Total domination in K_5 - and K_6 -covered graphs

Odile Favaron¹ and H. Karami² and S. M. Sheikholeslami²

¹L.R.I., UMR 8623, Université Paris-Sud, F-91405 Orsay, France

received March 31, 2006, revised Dec 20, 2007, accepted Jan 18, 2008.

A graph G is K_r -covered if each vertex of G is contained in a K_r -clique. Let $\gamma_t(G)$ denote the total domination number of G. It has been conjectured that every K_r -covered graph of order n with no K_r -component satisfies $\gamma_t(G) \leq \frac{2n}{r+1}$. We prove that this conjecture is true for r=5 and 6.

Keywords: total domination, clique cover

1 Introduction

Let G be a simple graph with vertex set V(G) and edge set E(G). We use [6] for terminology and notation which are not defined here. The *open neighborhood* $N_G(v)$ of a vertex $v \in V(G)$ is the set of all vertices adjacent to v. Its *closed neighborhood* is $N_G[v] = N_G(v) \cup \{v\}$. If S is a set of vertices of S, then $N(S) = \bigcup_{u \in S} N(u)$ and $N[S] = N(S) \cup S$. For the sake of simplicity we write S is denoted by S is denoted by S. For an integer S integer S is a multitriangle of order S is the graph consisting of S is denoted by S.

A set $D \subseteq V$ is a total dominating set if every vertex in V is adjacent to a vertex of D. Obviously every graph without isolated vertices has a total dominating set. The total domination number, $\gamma_t(G)$, is the minimum cardinality of a total dominating set. If G has q components G_i , then $\gamma_t(G) = \sum_{i=1}^q \gamma_t(G_i)$. As for the domination number, the determination of the total domination number of a graph is NP-hard and it is interesting to determine good upper bounds on $\gamma_t(G)$. Conditions on the density of the graph allow us to lower such bounds. Here we consider the condition that every vertex is contained in a sufficiently large clique.

A K_r -component of G is a component isomorphic to a clique K_r . A graph G is K_r -covered, $r \geq 2$, if every vertex of G is contained in a clique K_r , and minimally K_r -covered if it is K_r -covered but G-e is not K_r -covered for any edge of G. These properties were already considered by Henning and Swart in [5] under the terms "with no K_r -isolated vertex" or "Property C(1,r)", and "Property C(2,r)", respectively.

1365-8050 © 2008 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

²Department of Mathematics, Azarbaijan University of Tarbiat Moallem, Tabriz, I.R. Iran

In a K_r -covered graph, a good vertex is a vertex of degree r-1 and a good clique is a clique K_r containing a good vertex. If z is a good vertex, we denote by C_z the good clique containing it. The following results, independently proved in [3] and in [4], will be constantly used throughout the paper.

Theorem A [3, 4] Every edge of a minimally K_r -covered graph is contained in a good clique.

In 2004, Cockayne, Favaron and Mynhardt [1] conjectured that every K_r —covered graph G of order n with no K_r —component satisfies $\gamma_t(G) \leq \frac{2n}{r+1}$. They proved this conjecture for r=3,4. In this paper we prove it for r=5 and 6.

2 Proof of the conjecture for r=5 and r=6

The proof uses a particular family \mathcal{F}_r of minimally K_r —covered graphs which was already considered in [1, 4]. Recall that the corona of a graph H is obtained from H by adding a pendant edge at each vertex of H and that the middle graph of H is the line graph of the corona of H (see for instance [2]).

Definition 1 \mathcal{F}_r is the family of middle graphs of (r-1)-regular graphs.

From this definition \mathcal{F}_r is the collection of graphs consisting of edge-disjoint cliques of order r, where each such clique contains exactly one vertex of degree r-1 and the remaining r-1 vertices have degree 2(r-1). Let $\mathcal S$ be the set of these edge-disjoint cliques. Then each vertex of G of degree r-1 belongs to exactly one K_r in $\mathcal S$ and each vertex of degree 2(r-1) belongs to exactly two K_r 's in $\mathcal S$.

The following result is proved in [1].

Theorem B (See [1]) For $r \geq 3$, every graph of order n of \mathcal{F}_r satisfies $\gamma_t(G) < \frac{2n}{r+1}$.

We can now prove the conjecture for r = 5 and r = 6.

Theorem 1 For r=5 or 6, every K_r -covered graph G of order n with no K_r -component satisfies $\gamma_t(G) \leq \frac{2n}{r+1}$.

Proof: The proof is by induction on n and the first four claims are established for any value of $r \geq 5$. The statement is obviously true for the smallest possible order r+1 since then $\gamma_t(G)=2$. Suppose the theorem to be true for graphs of order less than n and let G be a K_r -covered graph with no K_r -component of order $n \geq r+2$. Let F be a minimally K_r -covered spanning subgraph of G. Since $\gamma_t(G) \leq \gamma_t(F)$, it is sufficient to prove $\gamma_t(F) \leq \frac{2n}{r+1}$.

If F is not connected but has no K_r —component, then applying the induction hypothesis to each component of F gives the result.

The case where F is not connected and has some K_r -components has already been considered in [1]. The second part of the proof of Theorem 6 in [1] establishes by induction on n that a graph having a certain property $\mathcal{B}(r)$ satisfies $\gamma_t(G) \leq 2n/(r+1)$. In the case where a minimal K_r -covered spanning subgraph F of G has K_r components, the result is proved without using the induction hypothesis $\mathcal{B}(r)$. Hence the same argument holds here. As the proof is rather long, we do not repeat it and refer the reader to [1].

So we suppose now that we are working in a connected minimal K_r -covered graph F of order $n \ge r+2$. Since F is connected, every vertex of F belongs to an edge and thus has a good neighbor by Theorem A. For every pair of adjacent vertices u and v, let

$$P(u,v) = \{x \in N(u,v) \setminus \{u,v\} \mid N(x) \subseteq N(u,v)\}.$$

Claim 1 If $|P(u,v)| \ge r - 1$ for some pair of adjacent non-good vertices u and v, then $\gamma_t(F) \le \frac{2n}{r+1}$.

Proof: Let u' be any good neighbor of u. By Theorem A, the edge uu' is contained in a good clique $\mathcal C$. The r-2 neighbors of u' different from u are vertices of $\mathcal C$ and thus are adjacent to u. So every good neighbor of u, and similarly every good neighbor of v, belongs to P(u,v). Note also that if $z \in N(u,v) \setminus (P(u,v) \cup \{u,v\})$, then z has a neighbor $z_1 \notin N(u,v)$, and so z belongs to a good clique of the graph $F' = F[V \setminus (P(u,v) \cup \{u,v\})]$. Hence F' is K_r -covered.

Let $\mathcal{C}_1,\dots,\mathcal{C}_s$ be the K_r -components of F' if any. Obviously $(N(w)\setminus V(\mathcal{C}_i))\subseteq P(u,v)\cup \{u,v\}$ for each $w\in V(\mathcal{C}_i)$. Since F is connected, each clique \mathcal{C}_i contains at least one vertex w_i such that $(N(w_i)\setminus V(\mathcal{C}_i))\cap (P(u,v)\cup \{u,v\})\neq \emptyset$. From the definition of P(u,v) we have $w_i\in N(u,v)$. Let $X=P(u,v)\cup \{u,v\}\cup (\cup_{i=1}^s V(\mathcal{C}_i))$. The graph $F[V\setminus X]$ is still K_r -covered and has no K_r -component. By the induction hypothesis, $\gamma_t(F[V\setminus X])\leq \frac{2|V\setminus X|}{r+1}$. Moreover $\{u,v,w_1,w_2,\cdots,w_s\}$, or $\{u,v\}$ if s=0, is a total dominating set of order s+2 of F[X], and |X|=|P(u,v)|+sr+2 with $s\geq 0$. Hence if $|P(u,v)|\geq r-1$, then $\gamma_t(F[X])\leq s+2\leq \frac{2|X|}{r+1}$ and we are done.

We suppose henceforth $|P(u,v)| \le r-2$ for every pair of adjacent non-good vertices of F. Recall that all the good neighbors of u or v belong to P(u,v). If G consists of $p \ge 2$ cliques K_r sharing exactly one vertex, then n = p(r-1) + 1 and $\gamma_t(G) = 2 \le 2n/(r+1)$. We also suppose in what follows that G has not this structure, which means that every non-good vertex has at least one non-good neighbor.

Claim 2 Each good clique contains at most r-4 good vertices.

Proof: Suppose to the contrary that \mathcal{C} is a good clique $(\neq K_r)$ with more than r-4 good vertices. Let z_1, z_2, \cdots, z_s with $r-3 \leq s \leq r-1$ be the good vertices and u a non-good vertex of \mathcal{C} . If u has a non-good neighbor v not in \mathcal{C} , let \mathcal{C}' be a good clique containing uv and z_1', \cdots, z_t' $(1 \leq t \leq r-2)$ the good vertices of \mathcal{C}' . The vertex v belongs to a second good clique $\mathcal{C}'' \neq \mathcal{C}$. Let z'' be a good vertex of \mathcal{C}'' . Then $\{z_1, \cdots, z_s, z_1', \cdots, z_t', z_t''\}$ is a subset of P(u, v) of order at least $s+2 \geq r-1$, a contradiction to $|P(u, v)| \leq r-2$. Therefore all the non-good neighbors of u belong to \mathcal{C} .

Let u, u_1, \dots, u_{r-s-1} be the non-good vertices of \mathcal{C} with $r-s \geq 2$. Let \mathcal{C}' (\mathcal{C}'_1 respectively, possibly equal to \mathcal{C}') be a second good clique containing u (u_1) and let z' (z'_1) be a good vertex of \mathcal{C}' (\mathcal{C}'_1). Then $\{z_1, \dots, z_s, z', z'_1\} \subseteq P(u, u_1)$. Since $|P(u, u_1)| \leq r-2$, s=r-3, $z'=z'_1$ and z' is the unique good vertex of the clique $\mathcal{C}' = \mathcal{C}'_1$. Among the r-1 non-good vertices of \mathcal{C}' , at most three are those of \mathcal{C} and thus at least one, say u_2 , is not in \mathcal{C} . Let \mathcal{C}'' be a second good clique containing u_2 and z'' a good vertex of \mathcal{C}'' . Then $\{z_1, \dots, z_{r-3}, z', z''\} \subseteq P(u, u_2)$, a contradiction which completes the proof.

Claim 3 No vertex can belong to r-2 good cliques K_r .

Proof: Assume, to the contrary, that a vertex u belongs to r-2 good cliques $\mathcal{C}_1,\ldots,\mathcal{C}_{r-2}$, and let x_i be a good vertex of \mathcal{C}_i for $1 \leq i \leq r-2$. Let w and t be two non-good vertices of $\mathcal{C}_1 \setminus \{u,x_1\}$. Since $\{x_1,\cdots,x_{r-2}\} \subseteq P(u,t)$ and $|P(u,t)| \leq r-2$, we have $w \notin P(u,t)$ and w has a good neighbor w' not in N(u,t) and thus distinct from x_1,\cdots,x_{r-2} . But then $\{x_1,\cdots,x_{r-2},w'\} \subseteq P(u,w)$, which is a contradiction.

Claim 4 r-3 good cliques K_r cannot share more than one vertex.

Proof: Assume, to the contrary, that $\mathcal{C}_1, \mathcal{C}_2, \cdots \mathcal{C}_{r-3}$ are r-3 good K_r 's all containing the (non-good) vertices u and v, and let x_i be a good vertex of \mathcal{C}_i for $1 \leq i \leq r-3$. From $|\bigcup_{i=1}^{r-3} V(\mathcal{C}_i)| \geq (r-1) + (r-3) = 2r-4$, we get $|\bigcup_{i=1}^{r-3} V(\mathcal{C}_i) \setminus \{x_1, \cdots, x_{r-3}, u, v\}| \geq r-3 \geq 2$ while $|P(u, v) \setminus \{x_1, \cdots, x_{r-3}\}| \leq 1$. Therefore at least one vertex z of $\bigcup_{i=1}^{r-3} V(\mathcal{C}_i) \setminus \{x_1, \cdots, x_{r-3}, u, v\}$ is not in P(u, v). Let z' be a good neighbor of z not in N(u, v). Since $\{x_1, \cdots, x_{r-3}, z'\} \subseteq P(u, z)$ and $|P(u, z)| \leq r-2$, v is not in P(u, z) and thus belongs to a (r-2)th good clique. This contradicts Claim 3.

End of the proof of Theorem 1 for r=5

By Claims 2, 3 and 4, each good clique contains exactly one good vertex and four non-good ones, each non-good vertex is contained in exactly two good K_5 's, and two good K_5 's intersect in at most one vertex. Therefore the graph F belongs to the family \mathcal{F}_5 described above and thus $\gamma_t(F) < \frac{2n}{6}$. This completes the proof for r=5.

End of the proof of Theorem 1 for r=6

Henceforth, each good clique is a K_6 containing at most two good vertices.

Claim 5 Let C_1 and C_2 be two good K_6 's such that $|V(C_1) \cap V(C_2)| \geq 2$. Then

- 1. $|V(\mathcal{C}) \cap V(\mathcal{C}_i)| \leq 1$ for each other good clique \mathcal{C} and i = 1, 2;
- 2. the clique C_i contains exactly one good vertex for i = 1, 2;
- 3. each other good clique C intersecting C_1 or C_2 , contains exactly one good vertex.

Proof:

(1) Let $u,v\in V(\mathcal{C}_1)\cap V(\mathcal{C}_2)$ and let \mathcal{C} be another good clique in G. Assume, to the contrary, $|V(\mathcal{C}_1)\cap V(\mathcal{C})|\geq 2$. Let x,x_1,x_2 be good vertices of $\mathcal{C},\mathcal{C}_1$ and \mathcal{C}_2 , respectively. Suppose $u\in\mathcal{C}$. By Claim $4,v\not\in\mathcal{C}$. Let $w\in V(\mathcal{C})\cap V(\mathcal{C}_1)$ and $w\neq u$. Since $\{x,x_1,x_2\}\subseteq P(u,v)$ and $|P(u,v)|\leq 4$, at least one vertex t of $V(\mathcal{C}_1)\setminus\{u,v,x_1,w\}$ is not in P(u,v). Let t' be a good neighbor of t not in N(u,v). Now we have $\{x,x_1,x_2,t'\}\subseteq P(u,t)$. Since $|P(u,t)|\leq 4$, w is not in P(u,t) and has a good neighbor w' not in N(u,t). Then $\{x,x_1,x_2,w'\}\subseteq P(u,w)$. Thus v is not in P(u,w) and has a good neighbor v' not in N(u,w). This implies $\{x,x_1,x_2,w',v'\}\subseteq P(v,w)$ which is a contradiction. Thus $u,v\not\in V(\mathcal{C})$. Let $w_1,w_2\in V(\mathcal{C})\cap V(\mathcal{C}_1)$. Since $\{x,x_1,x_2\}\subseteq P(u,w_1)$ and $|P(u,w_1)|\leq 4$, $v\not\in P(u,w_1)$ or $w_2\not\in P(u,w_1)$.

First let $v \notin P(u, w_1)$. Let v' be a good neighbor of v not in $N(u, w_1)$. Now we have $\{x, x_1, x_2, v'\} \subseteq P(v, w_1)$. Since $|P(v, w_1)| \le 4$, w_2 is not in $P(v, w_1)$ and has a good neighbor w_2' not in $N(v, w_1)$. Now we have $\{x, x_1, x_2, v', w_2'\} \subseteq P(v, w_2)$ which is a contradiction.

Now let $w_2 \notin P(u, w_1)$. Let w_2' be a good neighbor of w_2 not in $N(u, w_1)$. Now we have $\{x, x_1, x_2, w_2'\} \subseteq P(u, w_2)$. Since $|P(u, w_2)| \le 4$, v is not in $P(u, w_2)$ and has a good neighbor v' not in $N(u, w_2)$. This implies that $|P(v, w_2)| \ge 5$ which is a contradiction.

(2) Suppose \mathcal{C}_1 contains two good vertices x_1 and x_1' . Since $|P(u,v)| \leq 4$, $V(\mathcal{C}_1 \cup \mathcal{C}_2) \setminus \{u,v\}$ has a non-good vertex, say w, not in P(u,v). Let w' be a good neighbor of w not in N(u,v). Then $\{x_1,x_1',x_2,w'\}\subseteq P(u,w)$. Hence v is not in P(u,w) and has a good neighbor $v'\notin N(u,w)$, which implies $|P(v,w)|\geq 5$, a contradiction.

(3) Suppose $\mathcal C$ contains two good vertices y and y'. If $\mathcal C$ intersects $\mathcal C_1 \cup \mathcal C_2$ in u, then $\{x_1, x_2, y, y'\} \subseteq P(u, v)$ and there exists a vertex t of $V(\mathcal C_1 \cup \mathcal C_2) \setminus \{u, v\}$ with a good neighbor t' not in N(u, v). Then $\{x_1, x_2, y, y', t'\} \subseteq P(u, t)$, a contradiction. If $\mathcal C$ intersects $\mathcal C_1 \cup \mathcal C_2$ in w different from u and v, then, since $\{x_1, x_2, y, y'\} \subseteq P(u, w)$, v has a good neighbor v' not belonging to N(u, w). Hence $\{x_1, x_2, y, y', v'\} \subseteq P(v, w)$, a contradiction.

Claim 6 Let three good cliques C_1 , C_2 and C_3 share one vertex u. Then

- 1. $|V(\mathcal{C}) \cap V(\mathcal{C}_i)| \leq 1$ for each other good clique \mathcal{C} and i = 1, 2, 3;
- 2. for i = 1, 2, 3, each non-good vertex of $C_i \setminus \{u\}$ belongs to exactly two good cliques;
- 3. for i = 1, 2, 3, each clique C_i and each good clique C intersecting one of the C_i 's contains exactly one good vertex.

Proof:

- (1) Suppose that \mathcal{C} is a good clique such that $|V(\mathcal{C}) \cap V(\mathcal{C}_1)| \geq 2$. By claim 3, $u \notin V(\mathcal{C})$. Let $v, w \in V(\mathcal{C}) \cap V(\mathcal{C}_1)$. Let x, x_1, x_2, x_3 be good vertices of $\mathcal{C}, \mathcal{C}_1, \mathcal{C}_2$ and \mathcal{C}_3 , respectively. We have $\{x, x_1, x_2, x_3\} \subseteq P(u, v)$ and so w is not in P(u, v) and has a good neighbor w' not in N(u, v). Then we have $|P(u, w)| \geq 5$ which is a contradiction.
- (2) If a vertex $v \neq u$ of some C_i belongs to two other good cliques, let v' and v'' two good neighbors of v respectively belonging to these two cliques. Then $\{x_1, x_2, x_3, v', v''\} \subseteq P(u, v)$, a contradiction.
- (3) If, say, C_1 has a second good vertex x_1' , then C_2 and C_3 have one good vertex each, for otherwise $|P(u,v)| \geq 5$ for any neighbor v of u. Hence there exists at least one non-good vertex v belonging to exactly one of the C_i 's. This vertex v has a good neighbor $v' \notin \{x_1, x_1', x_2, x_3\}$ and $|P(u,v)| \geq 5$, a contradiction. If a good clique C intersecting one of the C_i 's in one vertex v (necessarily different from u) contains two good neighbors x and x', then $\{x_1, x_2, x_3, x, x'\} \subseteq P(u, v)$, a contradiction.

Claim 7 Let C be a good clique containing two good vertices z_1, z_2 . Then

- 1. each good clique intersects C in at most one vertex;
- 2. each non-good vertex of C belongs to exactly two good cliques;
- 3. if \mathcal{C}' is a good clique intersecting \mathcal{C} in u, then \mathcal{C}' contains exactly one good vertex, each non-good vertex of \mathcal{C}' belongs to exactly two good cliques, $|V(\mathcal{C}') \cap V(\mathcal{C}_1)| \leq 1$ for each good clique \mathcal{C}_1 and if $|V(\mathcal{C}') \cap V(\mathcal{C}_1)| = 1$, then \mathcal{C}_1 contains exactly one good vertex.

Proof: (1) and (2) are consequences of Claim 5 (2) and 6 (3).

(3) Let u' be a good vertex of \mathcal{C}' , w be a non-good vertex in $V(\mathcal{C}') \setminus \{u\}$ and w' a good neighbor of w not in N(u). If w has another good neighbor w'', which can be either a second good vertex of \mathcal{C}' or of a second clique \mathcal{C}_1 containing w, or a good vertex of a third good clique containing w, then $\{z_1, z_2, u', w', w''\} \subseteq P(u, w)$, a contradiction. If a good clique \mathcal{C}_1 intersects \mathcal{C}' in v and w (both different from u by (2)), then $v \notin P(u, w)$ since $\{z_1, z_2, u', w'\} \subseteq P(u, w)$. Therefore v has another good neighbor $v' \notin N(u, w)$ and $\{z_1, z_2, u', w', v'\} \subseteq P(u, v)$, a contradiction.

Let $V_i = \{u \in V(F) \mid u \text{ belongs to exactly } i \text{ good cliques}\}, i = 1, 2, 3$. By Claim 2, V_1, V_2, V_3 partition V(F). Obviously V_1 consists of all good vertices of F. Let t be the number of good cliques that contain two good vertices. Counting the number of edges of F with one endpoint in V_1 and another in $V_2 \cup V_3$, implies by Claim 7 that

$$5|V_1| - 2t = 2|V_2| + 4t + 3|V_3|.$$

On the other hand, we have

$$2n = 2(|V_1| + |V_2| + |V_3|).$$

It follows from the last two equations

$$|V_1| = \frac{2n}{7} + \frac{|V_3| + 6t}{7} \ . \tag{1}$$

The following claim gives the structure of the subgraph induced by V_3 in F.

Claim 8 $F[V_3]$ is a disjoint union of s cliques with $s \ge |V_3|/5$.

Proof: Let u and v be two adjacent vertices in V_3 . If the edge uv belongs to only one good clique \mathcal{C}_z , let $\mathcal{C}_{u'}$ and $\mathcal{C}_{u''}$ (respectively $\mathcal{C}_{v'}$ and $\mathcal{C}_{v''}$) be the other two good cliques containing u (respectively v). Then $\{u', u'', v', v'', z\}$ is a set of five vertices contained in P(u, v), a contradiction. Therefore every edge joining two vertices in V_3 is contained in exactly (by Claim 5) two good cliques. Let now uvw be a path of $F[V_3]$. Among the three good cliques containing v, two contain uv and two contain vw. Hence one of them, say \mathcal{C}_z , contains $\{u, v, w\}$ and u and w are adjacent. Moreover, the second good cliques respectively containing uv and vw are the same by Claim 5. This implies that $\{u, v, w\}$ is contained in exactly two good cliques \mathcal{C}_z and $\mathcal{C}_{z'}$. The preceding arguments show that $F[V_3]$ is a disjoint union of s cliques Q_i . Each Q_i is a part of the intersection of two good cliques \mathcal{C}_z and $\mathcal{C}_{z'}$, thus implying $|Q_i| \leq 5$, and each vertex u of Q_i belongs to a third clique intersecting \mathcal{C}_z and $\mathcal{C}_{z'}$ exactly in u. Finally, since $|Q_i| \leq 5$, $s \geq |V_3|/5$.

We define now the graph F^* with vertex set $\{z \in V(F) \mid z \text{ is a good vertex in } F\}$ and two vertices of F^* are adjacent if and only if they belong to the same clique or their corresponding good cliques have a common vertex. Since F is connected and each edge of F belongs to a good clique, the graph F^* is connected.

Three good vertices z_1, z_2, z_3 form a triangle in F^* if and only if

- 1. the good cliques C_{z_1} , C_{z_2} and C_{z_3} are different and share one vertex,
- 2. or, say, $C_{z_1} = C_{z_2}$ and $C_{z_1} \cap C_{z_3} \neq \emptyset$,

3. or the three cliques are pairwise intersecting but $C_{z_1} \cap C_{z_2} \cap C_{z_3} = \emptyset$.

We only consider the triangles of the first two types and call them respectively 1-triangles and 2-triangles.

A 1-triangle of F^* comes from a vertex of V_3 . From Claim 6 (2), if two 1-triangles $z_1z_2z_3$ and $z_1'z_2'z_3'$ are not disjoint, then they share one edge, say, $z_1=z_1'$ and $z_2=z_2'$. From Claim 8, $|V(\mathcal{C}_{z_1})\cap V(\mathcal{C}_{z_2})|\geq 2$ and each good clique \mathcal{C}_{z_3} and $\mathcal{C}_{z_3'}$ shares one vertex with \mathcal{C}_{z_1} and \mathcal{C}_{z_2} . Since $|V(\mathcal{C}_{z_1})\cap V(\mathcal{C}_{z_2})|\leq 5$, at most five 1-triangles share a common edge. Hence the 1-triangles of F^* form multitriangles MT $_i$ of respective order p_i with $1\leq p_i\leq 7$. We call them multitriangles of type 1 and we associate to each of them the clique $Q_i\subseteq V(\mathcal{C}_{z_1})\cap V(\mathcal{C}_{z_2})$ of order $p_i-2\leq 5$ as described in Claim 8. Therefore there are $s\geq |V_3|/5$ multitriangles of type 1 and all of them are disjoint.

A 2-triangle of F^* comes from a good clique \mathcal{C} of F with two good vertices z_1 and z_2 . By Claim 7, the four other vertices of \mathcal{C} belong to exactly one other good clique and these four good cliques are different. Hence the edge z_1z_2 belongs to exactly four 2-triangles forming a multitriangle of order $p_i=6$, called multitriangle of type 2. To each multitriangle MT_i of type 2 we associate the clique Q_i of order $p_i-2=4$ of F formed by the non-good vertices of \mathcal{C} . There are t multitriangles of type 2, the number of good cliques with two good vertices. By Claim 7, they are pairwise disjoint and disjoint from the multitriangles of type 1.

Let F^{**} be a spanning subgraph of F^* containing all the edges of the multitriangles but no other cycle

(the edges of F^{**} not in multitriangles form a spanning tree of the graph of order $|V_1| - \sum_{i=1}^{s+i} (p_i - 1)$

obtained from F^* by contracting each multitriangle into one vertex). We form a subset D of vertices of F as follows. For each multitriangle MT_i of order p_i , $0 \le i \le s+t$, put in D the p_i-2 vertices of its associated clique Q_i . For each edge z_iz_j of F^{**} not in a multitriangle, put in D one vertex of $\mathcal{C}_{z_i} \cap \mathcal{C}_{z_j}$. The induced subgraph F[D] is connected since F^{**} is connected and can be seen as the graph representative of the 1- and 2-triangles and of the cutting edges of F^{**} . The set D contains a vertex in

each good clique and thus dominates F. Hence $\gamma_t(F) \leq |D|$. Since F^{**} contains $|V_1| - \sum_{i=1}^{s+t} (p_i - 1) - 1$ cutting edges,

$$|D| = \sum_{i=1}^{s+t} (p_i - 2) + |V_1| - \sum_{i=1}^{s+t} (p_i - 1) - 1 = |V_1| - s - t - 1$$

with $s \ge |V_3|/5$. By (1) we get

$$|D| \le \frac{2n}{7} + \frac{|V_3|}{7} + \frac{6t}{7} - \frac{|V_3|}{5} - t - 1 < \frac{2n}{7}$$
.

This completes the proof of Theorem 1 for r = 6.

References

- [1] E. J. Cockayne, O. Favaron, and C. M. Mynhardt, *Total domination in* K_r -covered graphs , Ars Combin. **71** (2004), 289-303.
- [2] E. J. Cockayne, S. T. Hedetniemi, and D. J. Miller, *Properties of hereditary hypergraphs and middle graphs*, Canad. Math. Bull. **21(4)** (1978), 461-468.
- [3] R. C. Entringer, W. Goddard and M. A. Henning, *A note on cliques and independent sets*, J. Graph Theory **24** (1997), 21-23.
- [4] O. Favaron, H. Li and M. D. Plummer, *Some results on* K_r -covered graphs, Utilitas Math. **54** (1998), 33-44.
- [5] M. A. Henning and H. C. Swart, *Bounds on a generalized domination parameter*, Questiones Math. **13** (1990), 237-253.
- [6] D.B. West, *Introduction to Graph Theory*, Prentice-Hall, Inc, 2000.