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Let A be a finite subset of Z2. We say A tiles Z2 with the translation set C, if any integer z ∈ Z2 can be represented
as z1 + z2, z1 ∈ A, z2 ∈ C in a unique way. In this case we call A a Z2-tile and write A⊕C = Z2. A tile A is said
to be a normal Z2-tile if there exists a periodic set C such that A⊕C = Z2. We characterize all normal Z2-tiles with
prime cardinality.
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1 Introduction
Let A be a finite subset of Zn. We denote by #A the cardinality of A. We say A is a Zn-tile (or tile in
short), if there is a set C ⊆ Zn such that any element z ∈ Zn can be represented uniquely in the form

z = zA + zC , zA ∈ A, zC ∈ C.

In this case, we say the pair (A,C) is a translation tiling of Zn and write A⊕ C = Zn.
An infinite subset C of Zn is periodic, if there is a vector λ such that C = C + λ; λ is said to be a

period of C. A set C is k-periodic if it has k linearly independent periods.
The Z-tiles have been studied by many authors ([New], [Sands], [Szabo], [Tij1], [Coven]). It is well

known that if A is finite and A ⊕ C = Z, then the translation set C must be periodic ([Fuchs],[New]).
Hence tiling problems are translated to problems of decompositions of the finite cyclic group Z/nZ =
{0, 1, . . . , n − 1}. Newman [New] determined all Z-tiles such that #A is a prime power. Particularly,
when #A is a prime number, it is shown that

Proposition 1.1 ([New],[Sands]) Let p be a prime number and A = {s0, s1, . . . , sp−1} be a subset of Z.
Then A is a Z-tile if and only if

{s0

d
,
s1

d
, . . . ,

sp−1

d
} ≡ {0, 1, . . . , p− 1} (mod p)

where d = gcd{s0, s1, . . . , sp−1} is the greatest common divisor.
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Remark 1.2 The above result can be expressed in terms of cyclotomic polynomials as follows ([Coven]:
Lemma 1.1). Let Φn(z) denote the n-th cyclotomic polynomial. Then

A is a Z-tile if and only if there exists an integer k ≥ 1 such that Φpk(z) divides the polynomial
A(z) = zs0 + zs1 + · · ·+ zsp−1 .

Recently, based on works of Sands [Sands] and Tijdeman [Tij1], Coven and Meyerowitz [Coven] char-
acterized all the Z-tiles A such that #A has at most two prime factors.

However, the study of Zn-tiles seems to be untouched except the work of Beauquier and Nivat [BN].
[BN] gives an elegant characterization of the polyominoe tiles which are disk-like. This is a special case
of Z2-tiles.

For the study of Zn-tiles, the first difficulty is the periodicity. We call a tile A a normal tile, if there is
a periodic translation set C such that A⊕ C = Zn. Namely, a tile is normal if it can tile Zn periodically.
It has been conjectured that any translation tile of Zn is normal.

Periodic Tiling Conjecture. (Lagarias and Wang [LW]) Any Zn-tile is normal.

This conjecture is true for Z-tiles as we have mentioned, but it is widely open for higher dimensions.
For more details we refer to Tijdeman [Tij2].

In the present paper, our main purpose is to characterize the normal Z2-tiles A with #A a prime number.
Our main result is the following theorem.

Theorem 1.3 Let A = {(s0, t0), . . . , (sp−1, tp−1)} be a subset of Z2 where p is a prime number. Then A
is a normal Z2-tile if and only if there exist two integers a and b, such that as0 + bt0, . . . , asp−1 + btp−1

are distinct and {as0 + bt0, . . . , asp−1 + btp−1} is a Z-tile.

Roughly speaking, A is a normal tile with prime cardinality if and only if a projection of A is a Z-tile.

This paper is organized as follows. In Section 2, we give several interesting results on periodicity
of tilings of normal tiles. In Section 3, we prove Theorem 1.3 by using cyclotomic polynomials. An
algorithm is given in Section 4 to check whether a set A with prime cardinality is a normal tile.

The referee pointed out to us that Szegedy [Sze] has proved a more general result as follows.

Theorem 1.4 (Szegedy [Sze]) Let A be a Zn-tile with #A prime or #A = 4, then A is normal.

He gives in both cases an algorithm to decide the tiling problem, and our result Theorem 1.3 is covered by
Szegedy’s algorithm. However, while Szegedy’s approach is primarily group-theoretic, we use elementary
congruences and cyclotomic polynomials, which have been used successfully to study Z-tiles by previous
authors. We hope that our method can give a clue how to tackle Z2-tiles A with #A = pq, where p, q are
prime numbers.

2 Periodicity
In this section, we give some lemmas on the periodicity of tilings of normal tiles. Lemma 2.4 is an
interesting generalization of a result of Tijdeman [Tij1].

Let A⊕C = Z2, and let φ be an invertible linear transformation from Z2 to Z2. We may regard φ as an
integral 2×2 matrix with determinant±1. It is obvious that A⊕C = Z2 if and only if φ(A)⊕φ(C) = Z2.

Proposition 2.1 If A is a normal Z2-tile, then there is a 2-periodic set C such that A⊕ C = Z2.
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Proof: Suppose A ⊕ C ′ = Z2 and C ′ is periodic. By applying a linear transformation, we may assume
that a period of C ′ is (c, 0), and further we assume that c is larger than the diameter of A. We divide the
plane into squares of size c× c, and denote by S[a,b] the square

S[a,b] := [ac, (a + 1)c]× [bc, (b + 1)c].

Let us consider the intersection of the translation set C ′ and S[a,b], and define

P(a, b) = {(s, t)− (ac, bc); (s, t) ∈ C ′ ∩ S[a,b]}.

Now (c, 0) is a period of C ′ implies that P(a, b) = P(0, b).
Let b1 and b2 be two integers such that P(0, b1) = P(0, b2), this must happen since the number of the

patterns P(0, b), b ∈ Z, is finite. Let

C =
⋃

m∈Z
(C ′ ∩ (Z× [b1c, b2c)) + m~v) (1)

where ~v = (0, (b2 − b1)c). Then C is 2-periodic with periods (c, 0) and (0, (b2 − b1)c).
It remains to show that A⊕ C = Z2. By the above construction,

{(s, t) ∈ C ′; b1c ≤ t < b2c)}+ A

covers a strip of the plane. We shall show that this patch can be extended to a tiling. Notice that the
configurations of C ′ in Z× [b1c, (b1 + 1)c] and Z× [b2c, (b2 + 1)c] are the same. Let Z× [b2c, (b2 + 2)c]
have the same configuration as Z×[b1c, (b1+2)c], then the patch is extended with neither gap nor overlap.
Repeating this procedure, the patch is extended to a tiling of the upper half plane. We can do the same for
the lower half plane. Therefore we obtain a tiling and the translation set is C in (1). 2

Lemma 2.2 If a set C is 2-periodic, then it has two periods (M, 0) and (0, N) for some integers M and
N .

Proof: Suppose λ1 and λ2 are two linear independent periods of C. Then aλ1 + bλ2 is also a period of
C. Clearly we can choose a, b properly to have periods of the form (M, 0) and (0, N). 2

For a finite set A, we define a polynomial A(x, y) as

A(x, y) :=
∑

(s,t)∈A

xsyt.

For a polynomial P (x, y) =
∑

xsyt, define

P (x, y) (mod xM − 1, yN − 1) =
∑

xs (mod M)yt (mod N).

Then as a corollary of Proposition 2.1 and Lemma 2.2, we have

Corollary 2.3 A finite set A ⊂ Z2 is a normal tile if and only if there exists a finite set B ⊂ Z2 and
positive integers M,N such that #A#B = MN and

A(x, y)B(x, y) ≡ (1 + x + · · ·+ xM−1)(1 + y + · · ·+ yN−1) (mod xM − 1, yN − 1). (2)
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The following lemma is a generalization of a result of Tijdeman [Tij1], which concerns the Z-tilings.
Coven and Meyerowitz ([Coven]: Lemma 3.1) gave a nice proof of Tijdeman’s Lemma. Our proof is a
generalization of the proof in [Coven].

Lemma 2.4 Let A and B be finite subsets of Z2 with non-negative coordinates with corresponding poly-
nomials A(x, y) and B(x, y) and let MN = #A#B. If equation (2) holds and p is a prime which is not
a factor of #A, then

A(xp, yp)B(x, y) ≡ (1 + x + · · ·+ xM−1)(1 + y + · · ·+ yN−1) (mod xM − 1, yN − 1).

Proof: Since p is prime, A(xp, yp) ≡ (A(x, y))p (mod p), i.e., when the coefficients are reduced
modulo p. Let GM,N (x, y) = (1 + x + · · ·+ xM−1)(1 + y + · · ·+ yN−1). Then

A(xp, yp)B(x, y) ≡ (A(x, y))p−1A(x, y)B(x, y) ≡ (A(x, y))p−1GM,N (x, y),

where ≡ means the exponents of x and y are reduced modulo M and N respectively, and then the coeffi-
cients are reduced modulo p. Since

xiyjGM,N (x, y) ≡ GM,N (x, y) (mod xM − 1, yN − 1)

holds for any i, j, we have

(A(x, y))p−1GM,N (x, y) ≡ (A(1, 1))p−1GM,N (x, y) (mod xM − 1, yN − 1).

Since p does not divide #A, Fermat’s Little Theorem yields (A(1, 1))p−1 ≡ 1 (mod p). Therefore

A(xp, yp)B(x, y) ≡ GM,N (x, y),

where the exponents of x and y are reduced modulo M and N respectively, and then the coefficients are
reduced modulo p.

Since A(1, 1)B(1, 1) = GM,N (1, 1) = MN, both A(xp, yp)B(x, y) and GM,N (x, y) have nonnega-
tive coefficients whose sum is MN . Consider the following reductions.

(R1) A(xp, yp)B(x, y) is reduced modulo xM − 1, yN − 1, yielding a polynomial G∗(x, y).
(R2) The coefficients of G∗(x, y) are reduced modulo p, yielding GM,N (x, y).

Reduction (R1) preserves the sum of the coefficients, but (R2) reduces the sum by some nonnegative
multiple of p. Because the sum of the coefficients of both G∗(x, y) and GM,N (x, y) is MN , that multiple
is 0. Therefore G∗(x, y) = GM,N (x, y). 2

The following theorem is a two dimensional generalization of Lemma 2.3 in [Coven]. We have shown
that if A is a normal tile, then there is a translation set with periods (M, 0) and (0, N). Theorem 2.5 says
further that we may assume that M and N have the same prime factors as #A.

Theorem 2.5 If A ⊂ Z2 is a normal tile, then there exists a finite set B ⊂ Z2 and two integers M and
N , M and N are products of prime factors of #A, such that

A(x, y)B(x, y) ≡ (1 + x + · · ·+ xM−1)(1 + y + · · ·+ yN−1) (mod xM − 1, yN − 1).
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Proof: If A ⊕ C = Z2 is a tiling of periods (M, 0) and (0, N) and r > 1 is a prime factor of M
which does not divides #A, then by Lemma 2.4, rA ⊕ C = Z2. Therefore rA ⊕ C0 = rZ2 where
C0 = {(s, t) ∈ C; s ≡ 0, t ≡ 0 (mod r)}.

Since the periods (M, 0) and (0, rN) of C are also periods of C0, we conclude that A⊕C0/r = Z2 is
a tiling with periods (M/r, 0) and (0, N). Continuing this procedure, we may remove any prime factor r
from M which does not divide #A. 2

3 Tiles with prime cardinality
In this section, we prove Theorem 1.3, the main result of this paper.

Proposition 3.1 Let A = {(s0, t0), (s1, t1), . . . (sn−1, tn−1)} be a subset of Z2. If there exist two in-
tegers a and b such that as0 + bt0, as1 + bt1, . . . , asn−1 + btn−1 are distinct and {as0 + bt0, as1 +
bt1, . . . , asn−1 + btn−1} is a Z-tile, then A is a normal Z2-tile.

Proof: Let k ∈ Z and k 6= 0, then obviously E is a Z-tile if and only if kE is a Z-tile ([Coven]: Lemma
1.4).

Case 1. a 6= 0 and b = 0 (or, vice versa, a = 0 and b 6= 0). By assumption {as0, . . . , asn−1} is a
Z-tile, so {s0, . . . , sn−1} is also a Z-tile. Hence there is a translation set F such that

{s0, . . . , sn−1} ⊕ F = Z. (3)

Let C = F × Z. Clearly A⊕ C = Z2 and C is periodic.
Case 2. ab 6= 0. We may assume that a and b are coprime. Let u, v be two integers such that

au− bv = 1, and let

φ =
(

a b
v u

)
.

In the following, we will regard φ as a linear operator from Z2 to Z2. Then φ gives a one-to-one map from
Z2 to Z2. Since

φ(A) = {(as0 + bt0, vs0 + ut0), . . . , (asn−1 + btn−1, vsn−1 + utn−1)}

and {as0 + bt0, as1 + bt1, . . . , asn−1 + btn−1} is a Z-tile, so by the conclusion of Case 1 (by choosing
a = 1, b = 0 there), φ(A) is a normal tile. Hence A is also a normal tile. 2

From now on, we prove the other direction of Theorem 1.3. Suppose A is a normal tile and #A = p is
a prime. Then by the discussion of Section 2, there is a translation set C with periods (pm, 0) and (0, pm)
for some positive integer m. Let

D1 = {(1, b); b = 0, 1, . . . , pm − 1}, D2 = {(a, 1); a = 0, p, 2p, . . . , pm − p},

and set D = D1 ∪ D2. If pk divides x but pk+1 does not divide x, then we write vp(x) = k. For two
integers s, t we denote vp(s, t) := vp(gcd{s, t}). First we establish two lemmas.
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Lemma 3.2 Let (s, t) be a point of Z2 with vp(s, t) = k. Then the constant term of∑
(a,b)∈D

zas+bt (mod zpm

− 1) (4)

is pk when k < m, is pm(1 + 1
p ) when k ≥ m.

Proof: When vp(s, t) ≥ m, each term in (4) is 1, and hence the constant term of (4) is #D = pm(1+ 1
p ).

So let us assume that vp(s, t) < m.
Without loss of generality, let us assume that vp(s) ≥ vp(t), which implies vp(t) = k. There are

exactly pk elements (in sense of a multiple set) in {s+ bt; 0 ≤ b ≤ pm− 1} which can be divided by pm.
Hence the constant term of∑

(a,b)∈D1

zas+bt (mod zpm

− 1) =
∑

0≤b≤pm−1

zs+bt (mod zpm

− 1)

is pk. Clearly the constant term of ∑
(a,b)∈D2

zas+bt (mod zpm

− 1)

is 0. The lemma is proved. 2

Lemma 3.3 is the key lemma in this paper.

Lemma 3.3 Let B be a subset of Z2 with #B = pn, and let B(x, y) be the corresponding polynomial. If
for any non-negative coprime integers a, b, holds

B(za, zb) ≡ pn−m(1 + z + · · ·+ zpm−1) (mod zpm

− 1),

then n ≥ 2m and

B(x, y) ≡ pn−2m(1 + x + · · ·+ xpm−1)(1 + y + · · ·+ ypm−1) (mod xpm

− 1, ypm

− 1).

Proof: We say B is equally-distributed in {0, 1, . . . , pm − 1} × {0, 1, . . . , pm − 1} if

#{(g, h) ∈ B; g ≡ s, h ≡ t (mod pm)} = #B/p2m

for any (s, t) ∈ {0, 1, . . . , pm − 1} × {0, 1, . . . , pm − 1}. Let ci be the number of points (g, h) in B with
vp(g, h) ≥ i; we shall call c0 = c0(B), c1 = c1(B), . . . , cm = cm(B) the indices of the set B. We claim
that:

Claim. For a set B ⊂ Z2 with #B = pn ≥ p2m, there exists a translation B∗ = B +(s∗, t∗) such that

c0(B∗) = pn, c1(B∗) ≥ pn−2, c2(B∗) ≥ pn−4, . . . , cm(B∗) ≥ pn−2m. (5)

Moveover, if B is not equally-distributed in {0, 1, . . . , pm − 1} × {0, 1, . . . , pm − 1}, then at least one of
the inequalities is strict.
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We prove this claim by induction on m. When m = 1, the claim is obviously true.
Clearly c0(B + (s, t)) = #B = pn for any (s, t).
When (s, t) runs over {0, 1, . . . , p− 1} × {0, 1, . . . , p− 1}, we have∑

c1(B + (s, t)) = #B = pn,

hence there exists (s1, t1) ∈ {0, 1, . . . , p− 1} × {0, 1, . . . , p− 1} such that

c1(B + (s1, t1)) ≥ pn−2

by the pigeon-hole principle. Let

B1 := {(g, h) ∈ B + (s1, t1); vp(g, h) ≥ 1},

then #B1 ≥ pn−2. Let B̃1 be any subset of B1 with cardinality #B1 = pn−2 and set B2 = B̃1/p.
By induction hypothesis, there exists (s2, t2) such that for B∗

2 = B2 + (s2, t2), it holds that

c0(B∗
2) = pn−2, c1(B∗

2) ≥ pn−4, c2(B∗
2) ≥ pn−6, . . . , cm−1(B∗

2) ≥ pn−2m.

Set (s∗, t∗) = (s1, t1) + p(s2, t2) and

B∗ = B + (s∗, t∗) = B + (s1, t1) + p(s2, t2).

Then:

(i) c0(B∗) = pn as we have mentioned before.

(ii) c1(B∗) = c1 (B + (s1, t1)) ≥ pn−2 by the choice of (s1, t1).

(iii) For i ≥ 2, notice that

B∗ ⊃ B1 + p(s2, t2) ⊃ B̃1 + p(s2, t2) = pB2 + p(s2, t2) = pB∗
2 ,

therefore ci(B∗) ≥ ci−1(B∗
2) ≥ pn−2i. The first assertion of the claim is proved.

Suppose B is not equally distributed in {0, 1, . . . , pm−1}×{0, 1, . . . , pm−1}. If c1(B+(s, t)) > pn−2,
then the claim already holds. So we assume that c1(B + (s, t)) = pn−2 for all (s, t) ∈ {0, 1, . . . , p −
1} × {0, 1, . . . , p − 1}. Choose (s1, t1) such that B2 = (B + (s1, t1)) /p is not equally-distributed in
{0, 1, . . . , pm−1 − 1} × {0, 1, . . . , pm−1 − 1}. Again we get the desired inequality by the induction
hypothesis. Our claim is proved.

Now we return to the proof of the lemma. Let us first assume that pn ≥ p2m.
If B is equally-distributed in {0, 1, . . . , pm−1}×{0, 1, . . . , pm−1}, then obviously the lemma holds.

Let us assume that B is not equally-distributed in {0, 1, . . . , pm − 1} × {0, 1, . . . , pm − 1}.
Notice that if B satisfies the conditions of the lemma, then any translation of B, particularly B∗ in the

Claim, also satisfies the conditions of the lemma. Let us consider the polynomial∑
(a,b)∈D

B∗(za, zb) =
∑

(a,b)∈D

∑
(s,t)∈B∗

zas+bt =
∑

(s,t)∈B∗

∑
(a,b)∈D

zas+bt.
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Under the assumptions of the lemma, an easy calculation shows that the constant term of∑
(a,b)∈D

B∗(za, zb) (mod zpm

− 1) (6)

is pn(1 + 1
p ). On the other hand, by Lemma 3.2, the constant term of (6) is

(c∗0 − c∗1) + (c∗1 − c∗2)p + · · ·+ (c∗m−1 − c∗m)pm−1 + c∗m(pm + pm−1)
= c∗0 + c∗1(p− 1) + · · ·+ c∗m−1(p

m−1 − pm−2) + c∗mpm,

where c∗i = ci(B∗) are the indices of B∗. This together with (5) implies that

c∗0 = pn, c∗1 = pn−2, c∗2 = pn−4, . . . , c∗m = pn−2m.

This contradicts the second assertion of the Claim. The lemma is proved in the case n ≥ 2m.
Finally we show that n ≥ 2m must hold. Otherwise, let B̃ be a multi-set which has the same elements

as B, but the multiplicity of each element multiplied by a factor pn′ so that #B̃ = pn+n′ ≥ p2m. It is seen
that B̃ also satisfies the conditions of the lemma. Therefore, B̃ is equally-distributed in {0, 1, . . . , pm −
1} × {0, 1, . . . , pm − 1} and so that B is also equally-distributed. It follows that n ≥ 2m. The lemma is
proved. 2

Proof of Theorem 1.3. One direction is proved by Proposition 3.1, we prove the other direction in the
following.

Let A = {(s0, t0), (s1, t1), . . . (sp−1, tp−1)} be a normal tile of Z2 with #A = p. We may assume that
(s0, t0) = (0, 0). Then according to Theorem 2.5, there exist a set B and M = pm, such that

A(x, y)B(x, y) ≡ (1 + x + · · ·+ xM−1)(1 + y + · · ·+ yM−1) (mod xM − 1, yM − 1). (7)

Note that #B = p2m−1. Suppose for any non-negative coprime integers a, b the set

{as0 + bt0, as1 + bt1, . . . , asp−1 + btp−1}

is not a Z-tile. Then by Remark 1.2, for any integer k ≥ 1, Φpk(z) = 1 + zpk−1
+ · · ·+ z(p−1)pk−1

does
not divide

A(za, zb) = zas0+bt0 + zas1+bt1 + · · ·+ zasp−1+btp−1 ,

where Φn(x) denotes the n-th cyclotomic polynomial. From (7), we have

A(za, zb)B(za, zb) ≡ pm(1 + z + · · ·+ zpm−1) (mod zpm

− 1).

Hence Φpk(z) (1 ≤ k ≤ m) must be factors of B(za, zb), which implies that B(za, zb) is a multiple of
Φp(z)Φp2(z) · · ·Φpm(z) = 1 + z + · · ·+ zpm−1. Hence for any non-negative coprime integers a, b,

B(za, zb) ≡ pm−1(1 + z + · · ·+ zpm−1) (mod zpm

− 1).

Now by Lemma 3.3, we have that #B ≥ p2m which contradicts with #B = p2m−1. This contradiction
proves the theorem. 2
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4 Algorithm
In this section, we give an algorithm to check the conditions of Theorem 1.3. We note that our algorithm
is essentially identical with the algorithm given by Szegedy [Sze].

4.1 Span of A.
Let L(A) be the set of Z-linear combinations of vectors in A, which is a sublattice of Z2. If the rank of
L(A) is 1, then A = {a0v, a1v, . . . , ap−1v} for some vector v ∈ Z2; in this case, A is a tile if and only
if {a0, a1, . . . , ap−1} is a Z-tile. So we assume that L(A) is a full-rank lattice. Then there is an integral
matrix φ such that

L(A) = φ(Z2).

The matrix φ can be obtained in the following way. All the vectors in A form a p× 2 matrix
s0 t0
s1 t1
...

...
sp−1 tp−1


By applying elementary row operators, the matrix can be reduced to the form

s t
0 t′

0 0
...

...
0 0


Clearly L(A) = L{(s, t), (0, t′)} = φ(Z2) where

φ =
(

s 0
t t′

)
.

The linear span L(A) 6= Z2 if and only if |det φ| > 1.
Let A′ = φ−1(A). We claim that A tiles Z2 if and only if A′ tiles Z2. Suppose A tiles Z2, i.e.,

A⊕C = Z2. Let C0 = C ∩ φ(Z2). Then A⊕C0 = φ(Z2), A′ ⊕ φ−1(C0) = Z2 and so that A′ tiles Z2.
On the other hand, suppose A′ tiles Z2, i.e., A′ ⊕C ′ = Z2. Let R be a complete representative system of
residues Z2/φ(Z2). Then A⊕ φ(C ′) = φ(Z2), and so that A⊕ C = Z2 where C = φ(C ′)⊕R.

4.2 Algorithm
So, to check whether A is a normal tile, it suffices to check whether A′ is a normal tile. Hence, from now
on, we assume that L(A) = Z2.

Proposition 4.1 If L(A) = Z2, then there exist integers a, b satisfying the conditions of Theorem 1.3, if
and only if there exist integers a, b ∈ {0, 1, . . . , p− 1} satisfying these conditions.
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Proof: As we have pointed out, we may assume that (a, b) = 1. Hence at least one of a, b is coprime to
p, let us say, (a, p) = 1. The integers a, b satisfying the conditions of Theorem 1.3 means that there exists
an integer m such that

asi + bti ≡ lip
m (mod pm+1)

and {l0, . . . , lp−1} is a complete representative system modulo p. If m = 0, we may choose a (mod p), b
(mod p) instead of a, b, and the proposition is proved.

Suppose m ≥ 1. Let c be an integer such that ac ≡ 1 (mod pm+1). Then

acsi + bcti ≡ licp
m (mod pm+1),

si + bcti ≡ licp
m (mod pm+1),

where {cl0, . . . , clp−1} is still a complete representative system modulo p. Write si + bcti = Lip
m, let φ

be the matrix

φ =
(

p −bc
0 1

)
.

Then (si, ti) = φ(Lip
m−1, ti) and det φ = p, which contradicts with L(A) = Z2. 2

Algorithm:
Step 1. Find the matrix φ such that L(A) = φ(Z2). If det φ = 0, then the problem is reduced to a

Z-tiling problem; otherwise set

A′ = φ−1(A) = {(s′0, t′0), (s′1, t′1), . . . , (s′p−1, t
′
p−1)}.

Step 2. Check whether there exist integers a, b ∈ {0, 1, . . . , p − 1} such that as′0 + bt′0, as′1 +
bt′1, . . . , as′p−1 + bt′p−1 are distinct and form a Z-tile.

4.3 #A is a prime power.
We remark that the conclusion of Theorem 1.3 is false even for normal tiles A with #A = p2. For
example, let p = 3 and

A = {(0, 0), (0, 2), (1, 1), (1, 2), (1, 3), (2, 0), (2, 1), (2, 2), (3, 1)}.

Clearly the only translation set is C = 3Z × 3Z and so that A is a normal tile. The periods of C are
(3x, 3y) where x, y ∈ Z. See Figure 1.

Figure 1.
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We show that that A does not satisfy the condition of Theorem 1.3. Suppose not, then there are integers
a, b such that as0 +bt0, as1 +bt1, . . . , asn−1 +btn−1 are distinct and {as0 +bt0, as1 +bt1, . . . , asn−1 +
btn−1} is a Z-tile. We may assume that a and b are coprime. Let u, v be two integers such that au−bv = 1,
and let

φ =
(

a b
v u

)
.

Since
φ(A) = {(as0 + bt0, vs0 + ut0), . . . , (asn−1 + btn−1, vsn−1 + utn−1)}

and {as0 + bt0, as1 + bt1, . . . , asn−1 + btn−1} is a Z-tile, we infer that φ(C), the unique translation set
of φ(A), has a period (0, 1). So there exist x, y ∈ Z such that φ(3x, 3y) = (0, 1), which is impossible.
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