
Discrete Mathematics and Theoretical Computer Science DMTCS vol. 8, 2006, 83–96

On the Computability of the Topological
Entropy of Subshifts

Jakob Grue Simonsen
Department of Computer Science, University of Copenhagen (DIKU)
Universitetsparken 1, DK-2100 Copenhagen Ø, Denmark

We prove that the topological entropy of subshifts having decidable language is uncomputable in the following sense:
For no error bound less than 1/4 does there exists a program that, given a decision procedure for the language of a
subshift as input, will approximate the entropy of the subshift within the error bound. In addition, we prove that not
only is the topological entropy of sofic shifts computable to arbitary precision (a well-known fact), but all standard
comparisons of the topological entropy with rational numbers are decidable.

Keywords: symbolic dynamics, shift spaces, subshifts, computability, recursion theory

1 Introduction
Dynamical systems are among the most studied objects in branches of mathematics, computer science,
and physics. To each dynamical system can be attributed several quantities that gauge the “complexity”
of the system, one of the simplest and most important of these being the socalled topological entropy.

For two well-known species of dynamical systems, namely cellular automata [9] and iterated piecewise
affine functions [12], the topological entropy is known to be computably unapproximable in the sense
that for sufficiently low ε ∈ R+, no program can yield a rational number p/q in finite time such that the
topological entropy differs from p/q by at most ε.

For other dynamical systems, e.g. Turing machines and Wang tilings of the plane, the problem of
whether the topological entropy of a given system is zero (or, in general, equal to some fixed real number)
is undecidable [7], but it is as yet unknown whether the topological entropy of these systems is computable
in the “approximation” sense above.

In this paper, we study computability and decidability issues related to another standard class of dynam-
ical systems, the subshifts (aka. symbolic dynamical systems, shift spaces, or just shifts). These systems
are a staple of introductory courses in dynamical systems [19, 13], and have come under scrutiny in a vari-
ety of settings, particularly in fractal geometry [2], and in data compression [8]. The shift operation either
moves a bi-infinite string one place to the left (two-sided shift), or “chops off” the leftmost character of
a right-infinite string (one-sided shift). Subshifts are sets of infinite strings that are stable under the shift
operation. In order to restrict ourselves to well-behaved systems, we consider subshifts with decidable
language, i.e. where there is a program that decides, for each finite string, whether it occurs as a substring
of an infinite string in the subshift.

1365–8050 c© 2006 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/volumes/
http://www.dmtcs.org/volumes/dm8ind.html

84 Jakob Grue Simonsen

Our results are:

1. The topological entropy of subshifts having decidable language is computably unapproximable: For
no ε ∈ Q ∩ (0, log(2)/4) does there exist a program that, given a decision procedure known to decide
the language of a subshift over the alphabet {0, 1} will compute the topological entropy with error< ε.
By considering larger alphabets than {0, 1}, this result may be extended to any ε ∈ Q ∩ [0;∞), and
the result holds for several restricted kinds of subshifts. In the lingo of formal language theory, the
result states that the entropy rate of elements of the class of languages that are decidable, irreducible,
factorial, and extensible is computably unapproximable.

2. Not only is the topological entropy of sofic subshifts computable in the sense that there is a program
that, when given a right-resolving graph representation of the shift as input, the program will ap-
proximate the topological entropy to any desired precision (a well-known fact), but comparison under
<,≤,=,≥, > of the topological entropy with any rational number is also decidable.

Thus, two notions of computability of topological entropy are considered in this paper:

(1) approximation within some rational error ε, and

(2) comparison of the topological entropy with rational numbers.

We note that the latter notion is stronger in the sense that if there were an effective procedure P allowing
us to compare the entropy with any rational number, we could obtain arbitrarily good ε-approximations
to the entropy by bounding the entropy from above and below with successively good approximations by
quering P (“is the entropy ≥ 0”, “if so is the entropy ≥ 1/2”, “if so, is it ≥ 3/4”), and so on. Thus, the
positive result 2 entails as a corollary the well-known result that the topological entropy of sofic shifts is
effectively approximable to arbitrary precision by rational numbers.

Conversely, having effective approximability, even to any specified error bound ε would not necessarily
yield decision procedures allowing comparison of the entropy with arbitrary rationals (see the remarks
after Definition 14). In addition, our negative result 1 above renders this point void in any case.

Considering shifts in terms of decision procedures for their languages may seem like “cheating” since
the “finite description” of a shift with decidable language that we use as input to a potential procedure for
approximating the entropy of the shift will be a full-fledged program. As the input may thus be any pro-
gram in a (Turing-complete) programming language, the class of “allowed” inputs is clearly undecidable:
Namely the class of total programs that decide languages of shift spaces.

Contrast this with certain other classes of dynamical systems for which the entropy is known to be
uncomputable, e.g. cellular automata, where it is decidable whether the input (a finite description of a
cellular automaton) is of the correct form.

The specification of shift spaces with decidable languages used in this paper is akin to that in (Type 2)
computable analysis [20] where the input to computable functions are (programs computing approxima-
tions to) computable reals and it is undecidable whether a given program provides such an approximation.
There, the computable functions are not required to “check” the validity of their input, but merely to act
correctly on valid input and behave in an unspecified manner on invalid input.

As there is no canonical way (in fact, at the time of writing no way at all) to represent shift spaces
with decidable languages in such a way that it is decidable whether the input is correct, we regard the
inapproximability result given in this paper as relevant. We further believe that future efforts directed at

On the Computability of the Topological Entropy of Subshifts 85

demarcating the limits of computability for shift spaces should accordingly focus on suitable subrecursive
classes, e.g. shifts with primitive recursive languages.

2 Preliminaries
The reader is assumed to have a basic background in computability theory and basic familiarity with
algebra, linear and otherwise. Assuming the Church-Turing thesis, we use the generic word “program”
which the reader is assumed to replace with “(index of a) partial (or total) recursive function” or “Turing
machine” at her leisure, mutatis mutandis. The Greek letters φ, ψ and ξ denote partial recursive functions;
we overload φi to denote the ith partial recursive function on C to D where C and D are any of the sets
2 (= {0, 1}), N = {1, 2, . . .}, N0 = {0} ∪ N, Z = {. . . ,−1, 0, 1, . . .}, or Q = {p/q | p, q ∈ Z, q 6= 0}.
Note for later use that comparisons <,=, > in any of these sets are decidable. Throughout the text, U(x)
is a universal Turing machine such that U(i) simulates the ith inputless Turing Machine. Σ denotes a
finite alphabet of symbols, and λ denotes the empty string unless otherwise stated.

Definition 1 The set of all bi-infinite binary sequences is denoted by ΣZ, the set of all (right-)infinite
binary sequences by ΣN. α, β and γ range over (bi- or right-)infinite binary sequences. If α ∈ ΣZ

and k,m ∈ Z with k ≤ m, then α[k,m] is the binary string α(k) · · ·α(m) of length m − k + 1, while
α≤k = · · ·α(k − 1) · α(k), and α≥k = α(k) · · ·α(k + 1) · · · . If α ∈ ΣN, the concepts are carried over
mutatis mutandis (if α ∈ ΣN, then α≤k = α(1) · · ·α(k)).

Definition 2 The shift map on ΣZ (and ΣN) is defined by (σ(α))(i) , α(i+1) for all i ∈ Z (resp. i ∈ N).
A set X ⊆ ΣZ (or ΣN) is said to be shift-closed if σ(X) ⊆ X , and shift-invariant if σ(X) = X .

Definition 3 The sequence metric on ΣZ is defined by d(α, α) = 0, and, if α 6= β, d(α, β) = 2−n where
n ∈ N0 is the least number such that α−n 6= β−n or αn 6= βn.

Definition 4 A two-sided subshift (aka. a symbolic dynamical system) is a topologically closed (wrt. the
sequence metric on ΣZ), shift-invariant subset X ⊆ ΣZ. A one-sided subshift is a topologically closed
(wrt. the standard sequence metric on ΣN), shift-closed subset X ⊆ ΣN.

The term “Topologically closed” refers to the fact that every sequence of elements of the subset X that
converges in the standard sequence metric on ΣZ or ΣN must have its limit in X; in the greater context of
symbolic dynamical systems, this ensures that the shift is a compact subset of ΣZ or ΣN.

An alternative characterization of subshifts can be given in terms of sets of “forbidden” words:

Definition 5 LetF ⊆ Σ∗. The two-sided shift generated byF , denotedXF , is the subset of ΣZ containing
exactly those α such that, for all i, j ∈ Z with i ≤ j, it is the case that α[i,j] /∈ F . The one-sided language
generated by F is defined with the obvious changes. A shift of finite type is a subshift X such that there
is a finite F with X = XF .

Lemma 6 X is a subshift iff there exists an F ⊆ Σ∗ such that X = XF .

86 Jakob Grue Simonsen

Proof: Standard. See e.g. [13, Ch. 6]. 2

For characterization of subshifts in terms of finite strings, the concept of language of a subshift is
needed:

Definition 7 The language of a two-sided subshiftX is the set of finite binary strings α[i,j] where i, j ∈ Z,
i ≤ j, and α ∈ X . The language of a one-sided subshift is defined as above, but with i ≥ 1. In both
cases, we denote the language by L(X).

One can prove that L ⊆ Σ∗ is the language of a subshift iff L has the well-known properties of being
factorial and extensible [5, 4].

Definition 8 A langage L ⊆ Σ∗ is said to be factorial if all substrings of all elements of L are also in L,
i.e. if w · x · v ∈ L with w, x, v ∈ Σ∗, then x ∈ L. Furthermore, L is said to be extensible if, for any
x ∈ L, there are v, w ∈ Σ such that v · x ∈ L and x · w ∈ L.

There is a canonical set of forbidden words for each subshift X , defined in terms of L(X).

Definition 9 The set of minimal forbidden words of a subshift X , denoted MF(X), is the set of words
w ∈ Σ∗ such that w = w1 · · ·wn is forbidden, but both w1 · · ·wn−1 ∈ L(X) and w2 · · ·wn ∈ L(X).

An important class of subshifts consists of the irreducible shifts:

Definition 10 A subshift X is irreducible (aka. transitive) if, for all a, b ∈ L(X), there exists w ∈ L(X)
such that a · w · b ∈ L(X).

2.1 Topological Entropy

We now define our central object of study:

Definition 11 Let X be a subshift. The topological entropy of X , denoted htop(X) is the quantity

htop(X) , lim
n→∞

(
log(|L(X) ∩ Σn|)

n

)
where the logarithm is usually taken to base 2.

For subshifts, the limit above will always be well-defined (see e.g. [13, Example 6.3.4]). For arbitrary
languages L ⊆ Σ∗, the quantity lim supn→∞

log(|L∩Σn|)
n (which coincides with the topological entropy

in case L = L(X) for a subshift X) is variously known as the entropy rate, the Kolmogorov entropy, or
the (Shannon) channel capacity, but in general the limsup will not be a limit.

On the Computability of the Topological Entropy of Subshifts 87

2.2 Sofic Shifts
An important class of subshifts are the sofic shifts, i.e. those subshifts whose languages are generated by
(bi-)infinite paths in finite digraphs (also called cover automata):

Definition 12 A labelled graph G is a pair ((V,E), L) where (V,E) is a digraph and L : E −→ Σ is a
function mapping edges to symbols. The edge shift of G is the subset XG of ΣZ containing all bi-infinite
strings obtained by starting from nodes in V , tracing a bi-infinite path in the graph and noting the edge
label in each step of the path. A (two-sided) subshift is called a (two-sided) sofic shift if it is the edge shift
of some finite graph G. One-sided sofic shifts contain the right-infinite strings obtained by starting from
nodes and following directed paths starting from such nodes.

It is easy to see that a sofic shift is indeed a subshift, and that every shift of finite type is sofic. Also,
using standard methods from automata theory, we may wlog. assume that the underlying (undirected)
graph of a digraph is connected. Recall that the spectral radius of an n× n matrix A with coefficients in
Z is max1≤i≤n{|λi|} where λ1, . . . , λn are the eigenvalues of A counted with (algebraic) multiplicities.
For a digraph with n nodes, the adjacency matrix is the n × n matrix A such that aij is the number of
directed arrows from node i to node j. Finally, recall that a labelled graph is said to be right-resolving if,
for each node N , the edges starting at N carry different labels.

The following theorem is standard (though often proved only for the special case of irreducible shifts).
See e.g. [13, Ch. 4].

Theorem 13 If G is a finite, right-resolving labelled digraph with n nodes, then htop(XG) is log(λmax)
where λmax is the spectral radius of the adjacency matrix, A, of G, i.e. is the maximal modulus of the
solutions of the polynomial det(xI −A) where I is the identity matrix of dimension n× n.

It is a standard result that the largest eigenvalue of a square matrix with non-negative real entries (the
Perron eigenvalue) is a non-negative real number, hence equals its modulus [13, Ch. 4].

2.3 Computable Real and Complex Numbers
The topological entropy will not in general be a rational number. To properly treat computable approxi-
mation of such numbers, we shall thus need the concept of computable reals [18, 10, 20].

Definition 14 A computable name is a total recursive function φ : N −→ Q such that |φ(m) − φ(n)| <
2−m for all m,n ∈ N with n > m. A real number x is said to be computable if there is a computable
name that converges to x. The set of computable reals is denoted by Rc.

Any program working on computable reals takes computable names as input and outputs computable
names. A straightforward consequence of this is that the comparison operators <, ≤, >, ≥ and = are
undecidable on Rc × Rc, and stay undecidable even when one of the arguments is fixed [20]. However,
for a fixed a ∈ Rc, it follows straightforwardly from the definition of computable real that there is a
program that halts with output ‘yes’ if given input x ∈ Rc with x > a, and never halts with output ‘yes’
if x ≤ a (but may either loop infinitely or halt with ‘no’ in this case).

Computable complex numbers are defined in the obvious way:

88 Jakob Grue Simonsen

Definition 15 A computable complex number is a pair (a, b) of computable reals (representing the real
and imaginary parts of a complex number, resp.). The set of computable complex numbers are denoted by
Cc.

2.4 Conversion between L(XF), F , and MF(XF)

Since we will show that the topological entropy of subshifts with decidable language is uncomputable,
we are under obligation to show that other standard characterizations of such languages do not yield
computable entropy. We accomplish this by establishing effective conversions between decidable L(X)
and MF(X):

Lemma 16 There is a program which, given an oracle toL(X), outputs a decision procedure forMF(X).
Conversely, there is a program which, given an oracle to a set of minimal words MF(X) for some sub-
shift X outputs a decision procedure for L(X).

Proof: It is straightforward to prove that MF(X) = (Σ · L(X)) ∩ (L(X) · Σ) ∩ (Σ∗ \ L(X)), from
which the result follows. 2

Thus, we can effectively transform a decision procedure forL(X) into a decision procedure forMF(X)
and vice versa.

Remark 17 On the other hand, consider the class of languages Fi (where i ∈ N) such that each Fi is
inductively defined by: 0 ∈ Fi and for k ∈ N, 1k ∈ Fi iff U(i) is in the halting state after k steps.
Then, Fi is decidable for all i ∈ N, but 1 ∈ L(XFi) iff U does not halt on i (and it is thus undecidable
whether 1 ∈ L(XFi)). An immediate corollary is that there is no recursive way of transforming a decision
procedure for an arbitrary decidable set of forbidden words F to a decision procedure for MF(XF),
hence, in light of Lemma 16, neither to a decision procedure for L(XF).

3 A Simple Class of Sofic Shifts
We shall define a class of right-resolving graphs that represent irreducible sofic shifts with topological
entropy log(2)/2. When adding the full shift (with entropy log(2)) to this class, we can exhibit the
“discontinuous” behaviour of the topological entropy that we need to show it uncomputable.

Definition 18 For each k ∈ N let Tk be the full directed binary tree of depth k − 1 such that the two
outgoing edges from each non-leaf node are labelled with ’0’ and ’1’, respectively. Label each node with
its address in the tree (i.e. the unique sequence of labels seen on edges in the unique path from the root
to the node; the root is labelled λ). Let S0, . . . , Sk−1 be fresh nodes not in Tk and add edges with labels
’0’ thus: S0

0→ S1
0→ · · · 0→ Sk−1. For each node N labelled with an element of 2k−1, add two directed

edges with labels ’0’ and ’1’ to S0. Finally, add an edge with label ’0’ from Sk−1 to the node labelled λ.
Call the resulting graph Ak (see Figure 1).

Clearly, Ak is right-resolving for all k ∈ N, and since every node is reachable from every other node
by a directed path (i.e. the graph is irreducible), the associated two-sided sofic shift is irreducible. Using
irreducibility, it is straightforward to prove that the associated one-sided sofic shift is also shift-invariant.

On the Computability of the Topological Entropy of Subshifts 89

λ

0 S2 1

00 01 S1 10 11

S0

0 1

0 1 0 1

0

0

0

0

1

0

1 0

1

0

1

Fig. 1: The irreducible, right-resolving graph A3

Definition 19 Let k ∈ N. The two-sided sofic shift consisting of the set of bi-infinite strings generated
by bi-infinite paths in the Ak is called Xk,2. The corresponding one-sided sofic shift consisting of set of
right-infinite strings generated by all infinite paths in Ak is called Xk,1.

A simple auxiliary lemma is:

Lemma 20 For any n, k ∈ N, we have 2n·k ≤ |L(Xk,1)∩2n·(2·k)| = |L(Xk,2)∩2n·(2·k)| ≤ 2k+1 ·2n·k

Proof: By construction, |L(Xk,1) ∩ 2n·(2·k)| = |L(Xk,2) ∩ 2n·(2·k)|. Also by construction, all strings of
length 2 · k generated by paths starting at the node labelled λ are distinct, and there are 2k such strings.
Note that each such path also ends at node λ. By extension, all strings of length n · (2 · k) generated
by paths starting and ending at node λ are distinct for any n ∈ N, whence there are at least (2k)n such
strings, i.e. 2n·k ≤ |L(Xk,1) ∩ 2n·(2·k)|. Since any path of length n · (2 · k) starting from any node N
must pass through node λ after at most 2 · k steps, we see that (2k)n is an upper bound on the number of
distinct strings of length n · (2 · k) generated by such paths from node N . There are 2k − 1 + k nodes,
and thus: |L(Xk,1) ∩ 2n·(2·k)| ≤ (2k − 1 + k) · 2n·k ≤ 2k+1 · 2n·k. 2

Theorem 21 htop(X1,k) = htop(X2,k) = log(2)/2

Proof: We have, using Lemma 20:

htop(X1,k) = limn→∞
log(|L(X1,k)∩2n|)

n = limn→∞
log(|L(X1,k)∩2n·(2·k)|)

n·(2·k)

≤ limn→∞
log(2k+1·2n·k)

n·(2·k) = limn→∞

(
(k+1)·log(2)

n·(2·k) + (n·k)·log(2)
n·(2·k)

)
= log(2)

2

90 Jakob Grue Simonsen

A completely analogous derivation using the other inequality of Lemma 20 shows that (log(2))/2 ≤
htop(X1,k), concluding the proof. 2

4 The Topological Entropy of Subshifts with Decidable Languages
is Computably Unapproximable

We now show our first main result.

Theorem 22 The topological entropy of subshifts with decidable language is computably unapprox-
imable, i.e. for no real number γ ∈ (0, log(2)/4) does there exist a program that, on input a decision pro-
cedure for the language of a subshiftX will output a rational number po/qo such that |htop(X)−po/qo| <
γ. The result holds even when attention is restricted to the set of irreducible shifts, or to the set of irre-
ducible, shift-invariant, one-sided shifts.

Proof: For each i ∈ N, construct a subset Vi of 2∗ monotonically as follows: Start with the empty set
and initiate a run of U(i). If U(i) is not in the halting state after k steps, add all of the 2k strings in 2k to
Vi. If U(i) is in the halting state after k steps, set Vi = L(Xk,1) and stop the construction. Observe that
if U(i) does not halt, then Vi =

⋃
k∈N 2k = 2∗, i.e. Vi is the language of the full shift 2Z (or 2N) with

topological entropy log(2). Thus, all Vi are the languages of (sofic) subshiftsXi. For each i ∈ N, we have
a naı̈ve decision procedure for L(Vi): On input a ∈ 2∗ simply run U(i) for |a| steps. If U(i) halts after
k < |a| steps, then L(Vi) = L(Xk,1), and it is clearly decidable, by tracing through all possible paths of
length |a| in the graph Ak, whether a ∈ L(Xk,1) ∩ 2|a|. If U(i) runs for |a| or more steps, we know that
2|a| ⊆ Vi, and thus a ∈ Vi.

Using Theorem 21, we see that htop(Xi) = log(2)/2 iff U(i) halts, and htop(Xi) = log(2) otherwise.
If the entropy were approximable for some γ ∈ (0, log(2)/4), we could, for each i ∈ N, effectively find
po/qo ∈ Q such that |htop(Xi)− po/qo| < γ < log(2)/4. By construction of the Vi, for such a po/qo we
either have po/qo < 3/4 · log(2)/2, or po/qo > 3/4 · log(2)/2, and can effectively decide which one of
these holds. But γ < 3/4 · log(2)/2 implies that htop(Xi) = log(2)/2 and γ > 3/4 · log(2)/2 implies
that htop(Xi) = log(2), i.e. we can decide whether U(i) halts, an impossibility. 2

The theorem can be extended to alphabets Σ arbitrarily larger than 2 in a straightforward way by letting
the fan-out of the graphs Ak be equal to |Σ|, and can thus, if the base of the logarithm in the definition of
htop(X) is fixed, be made to hold for arbitrary γ ∈ R>0.

Note that the real number γ of the theorem may be specified however we like; for instance, if γ is
rational, we may choose the canonical representation of γ as an irreducible fraction p/q. Thus, the ap-
proximability result above is not contingent on any computational artifacts due to representations of real
numbers. The same observation holds for the following corollary where γ ∈ (0, log(2)/4) may be re-
placed by p/q ∈ Q ∩ (0, log(2)/4) at the reader’s leisure.

Corollary 23 For any real number γ ∈ (log(2)/2, log(2)), the following questions are all undecidable.
Given: A decision procedure for L(X) where X is a (one- or two-sided) subshift. To decide:

1. Is htop(X) = log(2)/2? (Alternatively, is htop(X) = log(2)?)

On the Computability of the Topological Entropy of Subshifts 91

2. Is htop(X) ≤ γ? (≥ γ?)

3. Is htop(X) < γ? (> γ?)

Proof: Consider the languages Vi in the proof of Theorem 22. Each of these is the language of a subshift
Xi. If any of the three questions were decidable, we could decide both whether htop(Xi) = log(2)/2 and
whether htop(Xi) = log(2) and thus whether U(i) halts. 2

Corollary 24 The topological entropy of subshifts with decidable set F of forbidden words is uncom-
putable (in the sense of Theorem 22). The result holds even when restricted to sets of minimal forbidden
words.

Proof: Otherwise, we could, for each subshift X with decidable language, first use the effective proce-
dure of Lemma 16 to obtain a decision procedure for MF(X) and subsequently compute htop(X) =
htop(XMF(X)), contradicting Theorem 22. 2

Though we have used sofic shifts to prove the topological entropy computably unapproximable, this
says nothing about the “right” way to compute the entropy for sofic shifts. The result of this section
essentially showed that computing the entropy given decision procedures P as input is impossible, even
when P is accompanied by a (non-constructive) proof that it decides the language of a sofic shift. This is
a completely valid result, since the “natural” input to a program in that case is a decision procedure for the
language, however it is almost certainly the wrong way to reason about the class of sofic shifts, since their
“natural” representation is right-resolving graphs. We shall see in the next section that this fact makes a
world of difference.

5 The Topological Entropy of Sofic Shifts is Computable and has
Decidable Comparisons

We now restrict our attention to the computation of the topological entropy of sofic shifts when these
are represented by right-resolving graphs. There are algorithms for finding (computable names of) the
topological entropy of sofic shifts, given a finite graph generating their language. However, the question
of decidability remains. Since it is not in general decidable for a p/q ∈ Q and a (computable name of a)
computable real x whether p/q < x, computability of htop(S) for a sofic shift S does not immediately
entail decidability of the questions of Corollary 23. However, it turns out that they are decidable if the
logarithm in the definition of topological entropy is taken to integer base. In the remainder of the section
we assume the logarithm to be taken to base 2; the reader may substitute any other integer > 2 at her
leisure.

We begin with a staple result from computable analysis:

Theorem 25 (Computable Fundamental Theorem of Algebra (Lite)) There is a program P taking as
input z1, . . . , zn ∈ Z (where n ∈ N may vary) and outputting a list of n computable names of elements
c1, . . . , cn ∈ Cc such that c1, . . . , cn are the n roots (counted with multiplicities) of the polynomial
xn + zn−1x

n−1 · · ·+ z1x+ z0.

92 Jakob Grue Simonsen

Proof: See [20]. The “lite” tag refers to the fact that z0, . . . , zn−1 ∈ Z, and not z0, . . . , zn−1 ∈ Cc. 2

Note that the theorem does not tell us how many distinct roots there are. For a given computable
complex number, its modulus is computable, i.e. there is a program that given a computable name of
c ∈ Cc outputs a computable name of |c| [20]. Thus, we can effectively list the n moduli of the roots of
an n-degree polynomial over Z. But we cannot, in general, decide, for a given 1 ≤ i ≤ n, whether ci is an
eigenvalue of maximal modulus (since, in finite time, the names only yield approximations to the roots).
However, we can compute the spectral radius, as shown in the following folklore lemma (see also [21]):

Lemma 26 The spectral radius of a matrix with non-negative integer coefficients is a computable real.
The proof can be effectivized, i.e. there is a program that, given a suitable representation of any such
matrix as input, outputs a computable name of the spectral radius.

Proof: We use the following effective procedure: Given a representation of a matrix of dimension n× n
with integer coefficients, we can effectively find a representation for det(xI − A). By Theorem 25 and
the comments thereafter, we effectively obtain a list of computable names of the n moduli y1, . . . , yn of
the n roots of det(xI − A). Let ψ : N −→ Q be the total recursive function that does the following: On
input m ∈ N, use the list y1, . . . , yn to find p1/q1, . . . , pn/qn ∈ Q satisfying |yi − pi/qi| < 2−m for all
1 ≤ i ≤ n (possible, since the yi are computable names). Output a maximal pi/qi.

We claim that ψ is a computable name of the spectral radius λmax. To see this, observe that, for each
m ∈ N, one of the rationals p1/q1, . . . , pn/qn is at most 2−m from the Perron eigenvalue (that equals
the spectral radius, in this case). If pi/qi is maximal among p1/q1, . . . , pn/qn, it is at most 2−m from an
eigenvalue that is ≤ λmax. We must thus have |λmax − pi/qi| < 2−m. Hence, ψ is a computable name of
λmax. 2

Corollary 27 There is a program that, on input a right-resolving graph G outputs a computable name of
htop(XG).

Proof: By the lemma and the fact that there is a program that as input takes a computable name of
x ∈ R>0

c as input and outputs a computable name of log(x) [20]. 2

We reiterate that Lemma 26 in itself is not sufficient for decidability due to the inherent trouble with
effectively comparing (even computable) reals to rational numbers.

We now prove our second main result:

Theorem 28 The following problems are all decidable in polynomial time in |G|. Given: (1) p/q ∈ Q≥0

and (2) a right-resolving finite graph G over some alphabet Σ. To decide:

1. Is htop(XG) = p/q?

2. Is htop(XG) ≥ p/q (≤ p/q)?

3. Is htop(XG) > p/q (< p/q)?

On the Computability of the Topological Entropy of Subshifts 93

Proof: To decide whether htop(XG) = p/q, we use exactly the same method as the polynomial-time
algorithm for deciding whether two sofic shifts have identical topological entropies in [3]. The only
difference is that instead of comparing two sofic shifts (via their associated polynomials), we have only
one sofic shift and simply replace the polynomial of the other shift by the characteristic polynomial,
Xq − 2p, of the algebraic number 2p/q.

For completeness, we sketch the method: We can effectively construct (a representation of) the ad-
jacency matrix AG in polynomial time in |G|. An algorithm due to Davenport [6] provides, for each
polynomial Q in Z[X], a finite sequence of pairwise disjoint intervals with endpoints in Q such that each
interval contains exactly one real root of Q. Apply this algorithm to det(xI − AG) and to Xq − 2p and
observe that the spectral radius of AG is the largest real root of det(xI −AG), and that 2p/q is the largest
real root of Xq − 2p. Use standard polynomial division to effectively obtain the polynomial Q in Z[X]
that is the gcd of det(xI −AG) and Xq − 2p. Using Sturm’s Theorem, we can in polynomial time in the
size of Q decide whether Q has a root in the rightmost interval of each of the two finite sequences (see
e.g. [6, 14]). The largest real roots of det(xI −AG) and Xq − 2p are identical iff Q has a root in each of
the two rightmost intervals, i.e. iff λmax = 2p/q, showing that htop(X) = p/q is decidable in polynomial
time in |G|.

To decide whether htop(XG) > p/q, consider the rightmost interval [p1/q1, p2/q2] output by Dav-
enport’s algorithm on det(xI − AG) (which we can obtain in polynomial time). If p/q < p1/q1 or
p/q > p2/q2, we get the answer immediately.

If p/q = p1/q1 or p/q = p2/q2, we may, by the first part of the proof, check whether htop(XG) = p/q in
polynomial time. If p/q = p1/q1, we have htop(XG) > p/q, and we may halt with ‘yes’. If p/q = p2/q2,
we have htop(XG) < p/q and we may halt with ‘no’.

Otherwise, p1/q1 < p/q < p2/q2, and we may consider the two non-degenerate intervals [p1/q1, p/q]
and [p/q, p2/q2]. Since htop(XG) 6= p/q, exactly one of these two intervals contains htop(XG). Also,
htop(XG) is the only real zero of det(xI − AG) in [p1/q1, p2/q2]. We may then use Sturm’s Theorem
applied to both intervals to ascertain in polynomial time the number of zeroes (which is either 0 or 1) in
each. If the zero is in [p1/q1, p/q], we may halt with output ‘no’. Otherwise, the zero is in [p/q, p2/q2],
and we may halt with output ‘yes’. Thus, htop(XG) > p/q is decidable in polynomial time.

Polynomial-time decidability of the remaining questions follow from polynomial-time decidability of
htop(XG) = p/q and htop(XG) > p/q. 2

The polynomial time bound of Davenport’s algorithm used in the proof above assumes that comparison
of two arbitrary rational numbers can be done in unit time, as is usually assumed in computational algebra
[14]. However, Davenport’s algorithm only increases the number of bits in any two rational numbers by a
polynomial factor. Thus, even if comparison between rational numbers takes linear time in the number of
bits used to represent the numbers, the above algorithm still runs in polynomial time in the size of G and
p/q.

6 Related and Future Work
This paper adds a new class of dynamical system to the slowly growing list of classes for which the
topological entropy is computably unapproximable [9, 12]; as with the other classes, we essentially use a
discontinuity property of the entropy, but our concrete construction has a flavour quite distinct from these,
and from the results in [7] where the apparently weaker result is shown that, for some classes of systems,
the question htop(X) = α (where α is any real number) is undecidable.

94 Jakob Grue Simonsen

Considerable effort has been devoted to construct subsets of 2∗ having entropy rates equalling com-
putable reals, right- but not left-computable reals, and other supersets of the computable reals. These
methods are almost invariably based on sets with (Hausdorff) dimension equalling the entropy rate of the
language [16, 17, 1] (also [11] for a fundamental construction that can be translated to entropy rates).
The entropy rate of a subset of 2∗ is defined analogously to the topological entropy of a subshift, but even
though the languages constructed in the above papers are often decidable, they don’t appear to be factorial
in general, hence cannot be the languages of subshifts.

We note that if there exists a subshift X such that L(X) is decidable and htop(X) is not a computable
real, then the results in this paper related to uncomputability would follow immediately. In the lingo of
language theory, this becomes the interesting question:

Does there exist a decidable, extensible, factorial language the entropy rate of which is not a com-
putable real?

Finally, there is a remarkable gap from Theorem 28 to Theorem 22. This is perhaps not surprising, since
it essentially is the gap from the class of (factorial) regular languages to the full class of (factorial) de-
cidable ones. There has been little work in finding subrecursive classes of factorial languages larger than
the regular ones. Characterization of such classes could be a first step in pinning down the computational
properties of the topological entropy. One possible class (in fact, the largest “natural” class) to consider is
the set of primitive recursive factorial languages [15]; we urge the reader to pursue this possibility.

References
[1] K.B. Athreya, J.M. Hitchcock, J.H. Lutz, and E. Mayordomo. Effective strong dimension in algo-

rithmic information and computational complexity. In Proceedings of the 21st Annual Symposium on
Theoretical Aspects of Computer Science (STACS ’04), volume 2996 of Lecture Notes in Computer
Science, pages 632–643. Springer-Verlag, 2004.

[2] M.F. Barnsley. Fractals Everywhere. Morgan Kaufmann, 1993.

[3] M.-P. Béal, M. Crochemore, F. Mignosi, A. Restivo, and M. Sciortino. Computing forbidden words
of regular languages. Fundamenta Informaticae, 56(1–2):121–135, 2003.

[4] M.-P. Béal, F. Mignosi, A. Restivo, and M. Sciortino. Forbidden words in symbolic dynamics.
Advances in Applied Mathematics, 25:163–193, 2000.

[5] M.-P. Béal and D. Perrin. Symbolic dynamics and finite automata. In G. Rosenberg and A. Salomaa,
editors, Handbook of Formal Languages, volume 2, chapter 10. Springer-Verlag, 1997.

[6] J.H. Davenport, Y. Siret, and E. Tournier. Computer Algebra. Academic Press, Ltd., 2nd edition,
1993.

[7] J.-C. Delvenne and V.D. Blondel. Quasi-periodic configurations and undecidable dynamics for
tilings, infinite words and turing machines. Theoretical Computer Science, 319:127–143, 2004.

[8] G. Hansel, D. Perrin, and I. Simon. Compression and entropy. In Proceedings of the 9th Annual
Symposium on Theoretical Aspects of Computer Science (STACS ’92), volume 577 of Lecture Notes
in Computer Science, pages 515–528. Springer-Verlag, 1992.

On the Computability of the Topological Entropy of Subshifts 95

[9] L. Hurd, J. Kari, and K. Culik. The topological entropy of cellular automata is uncomputable.
Ergodic Theory and Dynamical Systems, 12:255–265, 1992.

[10] K.-I. Ko. Complexity Theory of Real Functions. Progress in Theoretical Computer Science.
Birkhäuser, Boston, 1991.

[11] K.-I. Ko. On the computability of fractal dimensions and hausdorff measure. Annals of Pure and
Applied Logic, 91(1–3):195–216, 1998.

[12] P. Koiran. The topological entropy of iterated piecewise affine maps is uncomputable. Discrete
Mathematics and Theoretical Computer Science, 4(2):351–356, 2001.

[13] D. Lind and B. Marcus. An Introduction to Symbolic Dynamics and Coding. Cambridge University
Press, 1995.

[14] B. Mishra. Algorithmic Algebra. Texts and Monographs in Computer Science. Springer-Verlag,
1993.

[15] H. Rogers Jr. Theory of Recursive Functions and Effective Computability. The MIT Press, paperback
edition, 1987.

[16] L. Staiger. Kolmogorov complexity and hausdorff dimension. Information and Computation,
103:159–194, 1993.

[17] L. Staiger. A tight upper bound on kolmogorov complexity and uniformly optimal prediction. Theory
of Computing Systems, 31:215–229, 1998.

[18] A.M Turing. On computable numbers with an application to the “entscheidungsproblem”. Proceed-
ings of the London Mathematical Society, 42(2):230–265, 1936.

[19] P. Walters. An Introduction to Ergodic Theory, volume 79 of Graduate Texts in Mathematics.
Springer-Verlag, 1981.

[20] K. Weihrauch. Computable Analysis: An Introduction. Springer, 1998.

[21] M. Ziegler and V. Brattka. Computability in linear algebra. Theoretical Computer Science, 326:187–
211, 2004.

96 Jakob Grue Simonsen

	Introduction
	Preliminaries
	Topological Entropy
	Sofic Shifts
	Computable Real and Complex Numbers
	Conversion between L(XF), F, and MF(XF)

	A Simple Class of Sofic Shifts
	The Topological Entropy of Subshifts with Decidable Languages is Computably Unapproximable
	The Topological Entropy of Sofic Shifts is Computable and has Decidable Comparisons
	Related and Future Work

