity α = β holds
over S, it then suffices to verify if the canonical forms of the κ̄-terms α and β are equal, thus proving
the decidability of the word problem for Ωκ̄AS, the free κ̄-semigroup on A, via the homomorphism of
κ̄-semigroups η : T κ̄A → Ωκ̄AS that sends each a ∈ A to itself. The canonical forms we use, as well as
the procedure of their construction, are close to the normal forms introduced by McCammond [15] for
ω-terms over A. For this reason, we adopt some of McCammond’s terminology. The proof of correctness
of our algorithm is achieved by associating to each κ̄-term α a family of regular languages Ln,p(α), where
n and p are positive integers. The key property is that, if α and β are κ̄-terms in canonical form such that
Ln,p(α)∩Ln,p(β) 6= ∅ for large enough n and p, then α = β. This approach is similar to the one followed
by Almeida and Zeitoun in collaboration with the author [6] to give an alternative proof of correctness
over A of McCammond’s normal form reduction algorithm for ω-terms.

Denote by TωA the subset of T κ̄A formed by all ω-terms. The subset of the elements of TωA that are
in canonical form does not coincide with the set of McCammond’s ω-terms in normal form. Although
the notions of canonical form and (McCammond’s) normal form for ω-terms are similar, our definition
introduces an essential modification in the conditions of the normal form. This change makes in general
a canonical form be shorter than its normal form. For instance, the ω-term (aωbω)ω is in canonical form
while its normal form is (aωabbωba)ωaωabbω . Moreover each subterm of a canonical form is also a
canonical form, a property that is useful in inductive proofs and that fails for normal forms. Furthermore,
we show that each ω-term has a unique representative in canonical form with the same interpretation over
A.

The paper is organized as follows. In Section 2, we review background material and set the basic
notation for κ̄-terms. We introduce the κ̄-terms canonical form definition in Section 3 and prove some
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of their fundamental properties. Section 4 is devoted to the description of the algorithm to transform
any given κ̄-term into one in canonical form. The languages Ln,p(α) and their basic characteristics are
determined in Section 5. In Section 6, we complete the proof of the main results of the paper. Finally,
Section 7 attests the uniqueness of canonical forms for ω-terms over A.

2 Preliminaries
In this section we begin by briefly reviewing the main definitions and some facts about combinatorics on
words and profinite semigroups. The reader is referred to [14, 2, 3] for further details about these topics.
We then introduce a representation of κ̄-terms as well-parenthesized words that extends the representation
of ω-words used by McCammond and set up the basic terminology on these objects.

2.1 Words
Throughout the paper, we work with a finite alphabet A. The free semigroup (resp. the free monoid)
generated by A is denoted by A+ (resp. A∗). An element w of A∗ is called a (finite) word and its length
is represented by |w|. The empty word is denoted by 1 and its length is 0. The following result is known
as Fine and Wilf’s Theorem (see [14]).

Proposition 2.1 Let u, v ∈ A+. If two powers uk and vn of u and v have a common prefix of length at
least |u|+ |v| − gcd(|u|, |v|), then u and v are powers of the same word.

A word is said to be primitive if it cannot be written in the form un with n > 1. We say that two
words u and v are conjugate if there exist words w1, w2 ∈ A∗ such that u = w1w2 and v = w2w1. Note
that, if u is a primitive word and v is a conjugate of u, then v is also primitive. Let a total order be fixed
on the alphabet A. A Lyndon word is a primitive word which is minimal in its conjugacy class, for the
lexicographic order that extends to A+ the order on A. For instance, with a binary alphabet A = {a, b}
such that a < b, the Lyndon words until length four are a, b, ab, aab, abb, aaab, aabb, abbb. Lyndon words
are characterized as follows [13].

Proposition 2.2 A word is a Lyndon word if and only if it is strictly less than each of its proper suffixes.

In particular, any Lyndon word is unbordered, that is, none of its proper prefixes is one of its suffixes.

2.2 Pseudowords and σ-words
We denote by ΩAS the free profinite semigroup generated by A, whose elements are called pseudowords
(also known as implicit operations). The free semigroup A+ embeds in ΩAS and is dense in ΩAS. Given
x ∈ ΩAS, the closed subsemigroup of ΩAS generated by x contains a single idempotent denoted by xω ,
which is the limit of the sequence xn!. More generally, for each q ∈ Z, we denote by xω+q the limit of
the sequence xn!+q (with n! + q > 0).

An implicit signature is a set σ of pseudowords containing the multiplication. A σ-semigroup is an
algebra in the signature σ whose multiplication is associative. The σ-subsemigroup of ΩAS generated
by A is denoted by ΩσAS and its elements are called σ-words. It is well known that ΩσAS is the free
σ-semigroup on A. In this paper, we are interested in the most commonly used implicit signature κ =
{xy, xω−1}, usually called the canonical signature, and in its extension κ̄ = {xy, xω+q | q ∈ Z}.
Although κ is properly contained in κ̄, for each κ̄-term there exists a well determined κ-term with the same
interpretation over S, as observed above, since this pseudovariety verifies xω+q = xω−1xq+1 (q ≥ 0) and
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xω+q = (xω−1)−q (q < 0). This means that ΩκAS = Ωκ̄AS, whence the signatures κ and κ̄ have the same
expressive power over S, and that the κ-word and the κ̄-word problems over this class of semigroups are
equivalent.

From hereon, we will work with the signature κ̄ and denote by TA the set of all κ̄-terms. We do not
distinguish between κ̄-terms that only differ in the order in which multiplications are to be carried out.
Sometimes we will omit the reference to the signature κ̄ simply referring to an element of TA as a term.
For convenience, we allow the empty term which is identified with the empty word.

2.3 Notation for κ̄-terms
McCammond [15] represents ω-terms over A as nonempty well-parenthesized words over the alphabet
A ] {(, )}, which do not have ( ) as a factor. For instance, the ω-term (aωba(ab)ω)ω is represented by
the parenthesized word ((a)ba(ab)). Following this idea, we represent κ̄-terms over A as nonempty well-
parenthesized words over the alphabet AZ = A ] {

q

( ,
q

) : q ∈ Z}, which do not have
q

(
q

) as a factor.
Every κ̄-term over A determines a unique well-parenthesized word over AZ obtained by replacing each
subterm (∗)ω+q by

q

( ∗
q

) , recursively. Recall that the rank of a term α is the maximum number rank(α)
of nested parentheses in it. For example, the κ̄-term (aω−1ba(ab)ω)ω+5 has rank 2 and is represented

by
5

(
−1
( a
−1
) ba

0

( ab
0

)

5

) , where the rank 2 parentheses are shown in larger size for a greater clarity in the
representation of the term. Conversely, the κ̄-term associated with such a word is obtained by replacing
each matching pair of parentheses

q

(∗
q

) by (∗)ω+q . We identify TA with the set of these well-parenthesized
words over AZ. Throughout the rest of the paper, we will usually refer to a κ̄-term meaning its associated
word over AZ. Notice that, while the set AZ is infinite, each term uses only a finite number of its symbols.

2.4 Lyndon terms
Since κ̄-terms are represented as well-parenthesized words over AZ, each definition on words extends
naturally to κ̄-terms. In particular, a term is said to be primitive if it cannot be written in the form αn

with α ∈ TA and n > 1, and two terms α and β are conjugate if there exist terms γ1, γ2 ∈ TA such
that α = γ1γ2 and β = γ2γ1. In order to describe the canonical form for κ̄-terms, we need to fix a
representative element in each conjugacy class of a primitive term. For that, we extend the order on A to
AZ by letting

p

(<
q

(< x <
q

)<
p

) for all x ∈ A and p, q ∈ Z with p < q. A Lyndon term is a primitive
term that is minimal, with respect to the lexicographic ordering, in its conjugacy class. For instance, aab,
−1
(aa
−1
)b

2

(aa
2

)b and
−2
(a
−2
)

0

(
−1
(a
−1
)ab

0

) are Lyndon terms.

2.5 Portions of a κ̄-term
Terms of the form

q

( δ
q

) will be called limit terms, and δ and q will be called, respectively, its base and its
exponent. Consider a rank i+ 1 κ̄-term

α = γ0

q1

(δ1
q1

)γ1 · · ·
qn

(δn
qn

)γn, (2.1)

with rank(γj) ≤ i and rank(δk) = i. The number n, of limit terms of rank i+1 that are subterms of α, will
be called the lt-length of α. The κ̄-terms γj and δk in (2.1) will be called the primary subterms of α and

each δk will in addition be said to be a base of α. The factors of α of the form
qk

(δk
qk

)γk
qk+1

( δk+1

qk+1

) are called
crucial portions of α. The prefix γ0

q1

(δ1
q1

) and the suffix
qn

(δn
qn

)γn of α will be called respectively the initial
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portion and the final portion of α. The product
qn

( δn
qn

) γnγ0

q1

( δ1
q1

) of the final and initial portions will be
called the circular portion of α. Notice that the circular portion of α is a crucial portion of α2 and that, if
α is not a primitive term, then its circular portion is a crucial portion of α itself. A term γ0δ

j1
1 γ1 · · · δjnn γn,

obtained from α by replacing each subterm
qk

(δk
qk

) by δjkk with jk ≥ 1, is a rank i term called an expansion
of α. When each exponent jk is greater than or equal to a given positive integer p, the expansion is called
a p-expansion of α. The notion of expansion is extended to a rank 0 term β by declaring that β is its own
unique expansion.

3 Canonical forms for κ̄-terms
In this section, we give the definition of canonical form κ̄-terms and identify the reduction rules that will
be used, in Section 4, to transform each κ̄-term α into a canonical form α′, with rank(α′) ≤ rank(α). A
consequence of Theorem 6.1 below is that the κ̄-term α′ is unique and so we call it the canonical form of
α.

3.1 Canonical form definition
The canonical form for κ̄-terms is defined recursively as follows. Rank 0 canonical forms are the words
from A∗. Assuming that rank i canonical forms have been defined, a rank i+ 1 canonical form (κ̄-term)
is a κ̄-term α of the form

α = γ0

q1

(δ1
q1

)γ1 · · ·
qn

(δn
qn

)γn, (3.1)

where the primary subterms γj and δk are κ̄-terms such that the following conditions hold:

(cf.1) the 2-expansion γ0δ
2
1γ1 · · · δ2

nγn of α is a rank i canonical form;

(cf.2) each base δk of α is a Lyndon term of rank i;

(cf.3) no δk is a suffix of γk−1;

(cf.4) no δk is a prefix of some term γkδ
`
k+1 with ` ≥ 0.

For instance, the rank 1 terms ab
0

( abb
0

) ab
−2
( a
−2
) and

−1
( b
−1
)

4

( a
4

) b
1

( ab
1

) as well as the rank 2 terms
1

( a
1

)

−3

(
0

( b
0

)
1

( a
1

)

−3

)
0

( b
0

)
2

( a
2

) b and
2

(
−1
( ab

−1
)
−1
( a
−1
) b

0

( a
0

) b
2

)
0

(
−1
( a
−1
) b

0

( a
0

) b
0

) are in canonical
form. We say that a κ̄-term is in semi-canonical form if it verifies condition (cf.1) of the canonical form
definition. Of course, all canonical forms and all rank 1 terms are in semi-canonical form. The term
0

(a
0

)

−1

(
0

( b
0

)
0

(a
0

)
0

( b
0

)
0

(a
0

)

−1

)
0

( b
0

)
0

(a
0

)
0

( b
0

)

0

(
0

(a
0

)
0

( b
0

)

0

) constitutes an example of a semi-canonical form of rank
2 that is not in canonical form. Notice that the exponents qk do not intervene in conditions (cf.1)–(cf.4),
which means that α being or not in (semi-)canonical form is independent of the qk. That is, if a κ̄-term α
of the form (3.1) is in (semi-)canonical form, then any κ̄-term obtained from α by replacing the exponent
qk (k = 1, . . . , n) by some q′k is also in (semi-)canonical form.

As one may note, the canonical form definition for crucial portions does not coincide with the one
that McCammond [15] imposed on crucial portions of ω-terms in normal form. While McCammond’s
definition is symmetric relative to the limit terms of the crucial portion and in some cases forces the
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central factor to have some copies of the bases adjacent to them, we choose to let each limit term absorb
all adjacent occurrences of its base (even when they overlap the limit term on its right side), a strategy
already used by the author in [10] to solve the ω-word problem for the pseudovariety LSl. This way the
canonical form definition for crucial portions looses symmetry but determines shorter canonical forms.
For instance, the κ̄-terms α1 = (aωbω)ω and α2 = aω−1abbω−2ba(aω−2abbω−2ba)ω−2aω−2abbω−1 have
the same interpretation over S. With the above canonical form definition, α1 is the canonical form of both
α1 and α2, while with McCammond’s alternative, α2 would be their common canonical form. Moreover
these canonical forms have the following nice property that fails, in part, for McCammond’s normal forms.

Proposition 3.1 The following conditions are equivalent for a term α:

(a) The term α is in (semi-)canonical form.

(b) Every subterm of α is in (semi-)canonical form.

(c) The initial portion, the final portion and all of the crucial portions of α are in (semi-)
canonical form.

Proof: The proof is made by induction on the rank of α. For rank(α) = 0, the result holds trivially. Let
now rank(α) = i+ 1 and suppose, by the induction hypothesis, that the proposition holds for κ̄-terms of
rank at most i.

To show the implication (a)⇒(b), assume that α is in semi-canonical form and that it has the form (3.1).
Consider a subterm β of α and let us prove that β is in semi-canonical form. Suppose first that rank(β) =

i + 1. In this case β is of the form β = γ′j−1

qj

( δj
qj

) γj · · ·
qk

( δk
qk

) γ′k where 1 ≤ j ≤ k ≤ n, γ′j−1 is a
suffix of γj−1 and γ′k is a prefix of γk. The 2-expansion β1 = γ′j−1δ

2
j γj · · · δ2

kγ
′
k of β is a subterm of

the 2-expansion α1 = γ0δ
2
1γ1 · · · δ2

nγn of α. As α is in semi-canonical form, α1 is in canonical form.
Now, since α1 is rank i and β1 is a subterm of α1, we infer from the induction hypothesis that β1 is in
canonical form. Hence, β is in semi-canonical form. Note that assuming further that α is in canonical
form, i.e., that α verifies conditions (cf.2)–(cf.4), it follows that also β verifies those conditions whence
it is in canonical form. Suppose now that rank(β) ≤ i. Then β is a subterm of some primary subterm of
α, whence it is a subterm of the rank i canonical form α1. By the induction hypothesis, it follows that β
is also in semi-canonical form in this case (and it is in canonical form when α is in canonical form).

The implication (b)⇒(c) is obvious, while (c)⇒(a) follows easily from the hypothesis (c) and from
the induction hypothesis. 2

We say that a κ̄-term α is in circular canonical form if α2 is in canonical form. The following observa-
tion is an immediate, trivially verifiable, consequence of Proposition 3.1.

Corollary 3.2 Let α be a κ̄-term.

(a) The term α is in circular canonical form if and only if both α and its circular portion are in canonical
form.

(b) If α is in circular canonical form then any conjugate of α is also in circular canonical form.

(c) If α is in semi-canonical form then every base of α is in circular canonical form and the other
primary subterms of α are in canonical form; more generally, for any subterm β of α, every base of
β is in circular canonical form and the other primary subterms of β are in canonical form.
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(d) If α is in canonical form and it is not a primitive term, then α is in circular canonical form.

3.2 Rewriting rules for κ̄-terms
The procedure to transform an arbitrary κ̄-term into its canonical form, while retaining its value on finite
semigroups, consists in applying elementary changes resulting from reading in either direction the κ̄-
identities of the following set Σ (where n, p, q ∈ Z with n > 0):

(αω+p)ω+q = αω+pq,

(αn)ω+q = αω+nq,

αω+pαω+q = αω+p+q,

ααω+q = αω+q+1 = αω+qα,

(αβ)ω+qα = α(βα)ω+q.

The types of changes are therefore given by the following rewriting rules for terms

1.
q

(
p

(α
p

)

q

) �
pq

(α
pq

) 4L. α
q

(α
q

) �
q+1

(α
q+1

)

2.
q

(αn
q

) �
nq

(α
nq

) 4R.
q

(α
q

)α �
q+1

(α
q+1

)

3.
p

(α
p

)
q

(α
q

) �
p+q

(α
p+q

) 5.
q

(αβ
q

)α � α
q

(βα
q

)

We call the application of a rule of type 1–4 from left to right (resp. from right to left) a contraction (resp.
an expansion) of that type. An application of a rule of type 5, in either direction, will be called a shift. We
say that terms α and β are equivalent, and denote α ∼ β, if there is a derivation from α to β (that is, there
is a finite sequence of contractions, expansions and shifts that starts in α and ends in β).

Example 3.3 Consider the rank 2 canonical form δ = b5a
3

(
0

( b
0

)a
3

)
−5
( b
−5
) . The rank 3 term α =

−2

( δ
−2

) can
be rewritten as follows

α→
−2

( b5a
3

(
−5
(b
−5
)b5a

3

)
−5
(b
−5
)

−2

)→
−2

(
3

( b5a
−5
(b
−5
)

3

) b5a
−5
(b
−5
)

−2

)→
−2

(
4

( b5a
−5
(b
−5
)

4

)
−2

)→
−8

( b5a
−5
(b
−5
)

−8

)

→
−9

( b5a
−5
(b
−5
)

−9

) b5a
−5
(b
−5
) → b5a

−9

(
−5
(b
−5
)b5a

−9

)
−5
(b
−5
) → b5a

−9

(
0

(b
0

)a
−9

)
−5
(b
−5
) = α′.

The first step in this derivation is an expansion of type 4R, the second is a shift, the third step is a
contraction of type 4R, the fourth is a contraction of type 1, the fifth step is an expansion of type 4R, the
sixth is a shift, and the final step is a contraction of type 4R.

Notice that in the above example δ is a term of the form ε1

3

( β
3

) ε2 such that ε2ε1 ∼ β. Moreover
−2

( ε1
3

( β
3

) ε2

−2

) = α ∼ α′ = ε1
−9
( β
−9
) ε2 and −9 = (3 + 1)(−2) − 1. The example illustrates the following

observation.

Fact 3.4 If δ is a term of the form δ = ε1

p

( β
p

) ε2 with ε2ε1 ∼ β, then
q

( δ
q

) ∼ ε1
r

( β
r

) ε2 where
r = (p+ 1)q − 1.

Proof: The sequence of equivalences
q

( ε1

p

(β
p

)ε2

q

) ∼
q

( ε1

p

(ε2ε1

p

)ε2

q

) ∼
q

(
p

(ε1ε2

p

)ε1ε2

q

) ∼
q

(
p+1

(ε1ε2

p+1

)

q

) ∼
r+1

(ε1ε2
r+1

)∼ ε1

r

(ε2ε1

r

)ε2 ∼ ε1
r

(β
r

)ε2
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can be easily deduced from the hypothesis ε2ε1 ∼ β and the reduction rules. 2

Since all κ̄-identities of Σ are easily shown to be valid in S, if α ∼ β then S |= α = β. We will prove
below that the converse implication also holds. We do this by transforming each κ̄-term into an equivalent
canonical form and by showing that, if two given canonical forms are equal over S then they are precisely
the same κ̄-term. This solves the κ̄-word problem for S.

4 The canonical form algorithm
We describe an algorithm that computes the canonical form of any given κ̄-term. The algorithm will be
defined recursively on the rank of the given term. Recall first that all rank 0 terms are already in canonical
form and so they coincide with their canonical form. Assuming that the method to determine the canonical
form of any term of rank at most i was already defined, we show below how to reduce an arbitrary term
of rank i + 1 to its canonical form. The rank i + 1 canonical form reduction algorithm consists of two
major steps. The first step reduces the given term to a semi-canonical form and the second step completes
the calculation of the canonical form. It will be convenient to start with the description of the second step
since this will be used, in rank i, to define the first step in rank i+ 1. Notice that the first step in rank 1 is
trivial since every rank 1 term is already in semi-canonical form.

4.1 Step 2
The procedure to compute the canonical form of an arbitrary rank i + 1 term α1 in semi-canonical form
is the following.

2.1) Apply all possible rank i+ 1 contractions of type 2.

2.2) By means of a rank i + 1 expansion of type 4, if necessary, and a rank i + 1 shift, write each rank
i+ 1 limit term in the form

q

(δ
q

) where δ is a Lyndon term.

2.3) Apply all possible rank i+ 1 contractions of type 4.

2.4) Apply all possible rank i+ 1 contractions of type 3.

2.5) Put each rank i+ 1 crucial portion
q1

(δ1
q1

)γ
q2

(δ2
q2

) in canonical form as follows. By Step 2.3, δ1 is not a
prefix and δ2 is not a suffix of γ. Let ` be the minimum nonnegative integer such that |γδ`2| ≥ |δ1|. If
δ1 is not a prefix of γδ`2 then the crucial portion

q1

(δ1
q1

)γ
q2

(δ2
q2

) is already in canonical form. Otherwise
` 6= 0. In this case, apply ` rank i+ 1 expansions of type 4L to the limit term on the right side of the
crucial portion, followed by all possible, say n, rank i + 1 contractions of type 4R, thus obtaining

a term
q1+n

( δ1
q1+n

) ε
q2−`

( δ2
q2−`

) where ε is a proper suffix of δ2 having not a prefix δ1. In view of the
following claim the step is complete.

Claim The crucial portion
q1+n

( δ1
q1+n

) ε
q2−`

( δ2
q2−`

) is in canonical form.

Proof: To prove the claim it suffices to show that δ1 is not a prefix of εδk2 for all k ≥ 1. Assume, by way
of contradiction, that δ1 is a prefix of some εδk2 . We have δ1 = γδ`−1

2 ε1 and δn−1
1 = ε2 with δ2 = ε1ε2ε

and ε1 nonempty. Since ε1 is a suffix of the Lyndon term δ1, we have δ1 ≤ ε1 by Proposition 2.2, and
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since it is a prefix of δ2, we have ε1 ≤ δ2. Therefore δ1 ≤ δ2. Suppose that δ1 = δ2. In this case, δ2 ≤ ε1

and ε1 ≤ δ2, whence ε1 = δ2. From δ1 = γδ`−1
2 ε1 it then follows that γ is the empty word (and ` = 1).

This is not possible since Step 2.4 eliminated all crucial portions of the form
p

(δ1
p

)
q

(δ1
q

) . Thus δ1 6= δ2 and
so δ1 < δ2.

Suppose that γ is the empty word. Then δ1 = δ`−1
2 ε1 and so, as δ2 cannot be a prefix of δ1 (since in

that case we would have δ2 ≤ δ1, in contradiction with δ1 < δ2), ` = 1 and δ1 = ε1 with ε1 a proper
prefix of δ2. Hence |δ1| < |δ2| and so, from the initial assumption, δ1 = εε3 for some nonempty proper
prefix ε3 of δ2. As δ1 is a prefix of δ2, it follows that ε3 is both a proper prefix and a suffix of δ1. That
is, δ1 is a bordered word, which contradicts the fact of δ1 being a Lyndon word. Consequently, we may
assume that γ is not the empty word.

Suppose next that n > 1. Then ε2 is nonempty and so |δ1| < |δ2|. Hence ` = 1 and δ1 = γε1 with
|ε1| < |δ1|, whence ε1 is a proper suffix of δ1 and a proper prefix of δ2. In particular, by Proposition 2.2,
δ1 < ε1. On the other hand, as ε2ε is a proper suffix of δ2, ε1 < δ2 < ε2ε = δn−1

1 ε and thus, as
|ε1| < |δ1|, ε1 < δ1. We reached a contradiction and so n = 1 and ε2 is empty.

Suppose now that ε is the empty word. Then ε1 = δ2 is a proper suffix of δ1. From the initial
assumption it then results that δ2 is also a prefix of δ1. This means that δ1 is a bordered word, a condition
that is impossible because δ1 is a Lyndon word. Therefore ε is a nonempty suffix of the Lyndon word δ2,
whence δ2 < ε. But ε is a proper prefix of δ1 by the initial assumption and so ε < δ1. It follows that
δ2 < δ1 in contradiction with the above inequality δ1 < δ2. This shows that δ1 cannot be a prefix of some
εδk2 and proves the claim. 2

It is easy to verify that this procedure produces a rank i + 1 term α2 in canonical form. Indeed, the
reduction rules that are eventually used in the process are of type 2–5. Hence, the term α2 is rank i + 1
since these rules do not change the rank of the original term α1. Moreover, by Proposition 3.1, α2 is in
semi-canonical form since α1 also is and the reduction rules are all applied in rank i+1 and do not change
the initial, final and crucial portions of the 2-expansions of the term. On the other hand, Steps 2.1 and
2.2 guarantee that α2 verifies condition (cf.2) of the canonical form definition, while condition (cf.3) is
obtained in Step 2.3. Finally, α2 satisfies (cf.4) due to the application of Steps 2.3 to 2.5. For instance,
applying the above algorithm to the rank 2 semi-canonical form

α1 =
0

(a
0

)

−1

(
0

(b
0

)
0

(a
0

)
0

(b
0

)
0

(a
0

)

−1

)
0

(b
0

)
0

(a
0

)
0

(b
0

)

0

(
0

(a
0

)
0

(b
0

)

0

)

one gets the following derivation

α1 →
0

(a
0

)

−2

(
0

(b
0

)
0

(a
0

)

−2

)
0

(b
0

)
0

(a
0

)
0

(b
0

)

0

(
0

(a
0

)
0

(b
0

)

0

)→
0

(a
0

)
0

(b
0

)

−2

(
0

(a
0

)
0

(b
0

)

−2

)
0

(a
0

)
0

(b
0

)

0

(
0

(a
0

)
0

(b
0

)

0

)

→
−1

(
0

(a
0

)
0

(b
0

)

−1

)
0

(a
0

)
0

(b
0

)

0

(
0

(a
0

)
0

(b
0

)

0

)→
0

(
0

(a
0

)
0

(b
0

)

0

)
0

(
0

(a
0

)
0

(b
0

)

0

)→
0

(
0

(a
0

)
0

(b
0

)

0

) .

The canonical form of α1 is thus the rank 2 term α2 =
0

(
0

(a
0

)
0

(b
0

)

0

).

4.2 Some preliminary remarks to the first step
The rank i + 1 canonical form reduction algorithm will be completed below with the description of Step
1. For now we present some preparatory results which will be useful for that purpose.
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Lemma 4.1 Let i ≥ 1 and let α be a rank i crucial portion of the form
q1

( δ1
q1

)γ
q2

( δ2
q2

) , where the bases δ1
and δ2 are rank i− 1 Lyndon terms in circular canonical form and rank(γ) ≤ i− 1. The canonical form
α′ of α is a rank i term that can be computed using Step 1 of rank at most i− 1 and Step 2 of rank at most
i of the canonical form reduction algorithm. Moreover, either

(I) α′ is a limit term
r1

( δ1
r1

) , in which case δ1 = δ2, the canonical form of γ is δp1 for some p ≥ 0 and
r1 = q1 + q2 + p; or

(II) α′ is a crucial portion of the form
r1

(δ1
r1

)ε
r2

(δ2
r2

) .

We then say that α is of type (I) or (II) depending on the condition (I) or (II) that the canonical form α′

verifies.

Proof: We proceed by induction on i. Assume first that i = 1. Then α is a rank 1 term and so it is in
semi-canonical form. The canonical form α′ may therefore be obtained by the application to α of Step 2
of the rank 1 canonical form algorithm. Moreover, since δ1 and δ2 are Lyndon terms by hypothesis, Steps
2.1 and 2.2 of the algorithm do not apply. If a contraction of type 3 is applied in the process (necessarily
in Step 2.4), then δ1 and δ2 are clearly the same word and so, by Step 2.3, γ = δp1 for some p ≥ 0. Hence,
α′ =

r1

( δ1
r1

) with r1 = q1 + q2 + p. If a contraction of type 3 is not applied, then α′ is a crucial portion of
the form

r1

(δ1
r1

)ε
r2

(δ2
r2

) since the canonicalization process on Step 2.5 does not change the bases δ1 and δ2.
Let now i > 1 and suppose, by induction hypothesis, that the lemma holds for crucial portions of rank

at most i − 1. The term α′ can be calculated as follows. First, use the rank j canonical form algorithm,
where j is the rank of γ, to compute the canonical form γ′ of γ. The application of two rank i expansions
of type 4 then give the term

p1

(δ1
p1

)δ1γ
′δ2

p2

(δ2
p2

) , where p1 = q1 − 1 and p2 = q2 − 1. By Proposition 3.1, to
reduce δ1γ′δ2 to its canonical form β, it is sufficient to reduce at most two rank i − 1 crucial portions to
their canonical form. Indeed, when rank(γ′) < i−1, at most the crucial portion π1γ

′π2 is not in canonical
form, where π1 is the final portion of δ1 and π2 is the initial portion of δ2. If rank(γ′) = i − 1, then at
most the crucial portions π1ρ1 and ρ2π2 are not in canonical form, where ρ1 and ρ2 are respectively the
initial and the final portions of γ′. By condition (cf.2) and Corollary 3.2 (c), the bases of those crucial
portions are rank i− 2 Lyndon terms in circular canonical form. Hence, by the induction hypothesis, they
either reduce to a single rank i− 1 limit term or to another rank i− 1 crucial portion with the same bases.
Therefore, the term δ2

1βδ
2
2 is in canonical form by Proposition 3.1, whence

p1

( δ1
p1

) β
p2

( δ2
p2

) is a rank i term
in semi-canonical form. Since δ1 and δ2 are Lyndon terms by hypothesis, to reduce

p1

( δ1
p1

) β
p2

( δ2
p2

) to its
canonical form α′ it suffices to apply to it Steps 2.3 to 2.5 of the rank i canonical form algorithm. As in
the case i = 1 above, one deduces that α′ is of one of the forms of the statement, thus completing the
inductive step of the proof. 2

The following is the analogue of Lemma 4.1 to initial and final portions. It has a similar proof and so
we leave its verification to the reader.

Lemma 4.2 Let i ≥ 1 and let α be a rank i initial portion γ
q

( δ
q

) or final portion
q

( δ
q

) γ, where the base
δ is a rank i− 1 Lyndon term in circular canonical form and rank(γ) ≤ i− 1. The canonical form α′ of
α can be computed using Step 1 of rank at most i − 1 and Step 2 of rank at most i of the canonical form
reduction algorithm. Moreover, α′ is a rank i term respectively of the forms ε

r

(δ
r

) and
r

(δ
r

)ε.
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As a consequence of Proposition 3.1 and Lemmas 4.1 and 4.2, we get the following property of the
product of two canonical forms.

Lemma 4.3 Let α and β be terms in canonical form, let (αβ)′ be the canonical form of αβ and let α1 be
the final portion of α and β1 be the initial portion of β.

(a) When rank(α) < rank(β), (αβ)′ is obtained by reducing the initial portion αβ1 of αβ to its canon-
ical form. In particular, the lt-length of (αβ)′ is the lt-length of β.

(b) When rank(α) = rank(β), (αβ)′ is obtained by reducing the crucial portion α1β1 of αβ to its
canonical form. In particular, if α and β have lt-length of m and n respectively, then the lt-length of
(αβ)′ is either m+ n− 1 when α1β1 is of type (I), or m+ n when α1β1 is of type (II).

(c) When rank(α) > rank(β), (αβ)′ is obtained by reducing the final portion α1β of αβ to its canonical
form. In particular, the lt-length of (αβ)′ is the lt-length of α.

Proof: For (a), as rank(α) < rank(β), the initial portion of αβ is αβ1 and, as β is in canonical form,
the base of β1 is a Lyndon term in circular canonical form by condition (cf.2) and Corollary 3.2 (c). By
Proposition 3.1, since all crucial portions and the final portion of αβ are from β and β is in canonical
form, to obtain the canonical form of αβ it is sufficient to reduce αβ1 to its canonical form. Condition (a)
then follows immediately from Lemma 4.2. The proof of the other conditions is similar. 2

Another consequence of the above lemmas is the following property of limit terms, which will be
fundamental for the construction of the first step of the canonical form reduction algorithm.

Proposition 4.4 Let π =
q

(ρ
q

) be a rank i + 1 limit term with i ≥ 1 and base ρ in canonical form. Using
the canonical form reduction algorithm of rank at most i, it is possible to derive from π a semi-canonical
form π1 such that:

(a) If ρ has lt-length 1 and its circular portion is of type (I), then either:

(1) ρ is of the form
q1

(δ1
q1

) and π1 =
qq1

(δ1
qq1

) ; or

(2) ρ is of the form γ0

q1

(δ1
q1

)γ1 with γ1γ0 ∼ δ1 and π1 = γ0

r

(δ1
r

)γ1 where r = q(q1 + 1)− 1.

In both cases π1 is a rank i term in canonical form.

(b) If ρ has lt-length greater than 1 or its circular portion is of type (II), then π1 is a rank i+ 1 term of
the form ε0

r

(β
r

)ε1 with rank(ε0) = rank(ε1) = i.

Proof: Let ρ = γ0

q1

( δ1
q1

) γ1 · · ·
qn

( δn
qn

) γn be the canonical form for ρ and let α =
qn

( δn
qn

) γnγ0

q1

( δ1
q1

)

be the circular portion of ρ. In order to prove (a), suppose that n = 1 and that α is of type (I). Then
ρ = γ0

q1

( δ1
q1

) γ1 and, by Lemma 4.1, α =
q1

( δ1
q1

) γ1γ0

q1

( δ1
q1

) reduces to a limit term
r1

( δ1
r1

) and the canonical

form of γ1γ0 is δp1 for some p ≥ 0. If p = 0 then γ0 and γ1 are both the empty term and so π =
q

(
q1

(δ1
q1

)

q

) .
In this case, applying a contraction of type 1 one gets a semi-canonical form π1 =

qq1

( δ1
qq1

) , which is in fact
the canonical form of π. Suppose now that p 6= 0. In this case the rank of γ1γ0 is the rank of δ1, that is,
rank(γ1γ0) = i − 1. If rank(γ1) < rank(γ0) then, by Lemma 4.3 (a), the lt-length of δp1 is the lt-length
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of γ0. As δ1 is not a suffix of γ0 by condition (cf.3) of the canonical form definition, we deduce that
p = 1. The events rank(γ1) = rank(γ0) and rank(γ1) > rank(γ0) are treated analogously and give the
same result p = 1. This shows that δ1 is the canonical form of γ1γ0 and, so, that γ1γ0 ∼ δ1. By Fact 3.4,
π reduces to the term γ0

r

( δ1
r

) γ1, where r = q(q1 + 1) − 1, which is obviously in canonical form. This
completes the proof of (a).

For (b), suppose first n > 1. By Lemma 4.1, α reduces to a crucial portion of the form
rn

( δn
rn

)σ, where
σ is either the empty term (in which case δn = δ1) or a term of the form ε

r1

( δ1
r1

) . Let q′ = q − 1 and
q′′ = q − 2. The following derivation is now easily deduced

π → γ0

q1

(δ1
q1

)γ1 · · ·
qn

(δn
qn

)γn
q′′

(γ0

q1

(δ1
q1

)γ1 · · ·
qn

(δn
qn

)γn
q′′

) γ0

q1

(δ1
q1

)γ1 · · ·
qn

(δn
qn

)γn

→ γ0

q1

(δ1
q1

)γ1 · · ·
qn

(δn
qn

)γnγ0

q1

(δ1
q1

)

q′′

(γ1 · · ·
qn

(δn
qn

)γnγ0

q1

(δ1
q1

)

q′′

) γ1 · · ·
qn

(δn
qn

)γn
∗→ γ0

q1

(δ1
q1

)γ1 · · ·
rn

(δn
rn

)σ
q′′

(γ1 · · ·
rn

(δn
rn

)σ
q′′

) γ1 · · ·
qn

(δn
qn

)γn

→ γ0

q1

(δ1
q1

)

q′

(γ1 · · ·
rn

(δn
rn

)σ
q′

) γ1 · · ·
qn

(δn
qn

)γn.

This last term is clearly in semi-canonical form. On the other hand it verifies the properties of the term
π1 in (b). Suppose now that α is of type (II). If q 6∈ {−1, 1}, then q has some prime divisor p. Let

k = q
p . Applying an expansion of type 1 to π one gets the term

k

(ρp
k

) . Hence, π reduces to the term
k

( τ
k

)

where τ is the canonical form of ρp. By Lemma 4.3 (b), as α is of type (II), the lt-length of τ is exactly

pn and thus greater than 1. Therefore, by the case n > 1 above,
k

( τ
k

) , and on its turn π, reduces to a
term π1 as stated in (b). Finally, for q ∈ {−1, 1}, apply an expansion of type 4R to π in order to obtain

the term
q′

( ρ
q′

) ρ , where q′ = q − 1 ∈ {−2, 0}. By the previous cases, this term reduces to some term
ε0

r

( β
r

) ε1ρ with ε0

r

( β
r

) ε1 a rank i + 1 semi-canonical form such that rank(ε0) = rank(ε1) = i . To
complete the construction of π1 in the current case it suffices to put ε1ρ in canonical form, thus showing
that condition (b) holds. 2

We are now ready to present the first step of the canonical form reduction algorithm.

4.3 Step 1
The procedure to compute an equivalent semi-canonical form α1 of an arbitrary rank i + 1 term α is as
follows.

1.1) In case i = 0, declare α1 to be α and stop (since every rank 1 term is already in semi-canonical
form).

1.2) Apply the rank i canonical form reduction algorithm to each base of α. We note that, this way, some
(or all) of the original rank i + 1 limit terms may have been transformed into terms with strictly
smaller rank. If the term obtained is rank j + 1 with j < i, then go to the beginning of Step 1 and
take i as j.

1.3) Replace each rank i+ 1 limit term π by the semi-canonical form π1 given by Proposition 4.4. Once
again, if the term obtained is no longer of rank i+ 1, then go to the beginning of Step 1.
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1.4) Apply the rank i canonical form reduction algorithm to each primary subterm that does not occur as
a base.

The κ̄-term α1 that emerges from this procedure is indeed a term in semi-canonical form. This is
an immediate consequence of Proposition 4.4 (b) since the bases of α1 are the bases β of the subterms
π1 = ε0

r

(β
r

)ε1, introduced on Step 1.3, that come from that result and, so, are terms in circular canonical
form. Moreover, as ε0 and ε1 are rank i terms in canonical form, the reduction made by Step 1.4 does
not change the final portion of ε0 neither the initial portion of ε1, except for possible modifications of the
exponents of the corresponding limit terms. As a result, the term obtained from α1 by replacing each limit
term

r

(β
r

) by β2 is in canonical form, so that α1 is in semi-canonical form.

5 Languages associated with κ̄-terms
An alternative proof of correctness of McCammond’s normal form reduction algorithm for ω-terms over
A was presented in [6] and is based on properties of certain regular languages Ln(α) associated with ω-
terms α, where n is a positive integer. Informally, the languageLn(α) is obtained from α by replacing each
ω-power by a power of exponent at least n. The key property of the languages Ln(α) is that they are star-
free when α is in McCammond’s normal form and n is sufficiently large. In this paper, similar languages
will play a fundamental role in the proof of Theorem 6.1. Given a κ̄-term α and a pair (n, p) of positive
integers, we define below a language Ln,p(α) whose elements, informally speaking, are obtained from
α by recursively replacing each ω by an integer beyond n and congruent modulo p with that threshold.
In particular, when the κ̄-term α is an ω-term, Ln,1(α) = Ln(α). So, the above operators Ln associated
with ω-terms constitute an instance of a more general concept of operators Ln,p associated with κ̄-terms.
Moreover, as we shall see below, the basic properties of the operators Ln presented in [6] extend easily to
Ln,p.

5.1 Expansions of κ̄-terms
Let α be a κ̄-term. Denote by Q(α) the set of all q ∈ Z for which there exists a subterm of α of the form
βω+q , that is,

Q(α) = {q ∈ Z :
q

(occurs in the well-parenthesized word of AZ representing α}.

Now, let ν(α) be the nonnegative integer

ν(α) = max{|q| : q ∈ Q(α)},

named the scale of α, and note the following immediate property of this parameter.

Remark 5.1 If α′ is either a subterm or an expansion of a κ̄-term α, then ν(α′) ≤ ν(α).

Fix a pair of positive integers (n, p). Usually we will impose high lower bounds for such integers in
order to secure the properties we need. For now, when the pair (n, p) is associated with a κ̄-term α, we
assume that n is greater than the scale ν(α) of α. For each q ∈ Q(α), we let q be the set

q = {n + jp + q : j ≥ 0} (5.1)

of positive integers with minimal element n + q and congruent mod p.
The language Ln,p(α) is formally defined as follows, by means of sequential expansions that unfold the

outermost (ω + q)-powers enclosing subterms of maximum rank.
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Definition 5.2 (Word expansions) When α ∈ A∗, we let En,p(α) = {α}. Otherwise, consider a rank
i+ 1 κ̄-term α = γ0δ

ω+q1
1 γ1 · · · δω+qr

r γr, where rank(δk) = i and rank(γj) ≤ i for all k and j. We let

En,p(α) = {γ0δ
n1
1 γ1 · · · δnr

r γr : nj ∈ qj for j = 1, . . . , r}.

For a set K of κ̄-terms, we let En,p(K) =
⋃
β∈K En,p(β). We then let

Ln,p(α) = Erank(α)
n,p (α),

where Ejn,p is the j-fold iteration of the operator En,p.

For example, let α = (ab)ω−1aabaωb(ab)ω+5a and let (n, p) be arbitrary. We have

Ln,p(α) = En,p(α) = {(ab)n+jp−1aaban+kpb(ab)n+`p+5a : j, k, ` ≥ 0}.

Consider now the rank 2 canonical form β = (aω−1b)ωaω+1. We have L8,4(β) = E2
8,4(β) and

E8,4(β) = {(aω−1b)8+4jaω+1 : j ≥ 0}. Hence

L8,4(β) =
⋃
j≥0E8,4((aω−1b)8+4jaω+1)

=
⋃
j≥0{a7+4k1ba7+4k2b · · · a7+4k8+4j ba9+4k9+4j : k1, . . . , k9+4j ≥ 0}.

The next lemma is analogous to [6, Lemma 3.2] and presents some simple properties of the operators
En,p and Ln,p.

Lemma 5.3 Let (n, p) be a pair of positive integers. The following formulas hold, where we assume that
n is greater than the scale of all κ̄-terms involved:

(a) for κ̄-terms α and β,

En,p(αβ) =


En,p(α)En,p(β) if rank(α) = rank(β)

αEn,p(β) if rank(α) < rank(β)

En,p(α)β if rank(α) > rank(β);

(b) for a κ̄-term α, Ln,p(α) = Ln,p(En,p(α));

(c) for sets U and V of κ̄-terms, we have Ln,p(UV ) = Ln,p(U)Ln,p(V );

(d) for a κ̄-term α = γ0δ
ω+q1
1 γ1 · · · δω+qr

r γr with each rank(δk) = i and rank(γj) ≤ i,

Ln,p(α) = Ln,p(γ0)Ln,p(δ
ω+q1
1 )Ln,p(γ1) · · ·Ln,p(δ

ω+qr
r )Ln,p(γr);

(e) for a κ̄-term α and an integer q, Ln,p(α
ω+q) = Ln,p(α)n+q(Ln,p(α)p)∗.

Proof: The proof of each condition (a)–(d) is identical to the proof of the corresponding statement in [6,
Lemma 3.2]. For (e), we only need to introduce minor changes. We have

Ln,p(α
ω+q) =

(b)
Ln,p(En,p(α

ω+q)) =
⋃
j≥0 Ln,p(α

n+jp+q)

=
(c)

⋃
j≥0 Ln,p(α)n+jp+q = Ln,p(α)n+q(Ln,p(α)p)∗,

thus completing the proof of the lemma. 2

The following important property of the languages Ln,p(α) can now be easily deduced.
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Proposition 5.4 Let α be a κ̄-term in canonical form and let (n, p) be a pair of positive integers with
n > ν(α). Then Ln,p(α) is a regular language.

Proof: We proceed by induction on rank(α). For rank(α) = 0 the result is clear since in this case
Ln,p(α) = {α}. Let now rank(α) = i + 1 with i ≥ 0 and suppose, by the induction hypothesis, that
the lemma holds for κ̄-terms of rank at most i. Let α = γ0δ

ω+p1
1 γ1 · · · δω+pr

r γr be the canonical form
expression for α, where rank(δk) = i and rank(γj) ≤ i for all k and j. Then, by Lemma 5.3,

Ln,p(α) = Ln,p(γ0)Ln,p(δ1)n+q1(Ln,p(δ1)p)∗Ln,p(γ1) · · ·Ln,p(δr)
n+qr (Ln,p(δr)

p)∗Ln,p(γr).

By the induction hypothesis, each Ln,p(γj) and Ln,p(δk) is a regular language, whence Ln,p(α) is itself a
regular language. This completes the inductive step and concludes the proof of the result. 2

For instance, the language L8,4(β) associated with the above κ̄-term β = (aω−1b)ωaω+1 admits the
regular expression L8,4(β) = (a7(a4)∗b)8((a7(a4)∗b)4)∗a9(a4)∗. Notice that, in this example, n = 8 is
a multiple of p = 4 and so the sequence

(
(ak!−1b)k!ak!+1

)
k

of A+ is ultimately contained in L8,4(β).
Thus,

η(β) ∈ cl(L8,4(β)) (5.2)

where η : T κ̄A → Ωκ̄AS is the homomorphism of κ̄-semigroups that sends each x ∈ A to itself and
cl(L8,4(β)) denotes the topological closure of the language L8,4(β) in ΩAS.

5.2 Schemes for canonical forms
We define the length of a κ̄-term α as the length of the corresponding well-parenthesized word over AZ,
and denote it |α|. We now associate to each κ̄-term α a parameter µ(α), introduced in [6] for ω-terms. In
case α ∈ A+, let µ(α) = 0. Otherwise, let

µ(α) = 2rank(α) max{|β| : β is a crucial portion of α2}.

It is important to remark the following feature of this parameter, whose proof is an easy adaptation of [6,
Lemma 3.5].

Lemma 5.5 If α′ is an expansion of a κ̄-term α, then µ(α′) ≤ µ(α).

Let α be a κ̄-term in canonical form and let (n, p) be a pair of integers. We say that (n, p) is a scheme
for α if the following conditions hold:

• n is a multiple of p such that n− p > µ(α);

• p > 2ν(α).

The next result is an immediate consequence of Proposition 3.1, of Remark 5.1 and of Lemma 5.5.

Lemma 5.6 Let α be a κ̄-term in canonical form and let (n, p) be a scheme for α. If α′ is an expansion
of α, then α′ is in canonical form and (n, p) is a scheme for α′.

The following is a significant property of a scheme.

Lemma 5.7 Let α and β be canonical forms with rank(α) = rank(β) and let (n, p) be a scheme for both
α and β. If Ln,p(α) ∩ Ln,p(β) 6= ∅, then α = β.
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Proof: The proof is made by induction on the rank of α (and β). The case rank(α) = 0 is trivial. Indeed,
in this case we have Ln,p(α) = {α} and Ln,p(β) = {β}.

Let now rank(α) = i + 1 with i ≥ 0 and suppose, by induction hypothesis, that the lemma holds
for rank i canonical forms. Let α = γ0δ

ω+p1
1 γ1 · · · δω+pr

r γr and β = π0ρ
ω+q1
1 π1 · · · ρω+qs

s πs be the
canonical form expressions for α and β and suppose that w ∈ Ln,p(α) ∩ Ln,p(β). By Lemma 5.3 (b)
there exist expansions α′ ∈ En,p(α) of α and β′ ∈ En,p(β) of β such that w ∈ Ln,p(α

′) ∩ Ln,p(β
′). In

particular, α′ and β′ are rank i canonical forms of the type α′ = γ0δ
m1
1 γ1 · · · δmr

r γr, with each m` ∈
p` = {n + jp + p` : j ≥ 0}, say m` = n + j`p + p` with j` ≥ 0, and β′ = π0ρ

n1
1 π1 · · · ρns

s πs, where
each n` = n + k`p + q` with k` ≥ 0. Moreover, by Lemma 5.6, (n, p) is a scheme for both α′ and β′.
Hence, the induction hypothesis entails the equality of the κ̄-terms α′ and β′, that is,

γ0δ
m1
1 γ1 · · · δmr

r γr = π0ρ
n1
1 π1 · · · ρns

s πs. (5.3)

As (n, p) is a scheme for α and β, m` ≥ n + p` ≥ n − ν(α) > n − p and, analogously, n` > n − p

for every `. On the other hand n − p > max{µ(α), µ(β)}. Thus, in particular, m1 and n1 are both
greater than max{|δω+pr

r γrγ0δ
ω+p1
1 |, |ρω+qs

s πsπ0ρ
ω+q1
1 |}. Hence, the terms δm1

1 and ρn1
1 , occurring on

the opposite sides of equality (5.3), must overlap on a factor of length at least |δ1| + |ρ1|. Therefore, by
Fine and Wilf’s Theorem, δ1 and ρ1 have conjugates that are powers of the same κ̄-term, say σ. Since
δ1 and ρ1 are Lyndon terms by condition (cf.2) of the κ̄-term canonical form definition, it follows that
δ1 = σ = ρ1. Suppose, without loss of generality, that |γ0| ≥ |π0| and recall that any Lyndon term is
unbordered. Then, as γ0δ1 is a prefix of β′, γ0δ1 = π0δ

j
1 for some j ≥ 1. Hence γ0 = π0 since α is in

canonical form and condition (cf.3) of the κ̄-term canonical form definition states that δ1 is not a suffix
of γ0. On the other hand, the canonical forms α and β verify condition (cf.4). Thus, δ1 is not a prefix
of γ1δ

m2
2 and ρ1 is not a prefix of π1ρ

n2
2 . Consequently, the equalities α′ = β′, γ0 = π0 and δ1 = ρ1

and the fact that both m2 and n2 are greater than max{µ(α), µ(β)} (and so greater than |δ1|) imply that
m1 = n1. As n is a multiple of p by the definition of a scheme, the positive integers m1 and n1 are
congruent mod p with p1 and q1 respectively. Therefore p1 = q1 once p > 2 max{ν(α), ν(β)}. Iterating
the above procedure, one deduces that, for every 1 ≤ ` ≤ min{r, s}, γ`−1 = π`−1, δ` = ρ`, p` = q` and

γ`−1δ
m`

` γ` · · · δmr
r γr = π`−1ρ

n`

` π` · · · ρ
ns
s πs.

By symmetry, we have further that γr = πs. Since eachmk and each n` is greater than max{µ(α), µ(β)},
it is now straightforward to deduce that r = s. This shows that α = β and concludes the inductive step of
the proof. 2

The following result is an extension of [6, Theorem 5.3] and it will be essential to prove Theorem 6.1.

Proposition 5.8 Let α and β be canonical forms and let (n, p) be a scheme for both α and β such that
n− p > max{|α|, |β|}. If Ln,p(α) ∩ Ln,p(β) 6= ∅, then α = β.

Proof: Let w ∈ Ln,p(α) ∩ Ln,p(β). Suppose that rank(α) > rank(β) = i and let j = rank(α) − i.
Hence, by the hypothesis w ∈ Ln,p(α) and Lemma 5.3 (b), there is α′ ∈ Ejn,p(α) such that w ∈ Ln,p(α

′).
Moreover, α′ is a rank i canonical form and (n, p) is a scheme for α′. Therefore, by Lemma 5.7, α′ = β.
This is however impossible since |β| < n − p, by hypothesis, and n − p < |α′|, by the fact that α′ ∈
Ejn,p(α) and n − p < n − ν(α) ≤ n + q = min q for every q ∈ Q(α). By symmetry it follows that
rank(α) = rank(β) and so, by Lemma 5.7, α = β. 2
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6 Main results
For L ⊆ A+, let cl(L) be the topological closure of L in ΩAS and notice that cl(L) ∩ A+ = L since
any sequence of words converging to a word w ∈ A+ is ultimately equal to w. We can now complete the
proof of our central result.

Theorem 6.1 Let α and β be κ̄-terms in canonical form. If S |= α = β, then α and β are the same
κ̄-term.

Proof: We adapt the corresponding proof for McCammond’s normal forms, given in [6, Corollary 5.4].
Let (n, p) be a scheme for both α and β, with n−p > max{|α|, |β|}. The languages Ln,p(α) and Ln,p(β)
are regular by Proposition 5.4, whence cl(Ln,p(α)) and cl(Ln,p(β)) are clopen subsets of ΩAS. On the
other hand, since n is a multiple of p by the definition of a scheme, and as exemplified in (5.2), η(α) ∈
cl(Ln,p(α)) and η(β) ∈ cl(Ln,p(β)). As η(α) = η(β) by hypothesis, it follows that the intersection
cl(Ln,p(α)) ∩ cl(Ln,p(β)) is a nonempty open set and so it contains some elements of the dense set A+.
Since cl(Ln,p(α))∩cl(Ln,p(β))∩A+ = Ln,p(α)∩Ln,p(β), we deduce that Ln,p(α)∩Ln,p(β) 6= ∅. Hence
α = β by Proposition 5.8. 2

In particular, we derive from this result that the canonical form reduction algorithm applied to any κ̄-
term produces a unique κ̄-term in canonical form. It also leads to an easy deduction of the main results of
this paper.

Theorem 6.2 The κ̄-word problem for S is decidable. More precisely, given κ̄-terms α and β, the canon-
ical form reduction algorithm can be used to decide whether S satisfies α = β.

Proof: Let α′ and β′ be canonical forms obtained, respectively, from α and β by the application of the
canonical form reduction algorithm. By construction of the algorithm, S verifies α = α′ and β = β′. In
view of Theorem 6.1, to decide whether S verifies α = β it suffices therefore to verify whether α′ and β′

are the same κ̄-term. 2

Theorem 6.3 The set Σ is a basis of κ̄-identities for Sκ̄, the κ̄-variety generated by all finite semigroups.

Proof: Recall that the rewriting rules used in the canonical form reduction algorithm are determined by
the κ̄-identities of Σ. Hence, it suffices to prove that, for all κ̄-terms α and β, S |= α = β if and only if
α ∼ β. That α ∼ β implies S |= α = β follows from the fact that S verifies all the κ̄-identities of Σ. To
show the reverse implication, suppose that S |= α = β and let α′ and β′ be the canonical forms of α and
β. As S verifies α = α′ and β = β′, it also verifies α′ = β′. By Theorem 6.1 we deduce that α′ = β′.
Since α ∼ α′ and β ∼ β′ it follows by transitivity that α ∼ β. 2

The instance of Theorem 6.1 in which α and β have rank at most 1 was proved, in a different way,
by the author together with Nogueira and Teixeira in [11]. Moreover, we have shown in that paper that
the pseudovariety LG does not identify different canonical forms of rank at most 1. It is, however, well-
known that LG identifies the canonical forms (aωb)ωaω and aω . This remark suggests the introduction
of the notion of κ̄-index of a pseudovariety V, denoted iκ̄(V), as: the least integer j ≥ 0, whenever
it exists, such that V identifies two different canonical forms of rank at most j; +∞, otherwise. So,
iκ̄(LG) = 2 and iκ̄(S) = +∞. The pseudovarieties of κ̄-index 0 are, by definition, the ones that verify
some nontrivial identity. For easy examples of κ̄-index 1, we may refer the pseudovarieties G of groups,
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N of nilpotent semigroups and A. As N ⊆ A, it follows that iκ̄(V) = 1 for every aperiodic pseudovariety
LG containing N. For an integer j > 2, the author is not aware of examples of pseudovarieties having
κ̄-index j.

An unary implicit signature is a signature formed by unary non-explicit implicit operations together
with multiplication. For instance, the signatures ω, κ and κ̄ are unary. The above notion can be extended
to any unary implicit signature σ, for which there is a natural definition of rank for σ-terms, as follows.
For a pseudovariety V, let

Iσ(V) = {j ≥ 0 : there exist σ-terms α and β with rank at most j
such that V |= α = β and S 6|= α = β}.

The σ-index of V, denoted iσ(V), is defined to be min Iσ(V) when Iσ(V) is non-empty and to be +∞
otherwise.

7 Canonical representatives for ω-terms over A
In this section, we explain how the above results can be adjusted in order to obtain canonical representa-
tives for each class of ω-terms with the same interpretation on each finite aperiodic semigroup.

7.1 The canonical form algorithm for ω-terms over A
In Section 4, we presented an algorithm that computes the canonical form of any given κ̄-term. In partic-
ular, for an ω-term α the algorithm provides a unique κ̄-term α′ in canonical form such that S |= α = β
and, so, such that A |= α = β. As far as the ω-word problem over A is concerned, the trouble is that α′

does not have to be an ω-term. In effect this is not a difficulty since in order to solve the word problem
for κ-terms over S, we also went outside the world of κ-terms. The real trouble is that ω-terms with the
same value over A can have different canonical forms (when the ω-terms are different over S). This is the
case, for instance, of the ω-terms aωabω and aωbbω whose canonical forms are respectively aω+1bω and
aωbω+1.

An algorithm that computes, for each ω-term α, a unique ω-term α′ in canonical form with the same
value over A can, however, be easily adapted from the algorithm in Section 4. The ω-term α′ will then
be called the canonical form of α over A. For that, it suffices to replace everywhere in the algorithm each
occurrence of a symbol

q

( or
q

) by, respectively,
0

( and
0

) . This way all terms involved are ω-terms and this
new algorithm preserves the value of the original ω-term α over A. Indeed, the elementary changes are
determined by the following rules for ω-terms, obtained from the rewriting rules for κ̄-terms of Section 3
by the replacement of the symbols

q

( and
q

) by
0

( and
0

) ,

1.
0

(
0

(α
0

)

0

) �
0

(α
0

) 4R.
0

(α
0

)α �
0

(α
0

)

2.
0

(αn
0

) �
0

(α
0

) 4L. α
0

(α
0

) �
0

(α
0

)

3.
0

(α
0

)
0

(α
0

) �
0

(α
0

) 5.
0

(αβ
0

)α � α
0

(βα
0

)

Actually, these are precisely the rules used in McCammond’s algorithm. Our algorithm for ω-terms over
A is essentially the same as McCammond’s algorithm except in the procedure to put the crucial portions
in canonical form (in view of their distinct definitions). For instance, the canonical form over A of the
ω-terms aωabω and aωbbω is aωbω , while their McCammond’s normal form is aωabbω .
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7.2 Star-freeness of the languages Ln,1(α)

The star-freeness of the languages Ln(α), for ω-terms α in McCammond’s normal form and n large
enough, was established in [6, Theorem 5.1]. For canonical forms an identical property holds.

Theorem 7.1 Let α be an ω-term in canonical form and let n ≥ µ(α). Then the language Ln,1(α) is
star-free.

The proof of this result can be obtained by a mere adjustment of the corresponding proof of [6, The-
orem 5.1] and, so, we do not include it here. Actually, since each subterm of a canonical form is in
canonical form as well, the arguments can be usually simplified. As a consequence of Theorem 7.1 and
of Proposition 5.8, with p = 1, one gets the following analogue of Theorem 6.1, that establishes the
uniqueness of canonical forms for ω-terms over A.

Theorem 7.2 Let α and β be ω-terms in canonical form. If A |= α = β, then α = β.

Once again, we omit the proof of this result since it is identical to the proof of the corresponding
result [6, Corollary 5.4] for McCammond’s normal forms (and it is analogous to the one of Theorem 6.1).
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