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A graph G is an efficient open domination graph if there exists a subset D of V (G) for which the open neighborhoods
centered in vertices of D form a partition of V (G). We completely describe efficient open domination graphs among
lexicographic, strong, and disjunctive products of graphs. For the Cartesian product we give a characterization when
one factor is K2.
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1 Introduction and preliminaries
Let G be a graph with vertex set V (G) and edge set E(G). We use standard notations NG(v) for the open
neighborhood {u : uv ∈ E(G)} and NG[v] for the closed neighborhood NG(v) ∪ {v} for a graph G.
By u ∼ v we denote adjacency of u and v from V (G). Throughout the article we consider only simple
graphs.

The domination number γ(G) of a graph G is a classical invariant in graph theory. It is the minimum
cardinality of a set S for which the union of closed neighborhoods centered in vertices of S cover the
whole vertex set of G. Such a set S is called a dominating set of G. Hence each vertex of G is either in S
or adjacent to a vertex in S. In other words, we can say that vertices of S control each vertex outside of S.
A classical question in such a situation is: who controls the vertices of S? One possible solution to this
dilemma is the total domination. A set D ⊆ V (G) is a total dominating set of G if every vertex of G is
adjacent to a vertex of D. (Hence, also vertices of D are controlled by D.) The total domination number
of a graph G is the minimum cardinality of a total dominating set of G and is denoted by γt(G). A total
dominating set D of cardinality γt(G) is called γt(G)-set.

The natural question for a graph G is whether we can find a total dominating set D for which its
open neighborhoods not only cover V (G) but also form a partition of V (G), which means that NG(u) ∩
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NG(v) = ∅ for every different u, v ∈ D. The problem has been presented under the names: total perfect
codes [3], efficient open domination [7] and exact transversals [4]. In the present work we follow the
terminology of efficient open domination. A graph G is an efficient open domination graph if there exists
a setD, called an efficient open dominating set, for which

⋃
v∈DNG(v) = V (G) andNG(u)∩NG(v) = ∅

for every pair u and v of distinct vertices ofD. It is easy to see that paths Pn are efficient open domination
graphs if and only if n 6≡ 1 (mod 4), while cycles Cn are efficient open domination graphs if and only if
n ≡ 0 (mod 4).

The problem of establishing whether a graph G is an efficient open domination graph is an NP -
complete problem, see [16] (or [8]). This issue has been studied under its different names, nevertheless
it has received not enough attention. Efficient open domination trees have been characterized recursively
in [8]. Various properties of efficient open domination graphs were presented in [7]. The efficient open
domination graphs among Cayley graphs were studied in [20] and the efficient open domination grid
graphs in [4, 5, 14]. Moreover, the efficient open domination graphs among direct product graphs were
characterized in [1]. However we have not found the following basic connection in the literature.

Observation 1.1 IfG is an efficient open domination graph with an efficient open dominating setD, then
γt(G) = |D|.

Proof. If D is an efficient open dominating set of G, then D is also a total dominating set of G and
γt(G) ≤ |D| follows. On the other hand, an arbitrary vertex ofD has at least one neighbor in every γt(G)-
set D′, since

⋃
v∈D′ NG(v) = V (G). Moreover, these neighbors must be different, since

⋃
v∈DNG(v)

form a partition of V (G). Hence γt(G) ≥ |D| and the equality follows. 2

From this observation immediately follows that all efficient open dominating sets of a graph G have
the same cardinality. Another simple fact holds for regular graphs, since vertices from an efficient open
dominating set are given by disjoint pairs of adjacent vertices and all the vertices have the same number
of neighbors.

Observation 1.2 Let G be an r-regular graph of order n. If G is an efficient open domination graph,
then n ≡ 0 (mod (2r)).

A similar approach is also known for dominating sets under the name 1-perfect graphs. That is, G is
1-perfect graph if there exists a set P ⊆ V (G) for which V (G) =

⋃
v∈P NG[v] and NG[u] ∩NG[v] = ∅

for every pair u and v of distinct vertices of P . Set P is called a perfect code of G. The name arose from
codes, since one can discover and repair one error in such graphs.

Several graph products have been investigated in the last few decades and a rich theory involving the
structure and recognition of classes of these graphs has emerged, cf. [10]. The most studied graph
products are the Cartesian product, the strong product, the direct product and the lexicographic product
which are also called standard products. One standard approach to graph products is to deduce properties
of a product with respect to (the same) properties of its factors. See a short collection of these types
involving total domination and perfect codes in [6, 9, 11, 12, 13, 15, 17].

The domination related problems on the Cartesian product seems to be the most problematic among
standard products. We just mention the famous Vizing’s conjecture: γ(G2H) ≥ γ(G)γ(H), which
is probably the most challenging problem in the area of domination (see the latest survey on Vizing’s
conjecture [2]). The efficient open domination is no exception.
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In the next section we completely describe the efficient open domination graphs among strong, lexi-
cographic, and disjunctive products. After that we introduce zig-zag graphs and explore their structure.
They are used in the following section where we completely describe graphs for which their Cartesian
product with K2 is an efficient open domination graph. We end with a section on grid-like graphs.

2 The lexicographic, strong, and disjunctive products
The lexicographic product G ◦H (sometimes also denoted by G[H]) of graphs G and H is a graph with
V (G◦H) = V (G)×V (H). Two vertices (g, h) and (g′, h′) are adjacent inG◦H whenever gg′ ∈ E(G)
or (g = g′ and hh′ ∈ E(H)). For a fixed h ∈ V (H) we call Gh = {(g, h) ∈ V (G ◦H) : g ∈ V (G)}
a G-layer in G ◦ H . Symmetrically H-layers gH for a fixed g ∈ V (G) are defined. Notice that the
subgraph of G ◦H induced by a G-layer or an H-layer is isomorphic to G or H , respectively. The map
pG : V (G ◦ H) → V (G) defined by pG((g, h)) = g is called a projection map onto G. Similarly, we
define pH as the projection map onto H . Projections are defined as maps between vertices, but frequently
it is more comfortably to see them as maps between graphs. In this case we observe the subgraphs induced
by A ⊆ V (G ◦H) and pX(A) for X ∈ {G,H}. The lexicographic product is clearly not commutative,
nevertheless it is associative [10].

Theorem 2.1 Let G and H be graphs. The lexicographic product G ◦H is an efficient open domination
graph if and only if either

(i) G is a graph without edges and H is an efficient open domination graph, or

(ii) G is an efficient open domination graph and H contains an isolated vertex.

Proof. IfG is a graph without edges on n vertices, thenG◦H is isomorphic to n copies ofH . If in addition
H is an efficient open domination graph, then also n copies ofH form an efficient open domination graph.
Now, let G be an efficient open domination graph, let DG be one efficient open dominating set and let
h0 be an isolated vertex of H . We will show that DG × {h0} is an efficient open dominating set of
G ◦H . For this, notice that NG◦H(g, h0) = NG(g)× V (H) and

⋃
g∈DG

NG◦H(g, h0) = V (G×H). If
g, g′ ∈ DG and g 6= g′, then NG◦H(g, h0)∩NG◦H(g′, h0) 6= ∅ implies that NG(g)∩NG(g

′) 6= ∅, which
is a contradiction. Therefore, G ◦H is an efficient open domination graph.

Conversely, let G ◦H be an efficient open domination graph with an efficient open dominating set D.
Let (g, h), (g′, h′) ∈ D be adjacent vertices. Suppose first that there exists such an edge with g 6= g′.
If h′′ ∈ NH(h), then (g, h′′) ∈ NG◦H(g, h) ∩ NG◦H(g′, h′), which is a contradiction. Hence h (and
by symmetry also h′) is an isolated vertex of H . Since H contains an isolated vertex, it follows that
G has no isolated vertices, otherwise G ◦ H would contain isolated vertices, which is impossible for
an efficient open domination graph. Thus, the fact (g1, h1), (g2, h2) ∈ D, implies that h1 and h2 are
isolated vertices of H (notice that it can happen h1 = h2). If g1 ∈ NG(g) ∩ NG(g

′) for some g, g′ ∈
pG(D), then g1H ⊆ NG◦H(g, h) ∩NG◦H(g′, h′) for (g, h), (g′, h′) ∈ D, which is a contradiction. Also⋃

g1∈pG(D)NG(g1) = V (G), since
⋃

(g1,h1)∈DNG◦H(g1, h1) = V (G ◦ H) and D is an efficient open
dominating set. Thus, G is an efficient open domination graph (with an efficient open dominating set
pG(D)).

Now we can assume that all edges between vertices of D have the same first coordinate: (g, h)(g, h′).
Thus, g is an isolated vertex of G, otherwise g′H ⊆ NG◦H(g, h) ∩ NG◦H(g, h′) for any neighbor g′
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of g in G, which is not possible. Since {NG◦H(g, h) : (g, h) ∈ D} forms a partition of G ◦ H , every
vertex (g1, h1) is in some NG◦H(g, h). Again (g, h) is in some NG◦H(g′, h′) and we have g = g′ = g1.
Hence every vertex of G is an isolated vertex and suppose that there are n vertices in G. Every H-layer is
isomorphic to H and G ◦H is isomorphic to n copies of H . Since G ◦H is an efficient open domination
graph, every component of G ◦H is such. Therefore, also H is an efficient open domination graph which
ends the proof. 2

We can easily generalize the construction of Theorem 2.1 (ii). Namely, let G be any efficient open
domination graph with V (G) = {g1, . . . , gn}. Choose n arbitrary graphs H1, . . . ,Hn. Let NG(gi) =
{gj1 , gj2 , . . . , gjki

} for every i ∈ {1, . . . , n}. Connect gi by an edge with every vertex of graphs
Hj1 , Hj2 , . . . ,Hjki

to obtain a new graph G∗. It is easy to see that an efficient open dominating set
D of G is also an efficient open dominating set of G∗. Moreover, we can add to G∗ arbitrary many edges
between vertices of Hi and Hj as long as gigj ∈ E(G) and the obtained graph is still an efficient open
domination graph. If we add all possible edges betweenHi andHj whenever gigj ∈ E(G) and all graphs
H1, . . . ,Hn are isomorphic to a graph H , then the new graph is isomorphic to G ◦ (H ∪ {h}) where h is
an isolated vertex of H ∪ {h}.

The strong product G � H of graphs G and H is a graph with V (G � H) = V (G) × V (H). Two
vertices (g, h) and (g′, h′) are adjacent in G � H whenever (gg′ ∈ E(G) and h = h′) or (g = g′ and
hh′ ∈ E(H)) or (gg′ ∈ E(G) and hh′ ∈ E(H)). The commutativity of the strong product follows from
the symmetry of the definition of adjacency and for associativity see [10].

Since G ◦ H ∼= G � H if G is a graph without edges, Theorem 2.1 (i) already gives a hint for the
strong product. Surprisingly, these are the only graphs (up to the commutativity of the factors) among
strong products which are efficient open domination graphs. This follows immediately from the fact that
|NG�H(g, h) ∩NG�H(g′, h′)| ≥ 2 for any two adjacent vertices (g, h) and (g′, h′), where both g and h
are not isolated vertices of G and H , respectively.

Proposition 2.2 Let G and H be two graphs. The strong product G�H is an efficient open domination
graph if and only if one factor is a graph without edges and the other is an efficient open domination
graphs.

The disjunctive product G ⊕ H of graphs G and H is a graph with V (G ⊕ H) = V (G) × V (H).
Two vertices (g, h) and (g′, h′) are adjacent in G ⊕H whenever gg′ ∈ E(G) or hh′ ∈ E(H). Like the
Cartesian and the direct product, the disjunctive product is also commutative. This notion of graph product
was introduced by Ore [18], where it was called the Cartesian sum of graphs. The name disjunctive
product is due to [19].

Theorem 2.1 (ii) gives a hint for a characterization of efficient open domination graphs, for the case
of disjunctive product, which has quite similar behavior like lexicographic product. Thus, we have the
following result, which proof is quite similar to the proof of Theorem 2.1.

Theorem 2.3 The disjunctive product of two graphs is an efficient open domination graph if and only if
one graph is an efficient open domination graph and the other one contains an isolated vertex.

Proof. Let G and H be any graphs. Assume that G is an efficient open domination graph with an efficient
open dominating set DG and let h0 be an isolated vertex of H . Proceeding like in the proof of Theorem
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2.1 we show that DG × {h0} is an efficient open dominating set of G ⊕ H . Therefore, G ⊕ H is an
efficient open domination graph.

On the contrary, we consider G ⊕ H is an efficient open domination graph with an efficient open
dominating set D and we also proceed as in the proof of Theorem 2.1. Let (g, h), (g′, h′) ∈ D be
adjacent vertices. If g 6= g′, then h (and by symmetry also h′) is an isolated vertex of H . Since H
contains an isolated vertex, it follows that G has no isolated vertices, otherwise G ⊕ H would contain
isolated vertices, which is impossible for an efficient open domination graph. Thus, if (g1, h1), (g2, h2) ∈
D, then h1 and h2 are isolated vertices of H . If g1 ∈ NG(g) ∩ NG(g

′) for some g, g′ ∈ pG(D),
then g1H ⊆ NG⊕H(g, h) ∩ NG⊕H(g′, h′) for (g, h), (g′, h′) ∈ D, which is a contradiction. Also⋃

g1∈pG(D)NG(g1) = V (G), since
⋃

(g1,h1)∈DNG⊕H(g1, h1) = V (G ⊕H) and D is an efficient open
dominating set. Thus, G is an efficient open domination graph (with an efficient open dominating set
pG(D)).

Similarly, if h 6= h′, then we obtain that g1 and g2 are isolated vertices of G. An analogous procedure
shows that, in this case, H is an efficient open domination graph. Therefore, the proof is complete. 2

For the case of direct product graphs, the efficient open domination graphs among them were already
characterized in [1]. By completeness we include their result in this section. The direct product G×H of
graphs G and H is a graph with vertex set V (G×H) = V (G)× V (H). Two vertices (g, h) and (g′, h′)
are adjacent in G ×H whenever gg′ ∈ E(G) and hh′ ∈ E(H). The open neighborhoods of vertices in
direct product graphs are nicely connected to open neighborhoods of projections to the factors. Namely,
NG×H(g, h) = NG(g)×NH(h) for every vertex (g, h) ∈ V (G×H) and this is the main reason for nice
behavior of efficient open domination graphs among direct product with respect to its factors.

Theorem 2.4 [1] Let G and H be two graphs. The direct product G×H is an efficient open domination
graph if and only if G and H are efficient open domination graphs.

By Observation, 1.1 the following corollary is obtained.

Corollary 2.5 If G and H are efficient open domination graphs, then γt(G×H) = γt(G)γt(H).

3 The zig-zag graphs
This section deals with a family of graphs which is the heart of the characterization of the efficient open
domination graphs among the so called prism graphsG2K2. In this sense, we give some deep description
of such a family. To do so, we need to introduce some notation. By dG(u, v) we mean the geodesic or
shortest path distance, which is the number of edges on a shortest u, v-path in G. Distance dG(e, v)
between edge e and a vertex v in G is the shortest distance between end vertices of e and v, while the
distance dG(e1, e2) between edges e1 and e2 is the shortest distance between end vertices of e1 and end
vertices of e2. In general, for P,Q ⊆ V (G), the distance dG(P,Q) between them is the shortest distance
between a vertex from P and a vertex from Q. Two different edges are incident if they have a common
end vertex.

LetG be a graph on at least three vertices andE′ = {e1, . . . , ek} be a subset ofE(G), where ei = uivi,
with the following properties:

(i) NG(ui) ∩NG(vi) = ∅;
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(ii) dG(ei, ej) ≥ 2 for every different pair i, j ∈ {1, . . . , k};

(iii) for every w ∈ V (G) − {ui, vi : i ∈ {1, . . . , k}} there exist unique j and `, j 6= `, such that
d(w, ej) = d(w, e`) = 1;

(iv) for every sequence of distinct edges ei1 , ei2 , . . . , eij , j > 2, with dG(ei
`
, ei

`+1(mod j)
) = 2 for

` ∈ {1, . . . , j}, j must be an even number.

Fig. 1: A zig-zag graph where the zig-zag set is formed by the edges in bold.

We call E′ a zig-zag set of G and, if there exists a zig-zag set in G, we call G as a zig-zag graph.
(The motivation for this name follows from the property (iv) and the zig-zag role of edges at distance 2
in efficient open domination set of G2K2 as can be seen in the following section.) In Figure 1 appears
an example of a zig-zag graph, where the zig-zag set is given by the edges in bold. Notice that zig-zag
graphs among cycles are exactly C6k for a positive integer k (we need six to fulfill the property (iv) of the
definition). Also, if a zig-zag graph G contains a vertex v of degree one, then the edge vu ∈ E(G) must
be in any zig-zag set of G. This follows from property (iii), since any vertex of degree one has not two
different non incident edges at distance one. Thus, for instance, a path Pn is a zig-zag graph whenever
n = 2 + 3k for some positive integer k. Moreover, observe that if a zig-zag graph G contains no cycles,
then property (iv) is fulfilled. Hence, we need a cycle C for property (iv) to be nontrivial. If edges from a
zig-zag set E′ which have at least one end vertex on C are successively at distance two, then its number
must be even. If this holds for all such cycles of a graph G, then property (iv) is fulfilled for G.

Since zig-zag graphs play an important role in the efficient open domination graphs among prisms,
we give somewhat deeper insight into their structure. Next we consider a construction that describes the
family G of all graphs that satisfy properties (i), (ii), and (iii) of the definition. We begin with an arbitrary
graph H on n vertices, and let E′ = {ei : ei = uivi, i ∈ {1, . . . , r}} be a set of r disjoint pairs of edges,
with r ≥ 2. Now, to obtain a graph G ∈ G, for every vertex h ∈ V (H) choose two edges ej , e` ∈ E′ and
connect h by an edge with exactly one end vertex of ej and one of e`. Notice that we can choose the same
edges for different vertices. It is straightforward to observe that G is a graph satisfying properties (i), (ii),
and (iii) for the set E′.

On the other hand, if G is a graph carrying out the properties (i), (ii), and (iii) for the set of edges
F ⊆ E(G), then F represents E′ and the subgraph induced by V (G)− V (F ) represents H in the above



Efficient open domination in graph products 111

description. Thus, this construction gives a characterization of all graphs for which properties (i), (ii), and
(iii) hold. However, property (iv) does not always hold in this construction.

We will incorporate property (iv) to the above construction in two special cases, which also reveals
richness of the structure of zig-zag graphs. The first case is related to the following. If G ∈ G was
constructed in such a way that every v ∈ V (G) has two private edges at distance one, then such edges do
not lie in any cycle, and, as mentioned before, property (iv) is fulfilled. As a consequence, G is a zig-zag
graph. Notice that in this construction we need 2n disjoint edges in E′, where n is the order of the graph
H used to generate G.

For the second construction of zig-zag graphs, we do the following. Let H be an arbitrary graph of
order n and let E = {ei : ei = uivi, i ∈ {1, . . . , r}} be a set of disjoint edges not in H where r = n if n
is even, or r = n+ 1 if n is odd. We generate a zig-zag graph G as follows.

• We partition the set V (H) into the sets S1, . . . , St such that at most one set, say St, has cardinality
one and other ones have even cardinality.

• We partition the set E into the sets E1, . . . , Et such that, |Ei| = |Si| for every i ∈ {1, . . . , t − 1}
and, if n is odd, then |Et| = 2 or, if n is even, then |Et| = |St|.

• Let Si = {xi1, xi2, . . . , xi|Si|} and let Ei = {ei1 , ei2 , . . . , ei|Si|
}.

• Now, for every i ∈ {1, . . . , t − 1}, we add edges between Si and the vertices of Ei in such a way
that we form the cycle xi1ui

1
vi

1
xi2ui

2
vi

2
. . . xi|Si|ui|Si|

vi|Si|
xi1.

• Now, if n is even, then we proceed with St as above. On the contrary, if n is odd, then St = {xt1}
and Et = {et

1
, et

2
}. Hence, we form the path ut

1
vt

1
xt1ut

2
vt

2
.

Notice that a graph G obtained by such a construction is a zig-zag graph with zig-zag set E. It is also
easy to see that there are more zig-zag graphs (with less edges in zig-zag set). Take for instance, the
complete graph K2n and choose for a set E′ to be any perfect matching of K2n. In addition subdivide by
one vertex every remaining edge of K2n. It is straightforward to observer that the obtained graph, K+

2n is
a zig-zag graph with zig-zag set E′.

We end the discussion on zig-zag graphs by a recursive description of the family T of all zig-zag trees.
Since trees have no cycles, it follows that any tree T is a zig-zag graph if and only it satisfies properties
(i), (ii), and (iii). Recall that a path Pn is a zig-zag graph whenever n = 2 + 3k for some positive integer
k. Let T1 and T2 be zig-zag trees with corresponding zig-zag sets E′1 and E′2, respectively. The following
two rules can be used to obtain a tree T by a zig-zag tree construction.

(a) choose e1 = u1v1 ∈ E′1 and e2 = u2v2 ∈ E′2 and then identify the vertices u1 with u2 (hence
vertex u) and v1 with v2 (hence vertex v) to maintainin the edge uv in T ;

(b) choose any x ∈ V (T1)− V (E′1) and any y ∈ V (T2)− V (E′2) and connect x with y by an edge to
obtain T .

We say that a tree T ∈ T if it is obtained from zig-zag trees T1 and T2 by one of the above rules (a
zig-zag tree construction) or T is P5.

Theorem 3.1 A tree T is a zig-zag graph if and only if T ∈ T .
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Proof. If T is isomorphic to P5, then it is clearly a zig-zag tree. So, suppose that T ∈ T obtained from
zig-zag trees T1 and T2 with corresponding zig-zag sets E′1 and E′2, respectively. Let E′ = E′1 ∪ E′2.
Notice that properties (i),(ii), and (iii) of the definition of zig-zag set are clearly satisfied for E′ in T after
applying rule (a) or (b) to T1 and T2, since E′1 and E′2 are zig-zag sets. Since trees have no cycles, we do
not need to check property (iv). Therefore, T is a zig-zag tree.

Conversely, let T be a zig-zag tree with corresponding zig-zag set E′. If T is isomorphic to P5, then
T ∈ T . If T is isomorphic to P2+3k for k ≥ 2, then it can be obtained from P5 and P2+3(k−1) by using
rule (a) of the zig-zag tree construction. Therefore, T ∈ T .

Assume now that there exists a vertex v of degree at least three in T . If v is not an end vertex of any
edge of E′, then exactly two vertices x, y ∈ N(v) are end vertices of an edge in E′ by property (iii).
Choose any neighbor u ∈ N(v) − {x, y}. By property (iii) there exists two edges eu, e′u ∈ E′ that are
at distance one to u. Now, delete edge uv from T . Clearly T splits into two trees Tu and Tv , where Tu
contains u and Tv contains v. Consider the sets of edges Eu = E′ ∩ E(Tu) and Ev = E′ ∩ E(Tv).
Notice that properties (i) and (ii) hold for Eu and Ev , since E′ is a zig-zag set. Property (iii) must be
checked only for u. But both eu and e′u must be in Eu, since v is not an end vertex of any edge of E′.
So, property (iii) is clear for Eu and Ev in Tu and Tv , respectively. Thus, Tu and Tv are zig-zag graphs
with zig-zag sets Eu and Ev , respectively. Moreover, T is obtained from Tu and Tv by using rule (b).
Therefore, T ∈ T .

Now let v be an end vertex of the edge e ∈ E′ and let e = uv. We shall “divide” the tree T using a
kind of “reverse-like process” of rule (a) into two trees Tu and Tv , where Tu contains u and Tv contains
v. Let Eu = E′ ∩ E(Tu) and Ev = E′ ∩ E(Tv). We notice that properties (i), (ii), and (iii) hold for Eu

and Ev by the same reason as above. Thus, again Tu and Tv are zig-zag graphs with zig-zag sets Eu and
Ev , respectively, and T is obtained from Tu and Tv by using rule (a). Therefore, T ∈ T and the proof is
complete. 2

The Figure 2 represents an example of a tree belonging to the family T .

Fig. 2: A tree of the family T obtained only by rule (a).

4 Efficient open domination graphs G2K2

The Cartesian product G2H of graphs G and H is a graph with V (G2H) = V (G) × V (H). Two
vertices (g, h) and (g′, h′) are adjacent in G2H whenever (gg′ ∈ E(G) and h = h′) or (g = g′ and
hh′ ∈ E(H)). Hence E(G�H) = E(G2H) ∪ E(G×H). The Cartesian product is commutative and
associative (see [10]). Layers and projections are defined identically as for the lexicographic product. The
subgraph of G2H induced by Gh or gH is isomorphic to G or H , respectively.
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As usual in domination related problems, it seems that the Cartesian product of graphs is the most
problematic of all four standard products for the efficient open domination problem. For instance, until
now only the Cartesian product of two paths (grid graphs) [4, 14] and some particular case of the Cartesian
product of two cycles (torus graphs) [5] have been studied. In this section we characterize all efficient
open domination graphs among G2K2.

Cartesian product graphs G2K2 are often called prisms and can be described as two copies of G with
a matching between the corresponding vertices of each copy of G. We denote V (K2) = {1, 2} and for a
vertex v ∈ V (G) we denote by vi, i ∈ {1, 2}, the copy of v in the Gi-layer.

With the knowledge about zig-zag graphs we show now the relationship between them and efficient
open domination prisms.

Theorem 4.1 If G is a zig-zag graph, then G2K2 is an efficient open domination graph.

Proof. Let G be a zig-zag graph and E′ = {e1, . . . , ek}, ei = uivi, its zig-zag set. In addition we may
assume that E′ is ordered such that for every ei, i > 1, there exists ej , j < i, with dG(ei, ej) = 2. We
call such an edge ej an ancestor of ei. We define a subset D of V (G2K2) inductively as follows. Let
u11, v

1
1 ∈ D. For an edge ei, i > 1, with ancestor ej we have either (u1i , v

1
i ∈ D if u2j , v

2
j ∈ D) or

(u2i , v
2
i ∈ D if u1j , v

1
j ∈ D). Since an edge ei, i > 1, can have many ancestors, we need to show that D is

well defined. Suppose not, and let ei be the first edge which has two ancestor ej and e` with u1j , v
1
j ∈ D

and u2` , v
2
` ∈ D (without loss of generality). By the choice of order of E′ there must exist a sequence

ej , ej1 , . . . , ejt , e1 with d(ej , ej1) = d(ejt , e1) = d(ejp , ejp+1
) = 2 for p ∈ {1, . . . , t − 1}. Notice that

every edge of this sequence has index smaller than i. Similarly, there exists a sequence e`, e`1 , . . . , e`s , e1
with d(e`, e`1) = d(e`s , e1) = d(e`p , e`p+1

) = 2 for p ∈ {1, . . . , s − 1}, where index of every edge is
smaller than i. Let ek = ejk = e`p be the first common edge of these two sequences. For the sequence
ej , ej1 , . . . , ejk , e`p−1 , e`p−2 , . . . , e`, ei holds that any two consecutive edges are at distance two, and also
the first and the last edge are at this distance. By the construction of D and since all indices are smaller
than i (with the exception of ei), we have that consecutive edges lie zig zag in G2K2: one edge is in G1

and the other in G2. Hence, from ej to e` we have an even number of edges. Together with ei we have
an odd number of edges, which contradicts to the property (iv) of the definition of zig-zag sets. Hence, D
is well defined and for every pair of edges ei, ej ∈ E′ with dG(ei, ej) = 2 it follows upi , v

p
i , uqj , v

q
j ∈ D,

where {p, q} = {1, 2}.
Next we show that D is an efficient open dominating set of G2K2. Notice that if uji , v

j
i ∈ D, i ∈

{1, . . . , k} and j ∈ {1, 2}, then they are dominated by vji and uji , respectively. On the contrary, if
uji , v

j
i /∈ D, then u`i and v`i dominate uji and vji , respectively, where ` ∈ {1, 2} − {j}. Let now w ∈

V (G)−{ui, vi : i ∈ {1, . . . , k}}. By the property (iii) of the definition of zig-zag sets, there exist unique
j and ` with d(w, ej) = d(w, e`) = 1. Hence, either ej is an ancestor of e` or vice versa. In each case
we may assume without loss of generality that u1j , v

1
j ∈ D and u2` , v

2
` ∈ D. Now w1 is dominated by u1j

or v1j and w2 is dominated by u2` or v2` . Hence
⋃

v∈DNG2K2
(v) = V (G2K2). By the property (i) of

the definition of zig-zag sets we have that NG2K2
(uji ) ∩NG2K2

(vji ) = ∅ for uji , v
j
i ∈ D and j ∈ {1, 2}.

If dG(ei, ej) = 2, then NG2K2
(xpi ) ∩ NG2K2

(yqj ) = ∅ for x, y ∈ {u, v} since {p, q} = {1, 2} by the
construction ofD. Finally, if dG(ei, ej) > 2, then clearlyNG2K2

(xpi )∩NG2K2
(yqj ) = ∅ for x, y ∈ {u, v}

and p, q ∈ {1, 2}. Therefore, the neighborhoods of D form a partition of G2K2 and, as a consequence,
G2K2 is an efficient open domination graph. 2

Notice that in above proof all edges induced by D project to edges of G. However, if we wish that all
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edges induced by an efficient open domination set D of G2K2 projet into K2, then it is not hard to see
which property is needed for G. Namely, if G is 1-perfect graph with 1-perfect code P , then D contains
exactly P in both copies of G. In particular notice that a path graph Pk is a 1-perfect graph for every
integer k ≥ 1, and hence Pk2K2 is an efficient open domination graph. The following result is clear.

Remark 4.2 If G is a 1-perfect graph, then G2K2 is an efficient open domination graph.

To describe all efficient open domination graphs among Cartesian products of graphs withK2 we need a
combination of both: 1-perfect graphs and zig-zag graphs. Let H1 be 1-perfect graph with 1-perfect code
P and let H2 be a zig-zag graph with a zig-zag set E′ = {e1, . . . , ek}, ei = uivi. (Notice that H1 and H2

do not need to be connected.) A graph G is called a 1-perfect zig-zag graph if V (G) = V (H1) ∪ V (H2),
E(G) = E(H1) ∪ E(H2) ∪ E3 where E3 is an arbitrary subset of the set {xw : x ∈ V (H1) − P,w ∈
V (H2)− {ui, vi : i ∈ {1, . . . , k}}}. In other words, E(G) contains all edges of H1, all edges of H2 and
for every x ∈ V (H1) − P and every w ∈ V (H2) − {ui, vi : i ∈ {1, . . . , k}} we may insert an edge xw
to E(G) or not. In particular, G is isomorphic to the disjoint union of H1 and H2 if no edges of the type
xw are added.

Notice that a 1-perfect zig-zag graph could be formed only by a 1-perfect graph or only by a zig-zag
graph. This means that, for instance, all paths (which are always 1-perfect graphs, but not always zig-zag
graphs) are included into the family of 1-perfect zig-zag graphs. While it is easy to see that there exists
1-perfect graphs which are not zig-zag graphs, one needs a bit more effort to find a graph that is a zig-zag,
but not a 1-perfect graph. An example for this is K+

2n. Recall that we obtain K+
2n by subdividing with one

vertex every edge which does not belong to a fixed perfect matching of K2n.

Theorem 4.3 Let G be a graph. The Cartesian product G2K2 is an efficient open domination graph if
and only if G is a 1-perfect zig-zag graph.

Proof. First, if G is formed either by a zig-zag graph or by a 1-perfect graph, then by Theorem 4.1 or by
Remark 4.2, respectively, we obtain that G2K2 is an efficient open domination graph.

Now, let G be a 1-perfect zig-zag graph built from 1-perfect graph H1 with 1-perfect code P and zig-
zag graph H2 with zig-zag set E′ = {e1, . . . , ek}, ei = uivi. Let P i, i ∈ {1, 2}, be a copy of P in the
Gi-layer of G2K2 and let D be a set of vertices obtained from E′ as in the proof of Theorem 4.1. The set
D′ = P 1 ∪ P 2 ∪D dominates G2K2 since P 1 ∪ P 2 dominates H12K2 and D dominates H22K2. In
addition, NG2K2(x)∩NG2K2(y) = ∅ for any x, y ∈ D′. Finally, since all additional edges in G between
H1 and H2 are connecting vertices which neither belong to P nor to {ui, vi : i ∈ {1, . . . , k}}, we obtain
that G2K2 is an efficient open domination graph.

For the other direction, let G2K2 be an efficient open domination graph with an efficient open domi-
nating set D. Clearly D contains adjacent pairs of vertices and we split them into two subsets as follows.
In D1 we put pairs of adjacent vertices from D for which its edge projects to the edge of K2 and in
D2 are all the remaining vertices (those whose edge projects to an edge of G). First we define a graph
H1 as follows. Let V (H12K2) =

⋃
v∈D1

NG2K2
(v) and H12K2 is an induced subgraph of G2K2 on

V (H12K2). It is clear that H1 which is induced by vertices of layer H1
1 (and also by vertices of layer

H2
1 ) is a 1-perfect graph with 1-perfect code pG(D1).
Next, letH22K2 = G2K2−V (H12K2). The projection of all edges induced byD2 projects to edges

of the first factor H2. We will show that these edges, namely pH2
(D2), form a zig-zag set of H2. Let

|D2| = 2k and denote adjacent vertices of D2 by uji and vji for i ∈ {1, . . . , k} and j ∈ {1, 2}. Since D2
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is a subset of an efficient open dominating set D, it follows NH22K2
(uji ) ∩ NH22K2

(vji ) = ∅ for every
i ∈ {1, . . . , k} and j ∈ {1, 2}, consequently NH2

(ui) ∩NH2
(vi) = ∅ and the property (i) holds.

For the property (ii), let e1 = u1v1 and e2 = u2v2 be two different edges induced by pH2
(D2) and

let e′1, e
′
2 ∈ E(H22K2) be edges which project to e1 and e2, respectively. If dH2

(e1, e2) = 0, then two
end vertices coincide and the other two differ. Without loss of generality, let u1 = u2 and v1 6= v2. If
both e′1 and e′2 lie in the same H2-layer, say H1

2 , then u11 ∈ NH22K2
(v11) ∩ NH22K2

(v12) which is not
possible, since D is an efficient open dominating set. If e′1 and e′2 lie in different H2-layers, say e′1 in H1

2

and e′2 in H2
2 , then u11 ∈ NH22K2(v

1
1) ∩ NH22K2(u

1
2), which again yields to the same contradiction. If

dH2(e1, e2) = 1, then there are two end vertices, say u1 and u2, adjacent inH2. If both e′1 and e′2 lie in the
sameH2-layer, sayH1

2 , then u11 ∈ NH22K2
(v11)∩NH22K2

(u12), which is not possible by the same reason.
If e′1 and e′2 lie in differentH2-layers, say e′1 inH1

2 and e′2 inH2
2 , then u21 ∈ NH22K2

(u11)∩NH22K2
(u22),

which is not possible. Hence, dH2
(e1, e2) ≥ 2 and the property (ii) holds for pH2

(D2).
Let w ∈ V (H2)− pH2

(D2). Hence both w1 and w2 are not in D2. Suppose that they are dominated by
u1 and u2, respectively. Both u1 and u2 have a neighbor in D2 in the same layer: v1 and v2, respectively.
Let e = u1v1 and e′ = u2v2. If pH2

(e) = pH2
(e′), then u1 ∈ NH22K2

(v1) ∩NH22K2
(u2), which is not

possible. Moreover, by the property (ii) we have dH2(pH2(e), pH2(e
′)) = 2. Clearly dH2(w, pH2(e)) =

dH2(w, pH2(e
′)) = 1. If there exists a third edge pH2(e

′′) induced by pH2(D2) with dH2(w, pH2(e
′′)) =

1, then either w1 or w2 is dominated by two vertices of D2 ⊆ D, which is not possible, and the property
(iii) is satisfied by pH2

(D2).
If the property (iv) does not hold, then there exists a sequence of distinct edges ei1 , ei2 , . . . , eij , j > 2,

with d(ei
`
, ei

`+1(mod j)
) = 2 for ` ∈ {1, . . . , j} and j is an odd number. Since d(ei

`
, ei

`+1(mod j)
) = 2

for ` ∈ {1, . . . , j}, there exists a vertex w` for which d(w`, ei`) = 1 = d(w
`
, ei

`+1(mod j)
). By e′i` we

denote the edge which projects to eij for every ` ∈ {1, . . . , j}. Two consecutive edges e′ip and e′ip+1(modj)

must be in the same H2-layer, say H1
2 , since j is odd. Without loss of generality, we may assume that w1

p

is a common neighbor of u1ip and v1ip+1(modj)
. Thus w1

p ∈ NH22K2(u
1
ip
) ∩ NH22K2(v

1
ip+1(modj)

), a final
contradiction. Hence, the property (iv) also holds, pH2

(D2) is a zig-zag set of H2 and H2 is a zig-zag
graph. Therefore, G is 1-perfect zig-zag graph, which ends the proof. 2

To generalize this results from K2 to Kp, p > 2, it is easy to see that no edge induced by an efficient
open dominating set D of G2Kp can project to Kp. Hence 1-perfect graphs have no analogue for p > 2.
However, it seems that zig-zag graphs could be generalized to higher orders of Kp, where property (iv)
represents the greatest problem.

5 Grid-like graphs
The study of efficient open domination graphs among Cartesian product of path and/or cycles has attracted
some researchers in the last few years. For instance, [4, 14] are dedicated to investigate the efficient open
domination graphs among the grid graphs Pr2Pt. Between both works all the efficient open domination
grid graphs were characterized. Notice that, in [4], efficient open dominating sets are referred as exact
transversals, while in [14], are called total perfect codes. The union of these two works produced the
following characterization.

Theorem 5.1 [4, 14] A grid graph Pr2Pt, t ≥ r ≥ 3, is an efficient open domination graph if and only
if r is an even number and t ≡ x (mod r + 1) for x ∈ {1, r − 2, r}.
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Some partial results on the efficient open domination graphs among torus graphsCr2Ct were presented
in [5]. There was given the following characterization of all the torus graphs Cr2Ct having an efficient
open dominating set where all its edges are parallel (a parallel total perfect code).

Theorem 5.2 [5] A parallel total perfect code in a Cartesian product graph Cr2Ct of two cycles Cr and
Ct exists if and only if r and t are multiples of four.

From now on we give some partial results on the torus Cr2Ct and the cylinder Pr2Ct. To do so, in
this subsection we use the following notation: U = {u0, . . . , ur−1} and V = {v0, . . . , vt−1} are the
vertex sets of G and H , where G and H are isomorphic to a path or a cycle of order r and t, respectively.
Operations with the subindexes of vertices of U and V are done modulo r and t, respectively. With
respect to the previous section we may assume that r, t ≥ 3. The adjacency in G and H is defined as
u0 ∼ u1 ∼ . . . ∼ ur−1(∼ u0) and v0 ∼ v1 ∼ . . . ∼ vt−1(∼ v0), respectively.

5.1 The torus Cr2Ct

By Theorem 5.2 we know that C4r2C4t are efficient open domination graphs. Motivated by this we state
the following conjecture.

Conjecture 5.3 The torus Cr2Ct, r, t ≥ 3, is an efficient open domination graph if and only if r, t ≡
0 (mod 4).

Till the end of this subsection we settle this conjecture for r ∈ {3, 4, 5, 6, 7}. We start with r = 4 and
continue with all other values.

Proposition 5.4 Torus C42Ct, t ≥ 4, is an efficient open domination graph if and only if t ≡ 0 (mod 4).

Proof. If t ≡ 0 (mod 4), then it follows by Theorem 5.2 that C42Ct is an efficient open domination
graph.

Now suppose that the torus graph C42Ct, t ≥ 4, is an efficient open domination graph and let F
be an efficient open dominating set in C42Ct. By Observation 1.2 we have that t is even. So either
t ≡ 0 (mod 4) or t ≡ 2 (mod 4). Suppose t ≡ 2 (mod 4). According to the symmetry of C42Ct, we
can suppose, without loss of generality, that (u0, v0) ∈ F and (u0, vt−1) /∈ F .

If (u0, v1) ∈ F , then we have that (u2, v2), (u2, v3) ∈ F and consequently, the vertices (u0, v4),
(u0, v5), (u2, v6), (u2, v7), . . . , (u0, vt−2), (u0, vt−1) also belong to F , which is a contradiction since
(u0, vt−1) is dominated by (u0, v0) and (u0, vt−2). Analogously, we obtain a contradiction if (u1, v0) ∈
F . Therefore t ≡ 0 (mod 4). 2

Theorem 5.5 Torus Cr2Ct, r ∈ {3, 5, 6, 7} and t ≥ r, is not an efficient open domination graph.

Proof. If r = 3, then it is straightforward to observe thatC32Ct is not an efficient open domination graph
for every t ≥ 3. Now suppose r = 5 and let F5 be an efficient open dominating set in C52Ct. According
to the symmetry ofC52Ct, we consider without loss of generality that (u0, v0) ∈ F5 and (u0, vt−1) /∈ F5.
If (u1, v0) ∈ F5, then we have that (u3, v1), (u3, v2) ∈ F5 and consequently, (u0, v3), (u1, v3) ∈ F5.
Thus, we have that at least one of the vertices of the set {(u2, v4), (u3, v4), (u4, v4)} cannot be efficiently
open dominated by F5, a contradiction. On the other hand, if (u0, v1) ∈ F5, then (u2, v2), (u3, v2) ∈ F5

and at least one of the vertices of the set {(u0, v3), (u1, v3), (u4, v3)} cannot be efficiently open dominated
by F5, a contradiction again.
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Suppose r = 6 and let F6 be an efficient open dominating set in C62Ct. We proceed similarly to the
above case. We may assume that (u0, v0) ∈ F6 and (u0, vt−1) /∈ F6. If (u0, v1) ∈ F6, then we have the
following cases.
Case 1: (u3, v0), (u3, v1) ∈ F6. As a consequence, we have that two vertices of the set {(u1, v2), (u2, v2),
(u4, v2), (u5, v2)} cannot be efficiently open dominated by F6, a contradiction.
Case 2: (u3, v1), (u3, v2) ∈ F6. Consequently, either (u2, v0) or (u4, v0) cannot be efficiently open
dominated by F6, a contradiction.
Case 3: Either (u2, v2), (u2, v3) ∈ F6 or (u4, v2), (u4, v3) ∈ F6. Consequently, either (u4, v1) or (u2, v1),
respectively, cannot be efficiently open dominated by F6, a contradiction.
Case 4: (u3, v2), (u3, v3) ∈ F6. Consequently, (u2, v1) and (u4, v1) cannot be efficiently open dominated
by F6, a contradiction.
Case 5: Either (u2, v2), (u3, v2) ∈ F6 or (u3, v2), (u4, v2) ∈ F6. Consequently, either (u4, v1) or (u2, v1),
respectively, cannot be efficiently open dominated by F6, a contradiction.

On the other hand, if (u1, v0) ∈ F6, then we have the following cases.
Case 6: (u3, v1), (u4, v1) ∈ F6. As a consequence, we have that two vertices of the set {(u0, v2), (u1, v2),
(u2, v2)(u5, v2)} cannot be efficiently open dominated by F6, a contradiction.
Case 7: Either (u3, v1), (u3, v2) ∈ F6 or (u4, v1), (u4, v2) ∈ F6. Consequently, either (u5, v1) or (u2, v1),
respectively, cannot be efficiently open dominated by F6, a contradiction.

Now, if r = 7, then by using a similar cases analysis like in the constructive procedure of the set F6 for
r = 6, we obtain contradictions which lead to that C72Ct is not an efficient open domination graph. We
leave the details to the reader. 2

5.2 The cylinder Pr2Ct

As we will see, the situation for cylinders is a little bit more complicated. The first indicator for this is
that P22Ct

∼= Ct2K2 and, by Theorem 4.3, we know that this is an efficient open domination graph
whenever t ≡ 0 (mod 3). Also other cases are more complicated. We start with cycles on 4t vertices.

Proposition 5.6 Cylinder P2r+12C4t is an efficient open domination graph for every r, t ≥ 1.

Proof. The result follows immediately from the fact that the set F of vertices of P2r+12C4t given in the
following way is an efficient open dominating set for P2r+12C4t.

If 2r + 1 ≡ 1 (mod 4), then the set F is the union of sets {u0, u4, . . . , u2r} × {v0, v1, v4, v5, . . . ,
v4t−4, v4t−3} and {u2, u6, . . . , u2r−2} × {v2, v3, v6, v7, . . . , v4t−2, v4t−1}.

If 2r + 1 ≡ 3 (mod 4), then the set F is the union of sets {u0, u4, . . . , u2r−2} × {v0, v1, v4, v5, . . . ,
v4t−4, v4t−3} and {u2, u6, . . . , u2r} × {v2, v3, v6, v7, . . . , v4t−2, v4t−1}. 2

Next we see characterizations for Pr2Ct to be efficient open domination graphs for t ∈ {3, 4, 5, 6, 7}.

Theorem 5.7

(i) Pr2C3 is an efficient open domination graph if and only if r = 2.

(ii) Pr2C4 is an efficient open domination graph if and only if r is an odd integer.

(iii) Pr2C5 is an efficient open domination graph if and only if r = 4.
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(iv) Pr2C6 is an efficient open domination graph if and only if r = 2.

(v) Pr2C7 is an efficient open domination graph if and only if r = 6.

Proof. It is easy to observe that P22C3, P42C5, P22C6 and P62C7 are efficient open domination
graphs, while P2t+12C4 is efficient open domination graph by Proposition 5.6. Also, it is straightforward
to check that if Pr2C3 is an efficient open domination graph, then r = 2. So (i) is proved.

For (ii) suppose that cylinder Pr2C4, r ≥ 4, is an efficient open domination graph and let F be
an efficient open dominating set in Pr2C4. Clearly, at least one vertex of u0C4 must be in F and ac-
cording to the symmetry of Pr2C4, we can suppose, without loss of generality, that (u0, v0) ∈ F . If
(u1, v0) ∈ F , then we have that the vertex (u0, v2) cannot be efficiently open dominated by F , a con-
tradiction. Now, if (u0, v1) ∈ F , then (u2, v2), (u2, v3) ∈ F , and consequently only vertices of the type
(u2k, v2), (u2k, v3), (u4`, v0), (u4`, v1) belong to F , where k, ` are integers and k is odd. Thus, if r is
even, then there exist two vertices (ur−1, vi), (ur−1, vj), i 6= j, and i, j ∈ {0, 1, 2, 3}, which cannot be
efficiently open dominated by F , a contradiction. Therefore, r is odd and (ii) is clear.

Now, suppose Pr2C5 is an efficient open domination graph and let F5 be an efficient open dominating
set in Pr2C5. Clearly, at least one vertex of u0C5 must be in F5 and according to the symmetry of
Pr2C5, we consider without loss of generality that (u0, v0) ∈ F5 and (u0, v4) /∈ F5. If (u1, v0) ∈ F5,
then we vertices (u0, v2) and (u0, v3) cannot be efficiently open dominated by F5, a contradiction. On
the other hand, let (u0, v1) ∈ F5. If r = 2, then (u0, v3) is not efficiently dominated. If r > 2,
then (u1, v3), (u2, v3) ∈ F5. If r = 3, then (u2, v0) and (u2, v1) are not efficiently open dominated
by F5. Hence r > 3 and also (u3, v0), (u3, v1) ∈ F5. Now, if r > 4, then one vertex of the set
{(u4, v2), (u4, v3), (u4, v4)} cannot be efficiently open dominated by F5, a contradiction again. Thus, the
only possible choice is r = 4 and (ii) is proved.

Assume Pr2C6 is an efficient open domination graph and let F6 be an efficient open dominating set
in Pr2C6. We proceed similarly to the above case. Consider (u0, v0) ∈ F6 and (u0, v5) /∈ F6. If
(u1, v0) ∈ F6, then (u0, v3), (u1, v3) ∈ F6. If r > 2, then two vertices of the set {(u2, v1), (u2, v2),
(u2, v4), (u2, v5)} cannot be efficiently open dominated by F6, a contradiction. On the other hand,
if (u0, v1) ∈ F6, then (u1, v3), (u1, v4) ∈ F6. Analogously, if r > 2, then two vertices of the set
{(u2, v0), (u2, v1), (u2, v2),
(u2, v5)} cannot be efficiently open dominated by F6, a contradiction. So, the only possible choice is
r = 2 and (iii) is proved.

Finally, suppose Pr2C7 is an efficient open domination graph and let F7 be an efficient open domi-
nating set in Pr2C7. As above we consider (u0, v0) ∈ F7 and (u0, v6) /∈ F7. If (u1, v0) ∈ F7, then
(u0, v2) and (u0, v5) can be efficiently open dominated only by (u0, v3) and (u0, v4), respectively. Also
r > 2, since (u1, v2) and (u1, v5) are not efficiently open dominated yet. Now (u1, v2) and (u1, v5) can
be efficiently open dominated only by (u2, v2) and (u2, v5), respectively, and these two with (u3, v2) and
(u3, v5), respectively. Hence r > 3 and r 6= 4 since (u3, v0) is not efficiently dominated. The vertex
(u3, v0) yields that (u4, v0), (u5, v0) ∈ F7 and consequently r ≥ 6. To continue, (u5, v3), (u5, v4) ∈ F7

to efficiently open dominate (u4, v3) and (u4, v4). If r = 6, then we are done. If r > 6, then at least
one vertex out of {(u6, v1), (u6, v2), (u6, v5), (u6, v6)} cannot be efficiently open dominated by F7, a
contradiction. On the other hand, if (u0, v1) ∈ F7, then (u0, v4), (u1, v4) ∈ F7. If r = 2, then (u1, v2)
and (u1, v6) are not dominated by F7, a contradiction. Hence r > 2 and to efficiently open dominate
these two vertices, (u2, v2) and (u2, v6), respectively, must be in F7. Furthermore, to efficiently open
dominate (u2, v2) and (u2, v6), (u3, v2) and (u3, v6), respectively, must be in F7. Hence r > 3 and if
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r = 4, then (u3, v4) is not dominated by F7. Thus, r > 4 and to efficiently open dominate (u3, v4) we
need (u4, v4), (u5, v4) ∈ F7. Moreover, the vertices (u5, v0), (u5, v1) ∈ F7 to efficiently open domi-
nate (u4, v0) and (u4, v1). If r = 6, then we are done and if r > 6, then at least one vertex of the set
{(u6, v2), (u6, v3), (u6, v5), (u6, v6)} cannot be efficiently open dominated by F7, a contradiction. There-
fore, the only possible choice is r = 6 and (iv) is proved. 2
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