On the number of spanning trees of $K_{n}^{m} \pm G$ graphs

Stavros D. Nikolopoulos and Charis Papadopoulos ${ }^{\dagger}$
Department of Computer Science, University of Ioannina, P.O.Box 1186, GR-45110 Ioannina, Greece
\{stavros, charis\}@cs.uoi.gr

received June 9, 2005, revised April 14, 2006, accepted July 25, 2006.

The K_{n}-complement of a graph G, denoted by $K_{n}-G$, is defined as the graph obtained from the complete graph K_{n} by removing a set of edges that span G; if G has n vertices, then $K_{n}-G$ coincides with the complement \bar{G} of the graph G. In this paper we extend the previous notion and derive determinant based formulas for the number of spanning trees of graphs of the form $K_{n}^{m} \pm G$, where K_{n}^{m} is the complete multigraph on n vertices with exactly m edges joining every pair of vertices and G is a multigraph spanned by a set of edges of K_{n}^{m}; the graph $K_{n}^{m}+G$ (resp. $K_{n}^{m}-G$) is obtained from K_{n}^{m} by adding (resp. removing) the edges of G. Moreover, we derive determinant based formulas for graphs that result from K_{n}^{m} by adding and removing edges of multigraphs spanned by sets of edges of the graph K_{n}^{m}. We also prove closed formulas for the number of spanning tree of graphs of the form $K_{n}^{m} \pm G$, where G is (i) a complete multipartite graph, and (ii) a multi-star graph. Our results generalize previous results and extend the family of graphs admitting formulas for the number of their spanning trees.

Keywords: Kirchhoff matrix tree theorem, complement spanning tree matrix, spanning trees, K_{n}-complements, multigraphs.

1 Introduction

The number of spanning trees of a graph G, denoted by $\tau(G)$, is an important, well-studied quantity in graph theory, and appears in a number of applications. Most notable application fields are network reliability [9, 17, 22], enumerating certain chemical isomers [5], and counting the number of Eulerian circuits in a graph [15].

Thus, both for theoretical and for practical purposes, we are interested in deriving formulas for the number of spanning trees of a graph G, and also of the K_{n}-complement of G; the K_{n}-complement of a graph G, denoted by $K_{n}-G$, is defined as the graph obtained from the complete graph K_{n} by removing a set of edges (of the graph K_{n}) that span G; if G has n vertices, then $K_{n}-G$ coincides with the complement \bar{G} of the graph G. Many cases have been examined depending on the choice of G. For example, there exist closed formulas for the cases where G is is a pairwise disjoint set of edges [24], a chain of edges [16], a cycle [11], a star [20], a multi-star [19, 25], a multi-complete/star graph [7],

[^0]a labelled molecular graph [5], and more recent results when G is a circulant graph [12, 26], a quasithreshold graph [18], and so on (see Berge [2] for an exposition of the main results).

In this paper, we extend the previous notion and consider graphs that result from the complete multigraph K_{n}^{m} by removing multiple edges; we denote by K_{n}^{m} the complete multigraph on n vertices with exactly m edges joining every pair of vertices. Based on the properties of the Kirchhoff matrix, which permits the calculation of the number of spanning trees of any given graph, we derive a determinant based formula for the number of spanning trees of the graph $K_{n}^{m}-G$, where G is a subgraph of K_{n}^{m}, and, thus, it is a multigraph. Note that, if $m=1$ then $K_{n}^{m}-G$ coincides with the graph $K_{n}-G$.

We also consider graphs that result from the complete multigraph K_{n}^{m} by adding multiple edges. More precisely, we consider multigraphs of the form $K_{n}^{m}+G$ that result from the complete multigraph K_{n}^{m} by adding a set of edges (of the graph K_{n}^{m}) that span G. Again, based on the properties of the Kirchhoff matrix, we derive a determinant based formula for the number of spanning trees of the graph $K_{n}^{m}+G$. To the best of our knowledge, not as much seems to be known about the number $\tau\left(K_{n}^{m}+G\right)$. Bedrosian in [1] considered the number $\tau\left(K_{n}+G\right)$ for some simple configurations of G, i.e., when G forms a cycle, a complete graph, or when its vertex set is quite small. More recently, Golin et al. in [12] derive closed formula for the number $\tau\left(K_{n}+G\right)$ using Chebyshev polynomials, introduced in [4], for the case where G forms a circulant graph.

We denote $K_{n}^{m} \pm G$ the family of graphs of the forms $K_{n}^{m}+G$ and $K_{n}^{m}-G$, and derive a determinant based formula for the number $\tau\left(K_{n}^{m} \pm G\right)$. Moreover, based on these results, we generalize our formulas and extend the family $K_{n}^{m} \pm G$ to the more general family of graphs $F_{n}^{m} \pm G$, where F_{n}^{m} is the complete multigraph on n vertices with at least $m \geq 1$ edges joining every pair of vertices.

Based on our results-that is, the determinant based formulas for the number of spanning trees of the family of graphs $\tau\left(K_{n}^{m} \pm G\right)$, and using standard algebraic techniques, we generalize known closed formulas for the number of spanning trees of simple graphs of the form $K_{n}-G$. In particular, we derive closed formulas for the number of spanning trees $\tau\left(K_{n}^{m} \pm G\right)$, in the case where G forms (i) a complete multipartite graph, and (ii) a multi-star graph.

We point out that our proposed formulas express the number of spanning trees $\tau\left(K_{n}^{m} \pm G\right)$ as a function of the determinant of a matrix that can be easily constructed from the adjacency relation of the graph G. Our results generalize previous results and extend the family of graphs of the form $K_{n}^{m} \pm G$ admitting formulas for the number of their spanning trees.

2 Preliminaries

We consider finite undirected simple graphs and multigraphs with no loops; the term multigraph is used when multiple edges are allowed in a graph. For a graph G, we denote by $V(G)$ and $E(G)$ the vertex set and edge set of G, respectively.

The multiplicity of a vertex-pair (v, u) of a graph G, denoted by $\ell_{G}(v u)$, is the number of edges joining the vertices v and u in G. The minimum multiplicity among all the vertex-pairs of G is denoted $\lambda(G)$ while $\Lambda(G)$ is the largest such number. Thus, if $\lambda(G)>0$, then every pair of vertices in G is connected with at least $\lambda(G)$ edges; if $\Lambda(G)=1$, then G contains no multiple edges, that is, G is a simple graph (note that a simple graph or a multigraph contains no loops). The degree of a vertex v of a graph G, denoted by $d_{G}(v)$, is the number of edges incident with v in G. The minimum degree among the vertices of G is denoted $\delta(G)$ while $\Delta(G)$ is the largest such number.

It is worth noting that a multigraph can also be viewed as a simple graph whose edges are labeled with
non-zero integers (weights) which correspond to the multiplicity of the edges. Thus, a multigraph can be thought as a weighted graph. In this paper we adopt the standard approach.

Let \mathcal{F} be the family of complete multigraphs on n vertices with multiplicity at least $m \geq 1$, and let $F_{n}^{m} \in \mathcal{F}$. Then, $\lambda\left(F_{n}^{m}\right)=m$, since F_{n}^{m} has at least $m \geq 1$ edges joining every pair of its vertices. A complete multigraph on n vertices with exactly m edges joining every pair of its vertices is called m-complete multigraph and denoted by K_{n}^{m}. Thus, for the m-complete multigraph K_{n}^{m} we have that $\lambda\left(K_{n}^{m}\right)=\Lambda\left(K_{n}^{m}\right)=m$ and $\delta\left(K_{n}^{m}\right)=\Delta\left(K_{n}^{m}\right)=(n-1) m$. Note that, the 1-complete multigraph is the graph K_{n}. By definition, every complete multigraph F_{n}^{m} contains a subgraph isomorphic to an m-complete multigraph K_{n}^{m}.

Let F_{n}^{m} be a complete multigraph and let \mathcal{C} be a set of edges of F_{n}^{m} such that the graph which is obtained from F_{n}^{m} by removing the edges of \mathcal{C} is an m-complete multigraph K_{n}^{m}; the graph spanned by the edges of \mathcal{C} is called a characteristic graph of F_{n}^{m} and denoted by $\mathcal{H}\left(F_{n}^{m}\right)$. By definition, a characteristic graph $\mathcal{H}\left(F_{n}^{m}\right)$ contains no isolated vertex.

Let G and H be two multigraphs. The graph $G+H$ is defined as follows:

$$
V(G+H)=V(G) \cup V(H)
$$

and

$$
v u \in E(G+H) \Longleftrightarrow v u \in E(G) \text { or } v u \in E(H)
$$

By definition, both graphs G and H are subgraphs of $G+H$. Moreover, if $v, u \in V(G) \cap V(H)$, then $\ell_{G+H}(v u)=\ell_{G}(v u)+\ell_{H}(v u)$.

Let G and H be two multigraphs such that $E(H) \subseteq E(G)$. The graph $G-H$ is defined as the graph obtained from G by removing the edges of H.

Having defined the graphs $G+H$ and $G-H$, it is easy to see that $F_{n}^{m}=K_{n}^{m}+\mathcal{H}\left(F_{n}^{m}\right)$ and $K_{n}^{m}=F_{n}^{m}-\mathcal{H}\left(F_{n}^{m}\right)$. In general, $\mathcal{H}\left(F_{n}^{m}\right) \neq F_{n}^{m}-K_{n}^{m}$; the equality holds if $\mathcal{H}\left(F_{n}^{m}\right)$ has n vertices.

The adjacency matrix of a multigraph G on n vertices, denoted by $A(G)$, is an $n \times n$ matrix with diagonal elements $A(G)[i, i]=0$ and off-diagonal elements $A(G)[i, j]=\ell_{G}\left(v_{i} v_{j}\right)$. The degree matrix of the multigraph G, denoted by $D(G)$, is an $n \times n$ matrix with diagonal elements $D(G)[i, i]=d_{G}\left(v_{i}\right)$ and off-diagonal elements $D(G)[i, j]=0$. Throughout the paper empty entries in matrices represent 0 s.
For an $n \times n$ matrix M, the $(n-1)$-st order minor μ_{j}^{i} is the determinant of the $(n-1) \times(n-1)$ matrix obtained from M after having deleted row i and column j; the i-th cofactor equals μ_{i}^{i}. The Kirchhoff matrix $L(G)$ (also known as the Laplacian matrix) for a multigraph G on n vertices is an $n \times n$ matrix with elements

$$
L(G)[i, j]= \begin{cases}d_{G}\left(v_{i}\right) & \text { if } i=j \\ -\ell_{G}\left(v_{i} v_{j}\right) & \text { otherwise }\end{cases}
$$

where $d_{G}\left(v_{i}\right)$ is the degree of vertex v_{i} in the graph G and $\ell_{G}\left(v_{i} v_{j}\right)$ is the number of edges joining the vertices v_{i} and v_{j} in G. The matrix $L(G)$ is symmetric, has nonnegative real eigenvalues and its determinant is equal to zero. Note that, $L(G)=D(G)-A(G)$.

The Kirchhoff matrix tree theorem [3] is one of the most famous results in graph theory. It provides a formula for the number of spanning trees of a graph G in terms of the cofactors of G 's Kirchhoff matrix; it is stated as follows:

Theorem 2.1 (Kirchhoff Matrix Tree Theorem [3]) For any multigraph G with $L(G)$ defined as above, the cofactors of $L(G)$ have the same value, and this value equals the number of spanning trees $\tau(G)$ of the multigraph G.

The Kirchhoff matrix tree theorem provides a powerful tool for computing the number $\tau(G)$ of spanning trees of a graph G. For this computation, we first form the Kirchhoff matrix $L(G)$ of the graph G and obtain the $(n-1) \times(n-1)$ matrix $L_{i}(G)$ from $L(G)$ by removing its i-th row and column (arbitrary), and then compute the determinant of the matrix $L_{i}(G)$. We note that the determinant of $L_{i}(G)$ simply counts the number of spanning trees rooted at vertex $v_{i} \in V(G)$, which justifies the reason of removing the i-th row and the i-th column from $L(G)$. A combinatorial proof of the Kirchhoff matrix tree theorem can be found in [6].

The number of spanning trees of a graph G can be computed directly (without removing any row or column) in terms of a matrix $L^{\prime}(G)$ similar to the Kirchhoff matrix $L(G)$, which is associated with the graph G [23], or, alternatively, it can be computed by defining a characteristic polynomial $\operatorname{det}(L(G)-x I)$ on $L(G)$; the latter approach takes into account the computation of the eigenvalues of the matrix $L(G)$ (see $[4,5,10,12,22,26]$).

In our work, we express the number of spanning trees of a graph of the form $K_{n}^{m} \pm G$, where G is a subgraph of K_{n}^{m} on p vertices, in terms of a $p \times p$ matrix $B(G)$ associated with the graph G, and not in terms of an $n \times n$ matrix $L\left(K_{n}^{m} \pm G\right)$ associated with the whole graph $K_{n}^{m} \pm G$.

3 The $K_{n}^{m} \pm G$ graphs

In this section, we consider graphs that result from the m-complete multigraph K_{n}^{m} by removing or/and adding multiple edges. We are interested in deriving determinant based formulas for the number of spanning trees of the graphs $K_{n}^{m}-G$ and $K_{n}^{m}+G$, where G is a multigraph spanned by a set of edges $S \subseteq E\left(K_{n}^{m}\right)$. To this end, we define a parameter α as follows: (i) $\alpha=1$, for the case $K_{n}^{m}+G$, and (ii) $\alpha=-1$, for the case $K_{n}^{m}-G$. In other words, $\alpha= \pm 1$, according to $K_{n}^{m} \pm G$. Based on the value of α we conclude with the following result.

Let G be a multigraph spanned by a set of edges of the graph K_{n}^{m}. We derive formulas for the number of spanning trees of the graph $K_{n}^{m} \pm G$; the graph G has $p \leq n$ vertices and $\Lambda(G) \leq m$.

In order to compute the number $\tau\left(K_{n}^{m}-G\right)$ we will make use of Theorem 2.1. Thus, we consider the $n \times n$ Kirchhoff matrix $L=L\left(K_{n}^{m} \pm G\right)$, which has the form:

$$
L=\left[\begin{array}{cccccc}
m(n-1) \cdots & -m & -m & -m & \cdots & -m \tag{1}\\
\vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
-m & \cdots m(n-1) & -m & -m & \cdots & \vdots \\
-m & \cdots & -m & m(n-1)+\alpha \cdot d_{G}\left(v_{1}\right) & -m \\
-m & \cdots & -m & m(n-1)+\alpha \cdot d_{G}\left(v_{2}\right) & \\
\vdots & \cdots & \vdots & & \ddots & \\
-m & \cdots & -m & -m-\alpha \cdot \alpha \cdot \ell_{G}\left(v_{i} v_{j}\right) & & \\
\hline
\end{array}\right.
$$

where $d_{G}\left(v_{i}\right)$ is the degree of the vertex $v_{i} \in G$ and $\ell_{G}\left(v_{i} v_{j}\right)$ is the multiplicity of the vertices v_{i} and v_{j} in G. The entries of the off-diagonal positions $(n-p+i, n-p+j)$ of the matrix L are equal to
$-m-\alpha \cdot \ell_{G}\left(v_{i} v_{j}\right), 1 \leq i, j \leq p$. Note that, the first $n-p$ rows and columns of L correspond to the $n-p$ vertices of the set $V\left(K_{n}^{m}\right)-V(G)$ and, thus, they have degree $m(n-1)$ in $K_{n}^{m} \pm G$.

Let L_{1} be the $(n-1) \times(n-1)$ matrix obtained from L by removing its first row and column. Then, from Theorem 2.1 we have that

$$
\tau\left(K_{n}^{m}-G\right)=\operatorname{det}\left(L_{1}\right)
$$

In order to compute the determinant of the matrix L_{1}, we add one row and one column to the matrix L_{1}; the resulting $n \times n$ matrix L_{1}^{\prime} has 1 in position $(1,1),-m$ in positions $(1, j), 2 \leq j \leq n$, and 0 in positions $(i, 1), 2 \leq i \leq n$. It is easy to see that, $\operatorname{det}\left(L_{1}^{\prime}\right)=\operatorname{det}\left(L_{1}\right)$. Thus, the $n \times n$ matrix L_{1}^{\prime} has the following form:

$$
L_{1}^{\prime}=\left[\begin{array}{ccccccc}
1 & -m & \cdots & -m & -m & -m & \cdots \\
0 & -m & -m & \cdots & -m \\
0 & m(n-1) & \cdots & -m & \vdots & \vdots & \vdots
\end{array}\right.
$$

We denote by $L_{1}^{\prime \prime}$ the matrix obtained from L_{1}^{\prime} after multiplying the first row of L_{1}^{\prime} by -1 and adding it to the next $n-1$ rows. Thus, the determinant of $L_{1}^{\prime \prime}$ is equal to the determinant of L_{1}^{\prime}. Moreover it becomes:
where the entries of the off-diagonal positions $(n-p+i, n-p+j)$ of the matrix $L_{1}^{\prime \prime}$ are equal to $-\alpha \cdot \ell_{G}\left(v_{i} v_{j}\right), 1 \leq i, j \leq p$. Note that, the first $n-p$ rows of the matrix $L_{1}^{\prime \prime}$ have non-zero elements in positions $(1, i)$ and $(i, i), 2 \leq i \leq n-p$. We observe that the sum of all the elements on each row of $L_{1}^{\prime \prime}$, except of the first row, is equal to $m n-1$; recall that, $d_{G}\left(v_{i}\right)=\sum_{1 \leq j \leq p} \ell_{G}\left(v_{i} v_{j}\right)$, for every $v_{i} \in V(G)$.

Thus, we multiply each column of matrix $L_{1}^{\prime \prime}$ by $\frac{1}{m n}$ and add it to the first column, and we obtain:

$$
\operatorname{det}\left(L_{1}^{\prime \prime}\right)=\left\lvert\, \begin{array}{ccccccc}
\frac{1}{n} & -m & \cdots & -m & -m & -m & \cdots \tag{2}\\
0 & m n & & & & -m \\
\vdots & & \ddots & & & & \\
0 & & m n & & & \\
0 & & & m n+\alpha \cdot d_{G}\left(v_{1}\right) & & & \\
0 & & & & & & \\
\vdots & & & & & \\
0 & & -\alpha \cdot \ell_{G}\left(v_{i} v_{j}\right) & & \\
0 & & & & \\
\hline
\end{array}\right.
$$

where $B=m n I_{p}+\alpha L(G)$ is a $p \times p$ matrix; recall that, $L(G)$ is the Kirchhoff matrix of the multigraph G and thus, $L(G)=D(G) \pm A(G)$, where $D(G)$ and $A(G)$ are the degree matrix and the adjacency matrix of G, respectively. Concluding, we obtain the following result.
Theorem 3.1 Let K_{n}^{m} be the m-complete multigraph on n vertices, and let G be a multigraph on p vertices such that $V(G) \subseteq V\left(K_{n}^{m}\right)$ and $E(G) \subseteq E\left(K_{n}^{m}\right)$. Then,

$$
\tau\left(K_{n}^{m} \pm G\right)=m \cdot(m n)^{n-p-2} \operatorname{det}(B)
$$

where $B=\operatorname{mnI}_{p}+\alpha \cdot L(G)$ is a $p \times p$ matrix, $\alpha= \pm 1$ according to $K_{n}^{m} \pm G$, and $L(G)$ is the Kirchhoff matrix of G.
We note that, for simple graphs K_{n} and G in case $K_{n}-G$, Theorem 3.1 has been stated first by Moon in [16] and numerous authors in various guises used it as a constructive tool to obtain formulas for the number of spanning trees of graphs of the type $K_{n}-G$.

In the previous theorem the graph G is a subgraph of K_{n}^{m}, and, thus, it has multiplicity $\Lambda(G) \leq m$. It follows that the graph $K_{n}^{m}+G$ has multiplicity $\Lambda\left(K_{n}^{m}+G\right) \leq 2 m$. However, we can relax the previous restriction in the case of the graph $K_{n}^{m}+G$. It is not difficult to see that for the matrix L of Equation (1) we have $\lambda(G) \geq 0$. Thus, we can define the graph G to be a multigraph on p vertices such that $V(G) \subseteq V\left(K_{n}^{m}\right)$. The following theorem holds.
Theorem 3.2 Let K_{n}^{m} be the m-complete multigraph on n vertices, and let G be a multigraph on p vertices such that $V(G) \subseteq V\left(K_{n}^{m}\right)$. Then,

$$
\tau\left(K_{n}^{m}+G\right)=m \cdot(m n)^{n-p-2} \cdot \operatorname{det}(B)
$$

where $B=m n I_{p}+L(G)$ is a $p \times p$ matrix, and $L(G)$ is the Kirchhoff matrix of G.

4 The $F_{n}^{m} \pm G$ graphs

In this section we derive determinant based formulas for the number $\tau\left(F_{n}^{m} \pm G\right)$, where F_{n}^{m} is a complete multigraph and G is a subgraph of F_{n}^{m}. We first take into consideration the graph $K_{n}^{m}+G_{1}-G_{2}$ and derive a determinant based formula for the number $\tau\left(K_{n}^{m}+G_{1}-G_{2}\right)$, and, then, we derive a formula for the number $\tau\left(F_{n}^{m} \pm G\right)$ using the graph $K_{n}^{m}+G_{1}-G_{2}$ and a characteristic graph $\mathcal{H}\left(F_{n}^{m}\right)$.

4.1 The case $K_{n}^{m}+G_{1}-G_{2}$

Here, we consider graphs that result from the m-complete multigraph K_{n}^{m} by adding multiple edges of a graph G_{1} and removing multiple edges from a graph G_{2}. Let G_{1} be a multigraph on p_{1} vertices, such that $V\left(G_{1}\right) \subseteq V\left(K_{n}^{m}\right)$, and let G_{2} be a multigraph on p_{2} vertices, such that $V\left(G_{2}\right) \subseteq V\left(K_{n}^{m}\right)$ and $E\left(G_{2}\right) \subseteq E\left(K_{n}^{m}+G_{1}\right)$. We next focus on the graph $K_{n}^{m}+G_{1}-G_{2}$, which is obtained from the m complete multigraph K_{n}^{m} by first adding the edges of the graph G_{1} and then removing from the resulting graph $K_{n}^{m}+G_{1}$ the edges of G_{2}; that is, $K_{n}^{m}+G_{1}-G_{2}=\left(K_{n}^{m}+G_{1}\right)-G_{2}$.

It is worth noting that $\left(K_{n}^{m}+G_{1}\right)-G_{2} \neq K_{n}^{m}+\left(G_{1}-G_{2}\right)$, since the graph G_{2} is not necessarily a subgraph of G_{1}. Moreover, $V\left(G_{1}\right) \neq V\left(G_{2}\right)$.

For the pair of multigraphs $\left(G_{1}, G_{2}\right)$ we define the union-stable graphs G_{1}^{*} and G_{2}^{*} of $\left(G_{1}, G_{2}\right)$ as follows: G_{1}^{*} is the multigraph that results from G_{1} by adding in $V\left(G_{1}\right)$ the vertices of the set $V\left(G_{2}\right)$ $V\left(G_{1}\right)$ and G_{2}^{*} is the multigraph that results from G_{2} by adding in $V\left(G_{2}\right)$ the vertices of the set $V\left(G_{1}\right)$ $V\left(G_{2}\right)$. Thus, by definition $V\left(G_{1}^{*}\right)=V\left(G_{2}^{*}\right)$.

By definition, both G_{1}^{*} and G_{2}^{*} are multigraphs on $p=\left|V\left(G_{1}\right) \cup V\left(G_{2}\right)\right|$ vertices, with at least $p-p_{1}$ and $p-p_{2}$ isolated vertices, respectively. Since $K_{n}^{m}+G_{1}^{*}-G_{2}^{*}=K_{n}^{m}+G_{1}-G_{2}$, we focus on the graph $K_{n}^{m}+G_{1}^{*}-G_{2}^{*}$.

Based on Theorem 2.1, we construct the $n \times n$ Kirchhoff matrix $L=L\left(K_{n}^{m}+G_{1}^{*}-G_{2}^{*}\right)$ associated with the graph $K_{n}^{m}+G_{1}^{*}-G_{2}^{*}$; it is similar to that of the case of $K_{n}^{m} \pm G$. The difference here is the $p \times p$ submatrix which is formed by the last p rows and columns of L, where $p=\left|V\left(G_{1}\right) \cup V\left(G_{2}\right)\right|$. More precisely, the matrix L has the following form:

$$
L=\left[\begin{array}{cccc:cccc}
m(n-1) & -m & \cdots & -m & -m & -m & \cdots & -m \\
-m & m(n-1) & \cdots & -m & -m & -m & \cdots & -m \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\
-m & -m & \cdots & m(n-1) & -m & -m & \cdots & -m \\
-m & -m & \cdots & -m & B^{\prime}\left(G_{1}^{*}, G_{2}^{*}\right)[1,1] & & B^{\prime}\left(G_{1}^{*}, G_{2}^{*}\right)[2,2] & \\
-m & -m & \cdots & -m & B^{\prime}\left(G_{1}^{*}, G_{2}^{*}\right)[j, i] \\
\vdots & \vdots & \cdots & \vdots & & & \ddots & \\
-m & -m & \cdots & -m & B^{\prime}\left(G_{1}^{*}, G_{2}^{*}\right)[i, j] & & B^{\prime}\left(G_{1}^{*}, G_{2}^{*}\right)[p, p]
\end{array}\right]
$$

where the $p \times p$ submatrix $B^{\prime}\left(G_{1}^{*}, G_{2}^{*}\right)$ has elements

$$
B^{\prime}\left(G_{1}^{*}, G_{2}^{*}\right)[i, j]= \begin{cases}m(n-1)+d_{G_{1}^{*}}\left(v_{i}\right)-d_{G_{2}^{*}}\left(v_{i}\right) & \text { if } i=j \\ -m-\ell_{G_{1}^{*}}\left(v_{i} v_{j}\right)+\ell_{G_{2}^{*}}\left(v_{i} v_{j}\right) & \text { otherwise }\end{cases}
$$

We note that $\ell_{G_{1}^{*}}\left(v_{i} v_{j}\right)$ and $\ell_{G_{2}^{*}}\left(v_{i} v_{j}\right)$ are the number of edges of the vertices v_{i} and v_{j} in G_{1}^{*} and G_{2}^{*}, respectively. The entries $d_{G_{1}^{*}}\left(v_{i}\right)$ and $d_{G_{2}^{*}}\left(v_{i}\right), 1 \leq i \leq p$, are the degrees of vertex v_{i} of G_{1}^{*} and G_{2}^{*}, respectively. Note that, $V\left(G_{1}^{*}\right)=V\left(G_{2}^{*}\right)$.

It is straightforward to apply a technique similar to that we have applied for the computation of the determinant of the matrix L_{1}^{\prime} in the case of $K_{n}^{m}-G$. Thus, in the case of $K_{n}^{m}+G_{1}^{*}-G_{2}^{*}$, the determinant
of the matrix L_{1}^{\prime} of Equation (2) becomes

$$
\begin{aligned}
& =m \cdot(m n)^{n-p-2} \cdot \operatorname{det}\left(B\left(G_{1}^{*}, G_{2}^{*}\right)\right),
\end{aligned}
$$

where the $p \times p$ submatrix $B\left(G_{1}^{*}, G_{2}^{*}\right)$ has elements

$$
B\left(G_{1}^{*}, G_{2}^{*}\right)[i, j]= \begin{cases}m n+d_{G_{1}^{*}}\left(v_{i}\right)-d_{G_{2}^{*}}\left(v_{i}\right) & \text { if } i=j, \\ -\ell_{G_{1}^{*}}\left(v_{i} v_{j}\right)+\ell_{G_{2}^{*}}\left(v_{i} v_{j}\right) & \text { otherwise } .\end{cases}
$$

Since $B\left(G_{1}^{*}, G_{2}^{*}\right)=m n I_{p}+L\left(G_{1}^{*}\right)-L\left(G_{2}^{*}\right)$, we set $B=B\left(G_{1}^{*}, G_{2}^{*}\right)$ and obtain the following result.
Theorem 4.1 Let K_{n}^{m} be the m-complete multigraph on n vertices, and let G_{1}, G_{2} be two multigraphs such that $V\left(G_{1}\right) \subseteq V\left(K_{n}^{m}\right)$ and $E\left(G_{2}\right) \subseteq E\left(K_{n}^{m}+G_{1}\right)$. Then,

$$
\tau\left(K_{n}^{m}+G_{1}-G_{2}\right)=m \cdot(m n)^{n-p-2} \operatorname{det}(B)
$$

where $p=\left|V\left(G_{1}\right) \cup V\left(G_{2}\right)\right|, B=m n I_{p}+L\left(G_{1}^{*}\right)-L\left(G_{2}^{*}\right)$ is a $p \times p$ matrix, $L\left(G_{1}^{*}\right)$ and $L\left(G_{2}^{*}\right)$ are the Kirchhoff matrices of the union-stable graphs G_{1}^{*} and G_{2}^{*} of $\left(G_{1}, G_{2}\right)$, respectively.

4.2 The general case $F_{n}^{m} \pm G$

Let F_{n}^{m} be a complete multigraph on n vertices and let G be a subgraph of F_{n}^{m}. We will show that the previous theorem provides the key idea for computing the number $\tau\left(F_{n}^{m} \pm G\right)$, where $F_{n}^{m} \pm G$ is the graph that results from F_{n}^{m} by adding or removing the edges of G. Since $\lambda\left(F_{n}^{m}\right)>0$, we have that $F_{n}^{m}=K_{n}^{m}+\mathcal{H}\left(F_{n}^{m}\right)$, where $\mathcal{H}\left(F_{n}^{m}\right)$ is a characteristic graph of F_{n}^{m}. Then we have that,

$$
F_{n}^{m} \pm G=K_{n}^{m}+\mathcal{H}\left(F_{n}^{m}\right) \pm G .
$$

The addition of the edges of G in the graph F_{n}^{m}, implies that $F_{n}^{m}+G=K_{n}^{m}+G^{\prime}$, where the graph $G^{\prime}=\mathcal{H}\left(F_{n}^{m}\right)+G$. Thus, for the computation of the number $\tau\left(F_{n}^{m}+G\right)$ we can apply Theorem 3.2. On the other hand, in the case of removal the edges of G from the graph F_{n}^{m}, for the computation of the number $\tau\left(F_{n}^{m}-G\right)$ we can apply Theorem 4.1, since $F_{n}^{m}-G=K_{n}^{m}+\mathcal{H}\left(F_{n}^{m}\right)-G$. Concluding we have the following result.

Lemma 4.1 Let F_{n}^{m} be a complete multigraph on n vertices and $\mathcal{H}\left(F_{n}^{m}\right)$ be a characteristic graph of F_{n}^{m}, and let G be a subgraph of F_{n}^{m}. Then,

$$
\tau\left(F_{n}^{m} \pm G\right)=m \cdot(m n)^{n-p-2} \operatorname{det}(B)
$$

(a)

(b)

Fig. 1: (a) A complete multipartite graph $K_{1,2,3}$ and (b) a multi-star graph $K_{4}(0,2,2,3)$.
where $p=\left|V\left(\mathcal{H}\left(F_{n}^{m}\right)\right) \cup V(G)\right|, B=m n I_{p}+L\left(\mathcal{H}\left(F_{n}^{m}\right)^{*}\right) \pm L\left(G^{*}\right)$ is a $p \times p$ matrix and $L\left(\mathcal{H}\left(F_{n}^{m}\right)^{*}\right)$ and $L\left(G^{*}\right)$ are the Kirchhoff matrices of the union-stable graphs $\mathcal{H}\left(F_{n}^{m}\right)^{*}$ and G^{*} of $\left(\mathcal{H}\left(F_{n}^{m}\right), G\right)$, respectively.
Note that, we consider the graph $F_{n}^{m} \pm G$ and therefore G must be a subgraph of F_{n}^{m}. However in the case of the $F_{n}^{m}+G$ graph, similar to Theorem 3.2, it is obvious that G can be a graph spanned by any set of edges joining the vertices of F_{n}^{m}.

5 Classes of graphs

In this section, we generalize known closed formulas for the number of spanning trees of families of graphs of the form $K_{n}-G$. As already mentioned in the introduction there exist many cases for the $\tau\left(K_{n}-G\right)$, depending on the choice of G. The purpose of this section is to prove closed formulas for $\tau\left(K_{n}^{m} \pm G\right)$, by applying similar techniques to that of the case of $K_{n}-G$. Thus we derive closed formulas for the number of spanning trees $\tau\left(K_{n}^{m} \pm G\right)$, in the cases where G forms (i) a complete multipartite graph, and (ii) a multi-star graph.

5.1 Complete multipartite graphs

A graph is defined to be a complete multipartite (or complete k-partite) if there is a partition of its vertex set into k disjoint sets such that no two vertices of the same set are adjacent and every pair of vertices of different sets are adjacent. We denote a complete multipartite graph on p vertices by $K_{m_{1}, m_{2}, \ldots, m_{k}}$, where $p=m_{1}+m_{2}+\cdots+m_{k}$; see Figure 1(a). We note that the number of spanning trees of a complete multipartite graph has been considered by several authors in the past [8, 14].
Let $G=K_{m_{1}, m_{2}, \ldots, m_{k}}$ be a complete multipartite graph on p vertices. In [21] it has been proved that the number of spanning trees of $K_{n}-G$ is given by the following formula:

$$
\tau\left(K_{n}-G\right)=n^{n-p-1}(n-p)^{k-1} \prod_{i=1}^{k}\left(n-\left(p-m_{i}\right)\right)^{m_{i}-1}
$$

where p is the number of vertices of G.
In this section, we extend the previous result by deriving a closed formula for the number of their spanning trees for the graphs $K_{n}^{m} \pm G$, where G a complete multipartite graph on $p \leq n$ vertices. From Theorem 3.1, we construct the $p \times p$ matrix $B(G)$ and add one row and column to the matrix $B(G)$; the
resulting $(p+1) \times(p+1)$ matrix $B^{\prime}(G)$ has 1 in position $(1,1), \alpha$ in positions $(1, j), 2 \leq j \leq p+1$, and 0 in positions $(i, 1), 2 \leq i \leq p+1$; recall that, $\alpha= \pm 1$. Thus, the resulting matrix $B^{\prime}(G)$ has the following form:

$$
B^{\prime}(G)=\left[\begin{array}{ccccc}
1 & \alpha & \alpha & \cdots & \alpha \\
& M_{1} & -\alpha & \cdots & -\alpha \\
& -\alpha & M_{2} & \cdots & -\alpha \\
& \vdots & \vdots & \ddots & \vdots \\
& -\alpha & -\alpha & \cdots & M_{k}
\end{array}\right]
$$

where the diagonal $m_{i} \times m_{i}$ submatrices M_{i} have diagonal elements $m n+\alpha \cdot\left(p-m_{i}\right), 1 \leq i \leq k$. Note that, $\operatorname{det}(B(G))=\operatorname{det}\left(B^{\prime}(G)\right)$.

In order to compute the determinant of the matrix $B^{\prime}(G)$ we add the first row to the next p rows. Let $B^{\prime \prime}(G)$ be the resulting matrix. It follows that the determinant of $B^{\prime}(G)$ is equal to the determinant of $B^{\prime \prime}(G)$. We multiply the $2,3, \ldots, p+1$ columns of the matrix $B^{\prime \prime}(G)$ by $-1 /(m n+\alpha \cdot p)$ and add them to the first column; note that, the sum of each row of the matrix $B^{\prime \prime}(G)$ is equal to $m n+\alpha \cdot p$. Thus, the determinant of matrix $B^{\prime \prime}(G)$ becomes:

$$
\left.\begin{array}{rl}
\operatorname{det}\left(B^{\prime \prime}(G)\right) & =\left\lvert\, \begin{array}{ccccc}
1-\frac{\alpha \cdot p}{m n+\alpha \cdot p} & \alpha & \alpha & \cdots & \alpha \\
& M_{1}^{\prime} & & & \\
& & M_{2}^{\prime} & & \\
& & & \ddots & \\
& =\frac{m n}{m n+\alpha \cdot p} \cdot \operatorname{det}\left(M_{1}^{\prime}\right) \cdot \operatorname{det}\left(M_{2}^{\prime}\right) \cdots \operatorname{det}\left(M_{k}^{\prime}\right)
\end{array}\right. \\
& \tag{3}\\
& \\
& \\
& \\
&
\end{array}\right)
$$

where the $m_{i} \times m_{i}$ submatrices $M_{i}^{\prime}, 1 \leq i \leq k$, have the following form:

$$
M_{i}^{\prime}=\left|\begin{array}{cccc}
m n+\alpha \cdot\left(p-m_{i}\right)+\alpha & \alpha & \cdots & \alpha \\
\alpha & m n+\alpha \cdot\left(p-m_{i}\right)+\alpha & \cdots & \alpha \\
\vdots & \vdots & \ddots & \vdots \\
\alpha & \alpha & \cdots m n+\alpha \cdot\left(p-m_{i}\right)+\alpha
\end{array}\right|
$$

For the determinant of matrix M_{i}^{\prime} we multiply the first row by -1 and add it to the next $m_{i}-1$ rows. Then, we add the columns of matrix M_{i}^{\prime} to the first column. Observing that $m n+\alpha \cdot\left(p-m_{i}\right)+\alpha \cdot m_{i}=$ $m n+\alpha \cdot p$, we obtain

$$
\operatorname{det}\left(M_{i}^{\prime}\right)=(m n+\alpha \cdot p) \cdot\left(m n+\alpha \cdot\left(p-m_{i}\right)\right)^{m_{i}-1}
$$

Thus, from Equation (3) we have the following result.
Theorem 5.1 Let $G=K_{m_{1}, m_{2}, \ldots, m_{k}}$ be a complete multipartite graph on $p=m_{1}+m_{2}+\cdots+m_{k}$ vertices. Then,

$$
\tau\left(K_{n}^{m} \pm G\right)=m \cdot(m n)^{n-p-1}(m n+\alpha \cdot p)^{k-1} \prod_{i=1}^{k}\left(m n+\alpha \cdot\left(p-m_{i}\right)\right)^{m_{i}-1}
$$

where $p \leq n$ and $\alpha= \pm 1$ according to $K_{n}^{m} \pm G$.

Remark 5.1. The class of complete multipartite graphs contains the class of c-split graphs (complete split graphs); a graph is defined to be a c-split graph if there is a partition of its vertex set into a stable set S and a complete set K and every vertex in S is adjacent to all the vertices in K [13].

Thus, a c-split graph G on p vertices and $V(G)=K+S$ is a complete multipartite graph $K_{m_{1}, m_{2}, \ldots, m_{k}}$ with $m_{1}=|S|, m_{2}=m_{3}=\cdots=m_{k}=1$ and $k=|K|+1$. A closed formula for the number of spanning trees of the graph $K_{n}-G$ was proposed in [18], where G is a c-split graph.

Let G be a c-split graph on p vertices and let $V(G)=K+S$. Then, from Theorem 5.1 we obtain that the number of spanning trees of the graphs $K_{n}^{m} \pm G$ is given by the following closed formula:

$$
\tau\left(K_{n}^{m} \pm G\right)=m \cdot(m n)^{n-p-1}(m n+\alpha \cdot|K|)^{|S|-1}(m n+\alpha \cdot p)^{|K|}
$$

where $p=|K|+|S|$ and $p \leq n$.

5.2 Multi-star graphs

A multi-star graph, denoted by $K_{r}\left(b_{1}, b_{2}, \ldots, b_{r}\right)$, consists of a complete graph K_{r} with vertices labelled $v_{1}, v_{2}, \ldots, v_{r}$, and b_{i} vertices of degree one, which are incident with vertex $v_{i}, 1 \leq i \leq r[7,19,25]$; see Figure 1(b).

Let $G=K_{r}\left(b_{1}, b_{2}, \ldots, b_{r}\right)$ be a multi-star graph on $p=r+b_{1}+b_{2}+\cdots+b_{r}$ vertices. It has been proved $[7,19,25]$ that the number of spanning trees of the graph $K_{n}-G$ is given by the following closed formula:

$$
\tau\left(K_{n}-G\right)=n^{n-p-2}(n-1)^{p-r}\left(1+\sum_{i=1}^{r} \frac{1}{q_{i}-1}\right) \cdot \prod_{i=1}^{r}\left(q_{i}-1\right)
$$

where $q_{i}=n-\left(r-1+b_{i}\right)-\frac{b_{i}}{n-1}$.
In this section, based on Theorem 3.1, we generalize the previous result by deriving a closed formula for the number of spanning trees of the graphs $K_{n}^{m} \pm G$, where G is a multi-star on $p \leq n$ vertices. Let K_{r} be the complete graph of the multi-star graph G and let $v_{1}, v_{2}, \ldots, v_{r}$ be its vertices. The vertex set consisting of the vertex v_{i} and the b_{i} vertices of degree one which are incident with vertex v_{i} induces a star on $b_{i}+1$ vertices, $1 \leq i \leq r$. We construct a $\left(b_{i}+1\right) \times\left(b_{i}+1\right)$ matrix M_{i} which corresponds to the star with center vertex v_{i}; it has the following form:

$$
M_{i}=\left[\begin{array}{cccc}
m n+\alpha & & & -\alpha \\
& m n+\alpha & & -\alpha \\
& & & \vdots \\
-\alpha & -\alpha & \cdots & m n+\alpha \cdot\left(r-1+b_{i}\right)
\end{array}\right]
$$

where $\alpha= \pm 1$.
In order to compute the determinant of the matrix M_{i} we first multiply the first row by -1 and add it to the next $b_{i}-1$ rows. We then add the b_{i} columns to the first column. Finally, we multiply the first column
by $\frac{\alpha}{m n+\alpha}$ and add it to the last column. Thus, by observing that $\alpha^{2}=1$, we obtain:

$$
\begin{aligned}
\operatorname{det}\left(M_{i}\right) & =(m n+\alpha)^{b_{i}} \cdot\left(m n+\alpha \cdot\left(r-1+b_{i}\right)-\frac{\alpha^{2} b_{i}}{m n+\alpha}\right) \\
& =(m n+\alpha)^{b_{i}} \cdot\left(m n+\alpha \cdot\left(r-1+b_{i}\right)-\frac{b_{i}}{m n+\alpha}\right) \\
& =(m n+\alpha)^{b_{i}} \cdot q_{i}
\end{aligned}
$$

where

$$
\begin{equation*}
q_{i}=m n+\alpha \cdot\left(r-1+b_{i}\right)-\frac{b_{i}}{m n+\alpha}, 1 \leq i \leq r \tag{4}
\end{equation*}
$$

We are now in a position to compute the number of spanning trees $\tau\left(K_{n}^{m} \pm G\right)$ using Theorem 3.1. Thus, we have

$$
\begin{equation*}
\tau\left(K_{n}^{m} \pm G\right)=m \cdot(m n)^{n-p-2} \cdot \operatorname{det}(B(G)) \tag{5}
\end{equation*}
$$

where
$B(G)=\left[\begin{array}{ccccccc}M_{1,1} & & & & -\alpha & & \\ & M_{2,2} & & & & & \\ & & \ddots & & & & \\ & & & M_{r, r} & & & \\ -\alpha & & & & m n+\alpha \cdot d_{G}\left(v_{1}\right) & -\alpha & \cdots \\ & -\alpha & & & -\alpha & m n+\alpha \cdot d_{G}\left(v_{2}\right) & \cdots\end{array}\right.$
is a $p \times p$ matrix and $M_{i, i}$ is a submatrix which is obtained from M_{i} by deleting its last row and its last column, $1 \leq i \leq r$. The degrees of the vertex v_{i} of K_{r} is equal to $d_{G}\left(v_{i}\right)=r-1+b_{i}, 1 \leq i \leq r$. It now suffices to compute the determinant of the matrix $B(G)$. Following a procedure similar to that we applied to the matrix M_{i}, we obtain:

$$
\begin{aligned}
\operatorname{det}(B(G)) & =(m n+\alpha)^{p-r} \cdot\left|\begin{array}{cccc}
q_{1} & -\alpha & \cdots & -\alpha \\
-\alpha & q_{2} & \cdots & -\alpha \\
\vdots & \vdots & \ddots & \vdots \\
-\alpha & -\alpha & \cdots & q_{r}
\end{array}\right| \\
& =(m n+\alpha)^{p-r} \cdot \operatorname{det}(D)
\end{aligned}
$$

Recall that, $q_{i}=m n+\alpha \cdot\left(r-1+b_{i}\right)-\frac{b_{i}}{m n+\alpha}$; see Equation (4). In order to compute the determinant of the $r \times r$ matrix D we first multiply the first row of D by -1 and add it to the $r-1$ rows. Then, we multiply column i by $\frac{q_{1}+\alpha}{q_{i}+\alpha}, 2 \leq i \leq r$, and add it to the first column. Expanding in terms of the rows of matrix D, we have that

$$
\operatorname{det}(D)=\left(1-\alpha \sum_{i=1}^{r} \frac{1}{q_{i}+\alpha}\right) \cdot \prod_{i=1}^{r}\left(q_{i}+\alpha\right)
$$

Thus, substituting the value of $\operatorname{det}(D)$ into Equation (5), we obtain the following theorem.

Theorem 5.2 Let $G=K_{r}\left(b_{1}, b_{2}, \ldots, b_{r}\right)$ be a multi-star graph on $p=r+b_{1}+b_{2}+\cdots+b_{r}$ vertices. Then,

$$
\tau\left(K_{n}^{m} \pm G\right)=m \cdot(m n)^{n-p-2}(m n+\alpha)^{p-r}\left(1-\alpha \cdot \sum_{i=1}^{r} \frac{1}{q_{i}+\alpha}\right) \cdot \prod_{i=1}^{r}\left(q_{i}+\alpha\right)
$$

where $p \leq n, q_{i}=m n+\alpha \cdot\left(r-1+b_{i}\right)-\frac{b_{i}}{m n+\alpha}$ and $\alpha= \pm 1$ according to $K_{n}^{m} \pm G$.

6 Concluding remarks

In this paper we derived determinant based formulas for the number of spanning trees of the family of graphs of the form $K_{n}^{m} \pm G$, and also for the more general family of graphs $F_{n}^{m} \pm G$, where K_{n}^{m} (resp. F_{n}^{m}) is the complete multigraph on n vertices with exactly (resp. at least) m edges joining every pair of vertices and G is a multigraph spanned by a set of edges of K_{n}^{m} (resp. K_{n}^{m}). Based on these determinant based formulas, we prove closed formulas for the number of spanning trees $\tau\left(K_{n}^{m} \pm G\right)$, in the case where G is (i) a complete multipartite graph, and (ii) a multi-star graph.

In light of our results, it would be interesting to consider the problem of proving closed formulas for the number of spanning tree $\tau\left(K_{n}^{m} \pm G\right)$ in the cases where G belongs to other classes of simple graphs or multigraphs. Moreover, instead of a multigraph G that we have taken into account, we do not know whether a generalazisation for an arbitrarily weighted graph G holds.
The problem of maximizing the number of spanning trees was solved for some families of graphs of the form $K_{n}-G$, where G is a multi-star graph, a union of paths and cycles, etc. (see [7, 11, 19, 22]). Thus, an interesting open problem is that of maximizing the number of spanning trees of graphs of the form $K_{n}^{m} \pm G$.

Acknowledgements

The authors would like to express their thanks to the anonymous referees whose suggestions helped improve the presentation of the paper.

References

[1] S.D. Bedrosian, Generating formulas for the number of trees in a graph, J. Franklin Inst. 277 (1964) 313-326.
[2] C. Berge, Graphs and hypergraphs, North-Holland, 1973.
[3] N. Biggs, Algebraic Graph Theory, Cambridge University Press, London, 1974.
[4] F.T. Boesch and H. Prodinger, Spanning tree formulas and Chebyshev polynomials, Graphs and Combinatorics 2 (1986) 191-200.
[5] T.J.N. Brown, R.B. Mallion, P. Pollak, and A. Roth, Some methods for counting the spanning trees in labelled molecular graphs, examined in relation to certain fullerenes, Discrete Appl. Math. 67 (1996) 51-66.
[6] S. Chaiken, A combinatorial proof of the all minors matrix tree theorem, SIAM J. Algebraic Discrete Methods 3 (1982) 319-329.
[7] K.-L. Chung and W.-M. Yan, On the number of spanning trees of a multi-complete/star related graph, Inform. Process. Lett. 76 (2000) 113-119.
[8] L. Clark, On the enumeration of spanning trees of the complete multipartite graph, Bull. Inst. Combin. Appl. 38 (2003) 50-60.
[9] C.J. Colbourn, The combinatorics of network reliability, Oxford University Press, New York, 1980.
[10] D.M. Cvetković, M. Doob and H. Sachs, Spectra of graphs, Academic Press, New York, 1980.
[11] B. Gilbert and W. Myrvold, Maximizing spanning trees in almost complete graphs, Networks 30 (1997) 23-30.
[12] M.J. Golin, X. Yong and Y. Zhang, Chebyshev polynomials and spanning tree formulas for circulant and related graphs, Discrete Math. 298 (2005) 334-364.
[13] M.C. Golumbic, Algorithmic graph theory and perfect graphs, Academic Press, 1980.
[14] R.P. Lewis, The number of spanning trees of a complete multipartite graph, Discrete Math. 197/198 (1999) 537-541.
[15] F. Harary, Graph theory, Addison-Wesley, Reading, MA, 1969.
[16] W. Moon, Enumerating labeled trees, in: F. Harary (Ed.), Graph Theory and Theoretical Physics, 261-271, 1967.
[17] W. Myrvold, K.H. Cheung, L.B. Page, and J.E. Perry, Uniformly-most reliable networks do not always exist, Networks 21 (1991) 417-419.
[18] S.D. Nikolopoulos and C. Papadopoulos, The number of spanning trees in K_{n}-complements of quasi-threshold graphs, Graphs and Combinatorics 20 (2004) 383-397.
[19] S.D. Nikolopoulos and P. Rondogiannis, On the number of spanning trees of multi-star related graphs, Inform. Process. Lett. 65 (1998) 183-188.
[20] P.V. O'Neil, The number of trees in a certain network, Notices Amer. Math. Soc. 10 (1963) 569.
[21] P.V. O'Neil, Enumeration of spanning trees in certain graphs, IEEE Trans. Circuit Theory CT-17 (1970) 250.
[22] L. Petingi, F. Boesch and C. Suffel, On the characterization of graphs with maximum number of spanning trees, Discrete Math. 179 (1998) 155-166.
[23] H.N.V. Temperley, On the mutual cancellation of cluster integrals in Mayer's fugacity series, Proc. Phys. Soc. 83 (1964) 3-16.
[24] L. Weinberg, Number of trees in a graph, Proc. IRE 46 (1958), 1954-1955.
[25] W-M. Yan, W. Myrvold and K-L. Chung, A formula for the number of spanning trees of a multi-star related graph, Inform. Process. Lett. 68 (1998) 295-298.
[26] Y. Zhang, X. Yong and M.J. Golin, The number of spanning trees in circulant graphs, Discrete Math. 223 (2000) 337-350.

[^0]: ${ }^{\dagger}$ Current address: Department of Informatics, University of Bergen, N-5020 Bergen, Norway; charis@ii.uib.no
 1365-8050 © 2006 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

