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Let n, s be positive integers such that 2 ≤ s < n and s 6= n
2

. An undirected double-loop network G(n; 1, s) is an
undirected graph (V, E), where V =Zn={0, 1, 2, . . . , n−1} and E={(i, i+1 (mod n)), (i, i+s (mod n)) | i ∈ Z}.
It is a circulant graph with n nodes and degree 4. In this paper, the sufficient and necessary conditions for a class
of undirected double-loop networks to be optimal are presented. By these conditions, 6 new optimal and 5 new
suboptimal infinite families of undirected double-loop networks are given.
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1 Introduction
Double-loop networks are popular in the design and implementation of metropolitan networks and parallel
processing computer systems. They have many attractive properties like vertex symmetry, incremental
extensibility, low valency, ease of implementation, etc. Some researchers are interested in the study of
double-loop networks [1-22]. They mainly focus on designs of optimal double-loop networks [1], [2], [4],
[9], [12] – [15], [18], [19], diameters [1]–[4], [9]–[15], [18]–[22] and routing [5], [7], [8], [17]. For more
details we refer readers to [3], [16] and the references therein.

Let n, s be positive integers such that 2 ≤ s < n and s 6= n
2 . The undirected double-loop net-

work G(n; 1, s) is an undirected graph (V,E), where V =Zn={0, 1, 2, . . . , n − 1} and E={(i, i + 1
(mod n)), (i, i + s (mod n)) | i ∈ Zn}. It is a circulant graph with n nodes and degree 4. Let d(i, j) be
the length of a shortest path from node i to node j. Let d(n; 1, s) denote the diameter of G(n; 1, s). Since
G(n; 1, s) is vertex symmetric, d(n; 1, s) = max{d(i, j) | 0 ≤ i, j < n} = max{d(0, i) | 0 ≤ i < n}.
Let D(n)=min {d(n; 1, s) | 1 < s < n}. Wong and Coppersmith [20] gave the lower bound 1

2 (
√

2n− 3)
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for D(n). Boesch and Wang [4] sharpened the bound by giving lb(n)=d
√

2n−1−1
2 e, where dxe denotes the

minimum integer ≥ x.
If s exists such that D(n) = d(n; 1, s) = lb(n), then n, s, and G(n; 1, s) will be called optimal. If s

exists such that D(n) = d(n; 1, s) = lb(n) + 1, then n, s, and G(n; 1, s) will be called suboptimal.
A set Θ of natural numbers will be called an optimal (suboptimal) family if each n ∈ Θ is optimal

(suboptimal).
Some optimal infinite families of undirected double-loop networks were given in [2], [11], [12], [19].

And as we know, only one suboptimal infinite family of undirected double-loop networks {2t2 + 2t | t ≥
2} has been given so far [12]. In this paper, the sufficient and necessary conditions for a class of undirected
double-loop networks to be optimal are presented. And by using these conditions, we obtain 6 new optimal
and 5 new suboptimal infinite families of undirected double-loop networks.

2 Definitions and some lemmas
Let Z and Z+ be the set of integers and nonnegative integers respectively. Let bxc denote the maximum
integer ≤ x.

Definition 2.1 (a1, a2) is said to be a non-negative solution of the equation

x + ys ≡ 0 (mod n) (1)

if a1 + a2s ≡ 0 (mod n), a1 ≥ 0, a2 ≥ 0 and (a1, a2) 6= (0, 0).
(u, v) is said to be the smallest non-negative solution of the equation (1) if (u, v) is a non-negative solution
of the equation (1) and the following conditions hold:

(1) if (a1, a2) is a non-negative solution of the equation (1), then u + v ≤ a1 + a2.

(2) if (a1, a2) is a non-negative solution of the equation (1),where (a1, a2) 6= (u, v) and u+v = a1 +a2,
then u > a1.

Clearly, the smallest non-negative solution of equation (1)is unique. For example, it is easy to see that
(4, 1), (2, 3), (0, 5), (8, 2), (4, 6), · · · are non-negative solutions of the equation x + 6y ≡ 0 (mod 10).
Thus (4, 1) is the smallest non-negative solution of the equation x + 6y ≡ 0 (mod 10).

Definition 2.2 Let (u, v) be the smallest non-negative solution of the equation (1). (−a1, a2) is said to be
a cross solution of the equation (1) if −a1 + a2s ≡ 0 (mod n), a1 ≥ 0, a2 ≥ 0, (−a1, a2) 6= (0, 0), and
the three points (−a1, a2), (0, 0), (u, v) are not on the same line. (−a, b) is said to be the smallest cross
solution of the equation (1)if (−a, b) is a cross solution of the equation (1)and the following conditions
hold:

(1) if (−a1, a2) is a cross solution of the equation (1),then a + b ≤ a1 + a2.

(2) if (−a1, a2) is a cross solution of the equation (1),where (−a1, a2) 6= (−a, b) and a + b = a1 + a2,
then b > a2.
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Clearly, the smallest cross solution of equation (1)is unique. For example, it is easy to see that (2, 2)
is the smallest non-negative solution of the equation x + 5y ≡ 0 (mod 12), and (-5, 1), (-3, 3), (-1, 5),
(-12,0), (-10, 2), (-8, 4), (-6, 6), (-4, 8), (-2, 10), · · · are cross solutions of the equation x + 5y ≡ 0
(mod 12). Thus (-1, 5) is the smallest cross solution of the equation x + 5y ≡ 0 (mod 12).

From [11] we have the following two lemmas.

Lemma 2.3 Let (u, v) be the smallest non-negative solution of the equation (1) and (−a, b) be the small-
est cross solution of the equation (1) If u < v, then a > u, a > b, b < v and n=av + bu.

Lemma 2.4 Let (u, v) be the smallest non-negative solution of the equation (1) and (−a, b) be the small-
est cross solution of the equation (1). If u ≥ v, then a < u, a ≤ b, v < b and n=av + bu.

Given G(n; 1, s), we construct an infinite grid Gn,1,s in Z2 as D. Tzvieli did in [19], labelling each
lattice point (i, j) by i + js (mod n). Every label m, 0 ≤ m < n, is repeated in Gn,1,s infinitely many
times. We refer to a lattice point with label i as an i-point. If i + js ≡ 0 (mod n), then we call (i, j) a
0-point.

The smallest non-negative solution (u, v) of the equation (1) can be seen as a 0-point in the first quad-
rant with u + v is minimum (in case of tie, take the maximum u). The smallest cross solution (−a, b) of
the equation (1) can be seen as a 0-point in the second quadrant with a + b is minimum (in case of tie,
take the maximum b).

For G(12; 1, 5), one can see that (2, 2) is a 0-point in the first quadrant, and (−1, 5) is a 0-point in the
second quadrant(see Fig. 1).

-
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0 1 2 3 4 5 6 7 8 9 10
5 6 7 8 9 10 11 0 1 2 3
10 11 0 1 2 3 4 5 6 7 8
3 4 5 6 7 8 9 10 11 0 1
8 9 10 11 0 1 2 3 4 5 6
1 2 3 4 5 6 7 8 9 10 11
6 7 8 9 10 11 0 1 2 3 4
11 0 1 2 3 4 5 6 7 8 9
4 5 6 7 8 9 10 11 0 1 2
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11 0 1 2 3 4 5 6 7 8 9
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Fig. 1 0-points in the G12;1,5.
From Lemma 4 [10] and Lemma 5 [10] we have the following lemma:

Lemma 2.5 Given G(n; 1, s) with 1 < s < n and s 6= n
2 . Suppose that (u, v) and (−a, b) are two

0-points and u, v, a, b are all non-negative integers. Let r1=b(u + v)/2c, r2=b(a + b)/2c, r3=b(|u −
a| + v + b)/2c and r4=b(u + a + |v − b|)/2c. If n = av + bu and b ≥ a, u ≥ v, u > a, v < b (or
a > b, v > u, a > u, b < v), then

d(n; 1, s) =
{

r3 − 1, if r3 = r4 and (u + a)(v + b) ≡ 1 (mod 2)
max{r1, r2,min{r3, r4}}, otherwise.
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By Lemma 2.5,it is easy to prove the following corollary.

Corollary 2.6 Given G(n; 1, s) with 1 < s < n and s 6= n
2 . Suppose that (u, v) and (−a, b) are two 0-

points and u, v, a, b are all non-negative integers. Let d denote the diameter of G(n; 1, s). If n = av + bu
and b ≥ a, u ≥ v, u > a, v < b (or a > b, v > u, a > u, b < v), then u+ v ≤ 2d+1 and a+ b ≤ 2d+1.

Lemma 2.7 Suppose that u, v, a, b are all integers and there exist two integers λ, χ such that λb+χv = 1.
Let s0 ≡ λa − χu and s = s0 (mod n). If n = av + bu, then u + vs ≡ 0 (mod n) and −a + bs ≡ 0
(mod n), i.e. , (u, v) and (−a, b) are two 0-points.

Proof: Since
(

b v
a −u

) (
λ
χ

)
=

(
1
s0

)
, we have n

(
λ
χ

)
=

(
u v
a −b

) (
1
s0

)
. That is, u+vs ≡ u+vs0 (mod n) = nλ

(mod n) = 0 and −a + bs ≡ −a + bs0 (mod n) = −nχ (mod n) = 0. 2

We use gcd(a1, a2) to denote the greatest common divisor of two integers a1, a2. As the following
lemma is well-known and easy to prove, its proof is omitted.

Lemma 2.8 Suppose that a1, b1 and c1 are integers.

(1) gcd(a1, b1) = 1 if and only if there exist two integers λ, χ such that λa1 + χb1 = 1.

(2) If gcd(a1, b1) = 1 and gcd(a1, c1) = 1, then gcd(a1, b1c1) = 1.

3 Main results
The sufficient and necessary conditions for a class of undirected double-loop networks to be optimal are
given in the following theorem. By using this theorem, we can give some new optimal or suboptimal
infinite families of undirected double-loop networks in this section.

Theorem 3.1 Suppose that n = 2t2 + 2t − B, where t > B > 0, and t, B ∈ Z+. Then there exists
a positive integer s such that d(n; 1, s) = t = lb(n) if and only if there exist four non-negative integers
a, b, u, v satisfying the following five conditions:

1 n = av + bu;

2 a + b ≤ 2t + 1 and u + v ≤ 2t + 1;

3 b ≥ a, u ≥ v, u > a, v < b;

4 One of the following two conditions holds:

(a) x = 0, b− a = y, y is odd, y | 2B + 1 and 1 ≤ y ≤
√

2B + 1.

(b) y = 0, u − v = x, x is odd, x | 2B + 1 and 1 ≤ x ≤
√

2B + 1. where x = 2t + 1 − (a + b),
y = 2t + 1− (u + v).

5 gcd(b, v) = 1.

Proof: Suppose that there exists a positive integer s such that d(n; 1, s) = t. Let (u, v) be the smallest
non-negative solution of the equation (1) and (−a, b) be the smallest cross solution of the equation (1).

In the following we consider two cases: u ≥ v and u < v.
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Case: u ≥ v Then by Lemma 2.4 and Corollary 2.6 , we see that (1), (2) and (3) hold.
Now we will prove that condition (4) holds.
Let r1=b(u + v)/2c, r2=b(a + b)/2c, r3=b(u− a + v + b)/2c and r4=b(u + a + b− v)/2c.
If r3 = r4 and (u+a)(v + b) ≡ 1 (mod 2), then as u−a+v + b ≡ 0 (mod 2) and u+a−v + b ≡ 0

(mod 2), we have u − a + v + b = u + a − v + b, i.e., a = v. Thus the diameter of G(n; 1, s) is
t = (u + b)/2 − 1. So b − a = b − v = (u + b) − (u + v) = 2t + 2 − (2t + 1 − y) = 1 + y and
u−v = u−a = (u+b)−(a+b) = 2t+2−(2t+1−x) = 1+x. As (u+a)(v+b) ≡ 1 (mod 2) and a = v,
we have x = 2t+1−(a+b) = 2t+1−(v+b) ≡ 0 (mod 2) and y = 2t+1−(u+v) = 2t+1−(u+a) ≡ 0
(mod 2).

As 0 ≤ (b−a)(u−v) = (1+y)(u−v) ≤ (1+y)(u+v) and (b−a)(u−v) = 2(av+bu)−(a+b)(u+v) =
2n−(2t+1−x)(2t+1−y), we have 2n−(2t+1−x)(2t+1−y) ≤ (1+y)(u+v) = (1+y)(2t+1−y),
i.e., (2t+2−x+ y)(2t+1− y) ≥ 2n. Thus we have (y + 1−x

2 )2 +(x− 2)(2t+1− x
4 ) ≤ 1

4 +2B− 2t.
As 1

4 + 2B − 2t < 0 and 2t + 1 − x
4 > 0, we have x < 2. Similarly we can prove that y < 2. Since

x ≡ 0 (mod 2), y ≡ 0 (mod 2), x ≥ 0 and y ≥ 0, we have x = y = 0. As b − a = 1 + y = 1,
u− v = 1 + x = 1, a + b = 2t + 1− x = 2t + 1 and u + v = 2t + 1− y = 2t + 1, we have a = v = t,
b = u = t + 1. Since av + bu = t2 + (t + 1)2 = 2t2 + 2t + 1 and n = av + bu, we get a contradiction.
Thus r3 = r4 and (u + a)(v + b) ≡ 1 (mod 2) can not hold simultaneously.

In other cases, the diameter of G(n; 1, s) is max{r1, r2,min{r3, r4}} = t. Thus r3 ≤ t or r4 ≤ t.
If r3 ≤ t, we have b− a ≤ y. As 0 ≤ (b− a)(u− v) ≤ y(u + v) and (b− a)(u− v) = 2(av + bu)−

(a + b)(u + v) = 2n − (2t + 1 − x)(2t + 1 − y), we have (2t + 1 − x + y)(2t + 1 − y) ≥ 2n, i.e.,
4t2+(4−2x)t+(1−x+y)(1−y) ≥ 2n. Thus we have (y− x

2 )2+(x−1)(2t+1− x+1
4 ) ≤ 1

4 +2B−2t.
As 1

4 + 2B − 2t < 0 and 2t + 1 − x+1
4 > 0, we have x < 1. Thus x = 0 and y ≤

√
2B + 1. As x = 0

and 0 ≤ (b − a)(u − v) = −2B − 1 − xy + (x + y)(2t + 1) = −2B − 1 + y(2t + 1), we have y ≥ 1.
As u− v = −2B−1+y(2t+1)

b−a = 2t−2B+(y−1)(2t+1)
b−a ≤ u + v = 2t + 1− y, we have b− a > y − 1. Since

b− a ≤ y, we have b− a = y. As b + a = 2t + 1, b− a = b + a− 2a, we see that y = b− a is odd. As
b − a = y and (b − a)(u − v) = −2B − 1 + y(2t + 1), we have 2B + 1 = y(2t + 1 − u + v). Thus y
divides 2B + 1, i.e., y | 2B + 1.

If r4 ≤ t, we have u − v ≤ x. As in the case of r3 ≤ t, we can prove that y = 0, u − v = x, x is odd,
x | 2B + 1 and 1 ≤ x ≤

√
2B + 1.

From above we see that condition (4) holds.
Since u + vs ≡ 0 (mod n) and −a + bs ≡ 0 (mod n), there exist two integers λ and χ such that(
u v
−a b

) (
1
s

)
=n

(
λ
χ

)
. Thus

(
1
s

)
=
(

b −v
a u

) (
λ
χ

)
. So λb+(−χ)v = 1. By Lemma 2.8, we have gcd(v, b) = 1.

Thus condition (5) holds.

Case: u < v By a similar argument we can deduce the following:

(1) n = av + bu;

(2) a + b ≤ 2t + 1 and u + v ≤ 2t + 1;

(3) a > b, v > u, a > u, b < v;

(4) One of the following two conditions holds:

(a) x = 0, a− b = y, y is odd, y | 2B + 1 and 1 ≤ y ≤
√

2B + 1.
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(b) y = 0, v − u = x, x is odd, x | 2B + 1 and 1 ≤ x ≤
√

2B + 1. where x = 2t + 1 − (a + b),
y = 2t + 1− (u + v).

(5) gcd(b, v) = 1.

By letting a′ = u, b′ = v, u′ = a, v′ = b, x′ = 2t + 1− (a′ + b′) = y and y′ = 2t + 1− (u′ + v′) = x, it
is routine to verify that a′, b′, u′ and v′ satisfy the five conditions of the theorem.

On the other hand, if there exist four non-negative integers a, b, u, v satisfying the five conditions of the
theorem, then by condition 5 there exist two integers λ and χ such that λb + χv = 1. Let s ≡ λa − χu
(mod n). By Lemma 2.7 , we see that (u, v) and (−a, b) are two 0-points.

As u ≥ v, b ≥ a, u > a, and v < b, by Lemma 2.5 we have d(n; 1, s) ≤ t. Since d(n; 1, s) ≥ lb(n) = t,
we have d(n; 1, s) = t. 2

Corollary 3.2 Suppose that n = 2t2 + 2t − B, where t > B > 0, t, B ∈ Z+ and 2B + 1 is a prime
number. Then n is optimal if and only if gcd(t, B) = 1 or gcd(t + 1, B) = 1.

Proof: Suppose that n is optimal, by Theorem 3.1 there exist four non-negative integers a, b, u, v satisfy-
ing the condition 4 of Theorem 3.1. Let x = 2t + 1− (a + b) and y = 2t + 1− (u + v). Since 2B + 1 is
a prime number, we have (a) x = 0, b− a = y = 1 or (b) y = 0, u− v = x = 1.

When x = 0, b−a = y = 1, as (b−a)(u−v) = 2(av+bu)−(a+b)(u+v) = 2n−(2t+1)∗2t = 2t−2B,
we have a = t, b = t + 1, u = 2t−B and v = B. Since a, b, u, v satisfy the condition 5 of Theorem 3.1,
we have 1 = gcd(b, v) = gcd(t + 1, B).

When y = 0, u− v = x = 1, as (b− a)(u− v) = 2(av + bu)− (a+ b)(u+ v) = 2n− 2t ∗ (2t+1) =
2t − 2B, we have a = B, b = 2t − B, u = t + 1 and v = t. Since a, b, u, v satisfy the condition 5 of
Theorem 3.1, we have 1 = gcd(b, v) = gcd(2t−B, t) = gcd(−B, t) = gcd(t, B).

Thus we have proved that if n is optimal, then gcd(t, B) = 1 or gcd(t + 1, B) = 1.
If gcd(t, B) = 1 or gcd(t + 1, B) = 1, we will prove that n is optimal.
When gcd(t, B) = 1, let a = B, b = 2t − B, u = t + 1 and v = t. It is routine to verify that four

non-negative integers a, b, u, v satisfy the five conditions of Theorem 3.1.
When gcd(t + 1, B) = 1, let a = t, b = t + 1, u = 2t − B and v = B. It is easy to see that four

non-negative integers a, b, u, v satisfy the five conditions of Theorem 3.1.
From above we see that Corollary 3.2 holds. 2

By Theorem 3.1 and Corollary 3.2, we can give some new optimal and suboptimal infinite families of
undirected double-loop networks in the following theorems.

Theorem 3.3 (1) Let Θ = {2t2 + 2t − 6 | t > 6, t 6= 6e + 2 and t 6= 6e + 3, e ∈ Z+}. Then Θ is
an optimal infinite family, and when t = 6e, 6e + 1, 6e + 4, 6e + 5 respectively, the optimal step s is
12e2, 12e2 + 4e− 2, 60e2 + 88e + 28, 60e2 + 108e + 42 correspondingly.

(2) {G(2t2 + 2t− 6; 1, 2t2 − 3) | t = 6e + 2 or t = 6e + 3, 1 ≤ e ∈ Z+} is a suboptimal infinite family.

Proof:

( 1) Let n be 2t2 + 2t− 6. In the following we consider two cases: t = 6e + 1 or t = 6e + 5 and t = 6e
or t = 6e + 4.
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t = 6e + 1 or t = 6e + 5 When t = 6e + 1 or t = 6e + 5, we have gcd(t, 6) = 1.

t = 6e or t = 6e + 4 When t = 6e or t = 6e + 4, we have gcd(t + 1, 6) = 1.
As 2 × 6 + 1 = 13 and 13 is a prime number, by Corollary 3.2, we see that Θ is an optimal infinite

family.
When t = 6e + 1, let a = 6, b = 2t − 6, u = t + 1, and v = t. As e × b + (−2e + 1) × v = 1, the

optimal step s is e× a− (−2e + 1)× u (mod n) = 12e2 + 4e− 2.
When t = 6e + 5, let a = 6, b = 2t − 6, u = t + 1, and v = t. As −(e + 1) × b + (2e + 1) × v = 1,

s = −(e + 1)× a− (2e + 1)× u (mod n) = 60e2 + 108e + 42.
When t = 6e, let a = t, b = t + 1, u = 2t− 6, and v = 6. As 1× b− e× v = 1, s = 1× a− (−e)×u

(mod n) = 12e2.
When t = 6e + 4, let a = t, b = t + 1, u = 2t − 6, and v = 6. As −1 × b + (e + 1) × v = 1,

s = −1× a− (e + 1)× u (mod n) = 60e2 + 88e + 28.

( 2) When t = 6e + 2, we have gcd(t + 1, 6) = gcd(6e + 3, 6) = gcd(3, 6) = 3 and gcd(t, 6) =
gcd(6e + 2, 6) = gcd(2, 6) = 2.

When t = 6e + 3, we have gcd(t + 1, 6) = gcd(6e + 4, 6) = gcd(4, 6) = 2 and gcd(t, 6) =
gcd(6e + 3, 6) = gcd(3, 6) = 3.

As 2 × 6 + 1 = 13 and 13 is a prime number, by Corollary 3.2, we see that when t = 6e + 2 or
t = 6e + 3, 1 ≤ e ∈ Z+, n = 2t2 + 2t− 6 can not be optimal.

Let a = t, b = t + 2, u = 2t − 3 and v = 1. As 0 × b + 1 × v = 1, let s = 0 × a − 1 × u ≡ 2t2 − 3
(mod n). By Lemma 2.7, we see that (2t − 3, 1) and (−t, t + 2) are two 0-points. By Lemma 2.5 we
have d(n; 1, s) = t + 1.

From above we see that when t = 6e + 2 or t = 6e + 3, 1 ≤ e ∈ Z+, G(2t2 + 2t − 6; 1, 2t2 − 3) is
suboptimal. 2

Theorem 3.4 1. Let n = 2t2 +2t− 12 and Θ = {2t2 +2t− 12 | t > 12, t 6= 6e+2 and t 6= 6e+3,
e ∈ Z+}. Then Θ is an optimal infinite family, and when t = 6e, 6e+1, 6e+4, 6e+5 respectively,
the optimal step s is 6e−36e3 (mod n), 36e3 +24e2−2e−2 (mod n),−36e3−96e2−78e−16
(mod n), 36e3 + 96e2 + 78e + 18 (mod n) correspondingly.

2. Let Ψ = {2t2 + 2t − 12 | t = 6e + 2 or t = 6e + 3, where e ∈ Z+ and e ≥ 2}. Then Ψ is a
suboptimal infinite family, and when t = 6e+2 or 6e+3, the suboptimal step s is t2 +2t−3, t2−4
correspondingly.

Proof:

(1) By Theorem 3.1, we only need to find four non-negative integers a, b, u, v which satisfy the five
conditions of Theorem 3.1. In the following we consider two cases: t = 6e or t = 6e + 4, and t = 6e + 1
or t = 6e + 5.

t = 6e or t = 6e + 4 When t = 6e or t = 6e + 4, let a = t, b = t + 1, u = 2t− 12 and v = 12.
When t = 6e or t = 6e + 4, As gcd(2, t + 1) = 1 and gcd(3, t + 1) = 1, by Lemma 2.8, we have

that gcd(4, t + 1) = 1 and gcd(12, t + 1) = 1. That is, gcd(v, b) = 1. Thus it is easy to verify that four
integers a, b, u, v satisfy the five conditions of Theorem 3.1.
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t = 6e + 1 or t = 6e + 5 When t = 6e + 1 or t = 6e + 5, let a = 12, b = 2t− 12, u = t + 1 and v = t.
When t = 6e + 1 or t = 6e + 5, As gcd(2, t) = 1 and gcd(3, t) = 1, by Lemma 2.8, we have that

gcd(4, t) = 1 and gcd(12, t) = 1. Thus gcd(v, b) = gcd(t, 2t − 12) = gcd(t,−12) = gcd(t, 12) = 1.
So it is easy to verify that four integers a, b, u, v satisfy the five conditions of Theorem 3.1.

From above we see that Θ is an optimal infinite family.
When t = 6e, let a = t, b = t + 1, u = 2t − 12, and v = 12. As (1 − 6e) × b + 3e2 × v = 1,

s = (1− 6e)× a− 3e2 × u (mod n) = 6e− 36e3 (mod n).
When t = 6e + 1 or 6e + 4 or 6e + 5, the corresponding optimal step s can be computed similarly.

They are 36e3 + 24e2 − 2e− 2 (mod n),−36e3 − 96e2 − 78e− 16 (mod n), 36e3 + 96e2 + 78e + 18
(mod n) respectively.

( 2) For n = 2t2 +2t− 12, where t = 6e+2 or t = 6e+3, 2 ≤ e ∈ Z+, in the following we will prove
that n can not be optimal.

If n is optimal, then there exist four non-negative integers a, b, u, v which satisfy the five conditions of
Theorem 3.1. Let x = 2t + 1− (a + b) and y = 2t + 1− (u + v).

In the following we consider two cases:

(A) x = 0, b− a = y, y is odd, y | 2B + 1 and 1 ≤ y ≤
√

2B + 1.

(B) y = 0, u− v = x, x is odd, x | 2B + 1 and 1 ≤ x ≤
√

2B + 1, where B = 12.

Case A If x = 0, b− a = y, y is odd, y | 25 and 1 ≤ y ≤
√

25, then y = 1 or y = 5.

Subcase: x = 0, y = 1: As b−a = y and (b−a)(u−v) = 2n−(a+b)(u+v) = 2n−(2t+1−x)(2t+
1− y) = 2t− 24, we have that b− a = 1 and u− v = 2t− 24. Thus a = t, b = t + 1, u = 2t− 12
and v = 12. When t = 6e + 2 or t = 6e + 3, gcd(b, v) 6= 1.

Subcase: x = 0, y = 5: As b−a = y and (b−a)(u−v) = 2n−(a+b)(u+v) = 2n−(2t+1−x)(2t+
1−y) = 10t−20, we have that b−a = 5 and u−v = 2t−4. Thus a = t−2, b = t+3, u = 2t−4
and v = 0. So gcd(b, v) = t + 3 6= 1.

Case B If y = 0, u− v = x, x is odd, x | 25 and 1 ≤ x ≤
√

25, then x = 1 or x = 5.

Subcase: y = 0, x = 1: As u−v = x and (b−a)(u−v) = 2n−(a+b)(u+v) = 2n−(2t+1−x)(2t+
1 − y) = 2t − 24, we have u − v = 1 and b − a = 2t − 24. Thus a = 12, b = 2t − 12, u = t + 1
and v = t. When t = 6e + 2 or t = 6e + 3, gcd(b, v) 6= 1.

Subcase: y = 0, x = 5: As u−v = x and (b−a)(u−v) = 2n−(a+b)(u+v) = 2n−(2t+1−x)(2t+
1− y) = 10t− 20, we have that u− v = 5 and b− a = 2t− 4. Thus a = 0, b = 2t− 4, u = t + 3
and v = t− 2. So gcd(b, v) = gcd(2t− 4, t− 2) = t− 2 6= 1.

From above we see that in any cases, two non-negative integers b, v can not satisfy condition 5 of
Theorem 3.1. So n can not be optimal.

When t = 6e + 2, let a = 0, b = 2t − 4, u = t + 3 and v = t − 3. As 4−t
2 × b + (t − 3) × v = 1, let

s = 4−t
2 × a− (t− 3)× u ≡ 9− t2 (mod n) = t2 + 2t− 3. By Lemma 2.7, we see that (t + 3, t− 3)

and (0, 2t− 4) are two 0-points. By Lemma 2.5 we have d(n; 1, s) = t + 1.
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When t = 6e + 3, let a = t − 2, b = t + 2, u = 2t − 4 and v = 2. As 1 × b − t+1
2 × v = 1, let

s = 1× a + t+1
2 × u (mod n) = t2 − 4. By Lemma 2.7, we see that (2t− 4, 2) and (−t + 2, t + 2) are

two 0-points. By Lemma 2.5 we have d(n; 1, s) = t + 1.
Thus when t = 6e + 2 or t = 6e + 3, 2 ≤ e ∈ Z+, 2t2 + 2t− 12 is suboptimal. 2

Theorem 3.5 Let Θ = {2t2 + 2t− (2A2 + 2A− 2) | A > 0, A ∈ Z+, t ≥ A2+A
2 }. Then Θ is an optimal

infinite family. When t + A is odd, the optimal step s is t2 −A2 + 1. When t + A is even, the optimal step
s is t2 −A2 − 2A.

Proof: Let n = 2t2 + 2t− (2A2 + 2A− 2). When A > 0, A ∈ Z+, t ≥ A2+A
2 , lb(n) = t.

In the following we consider two cases:

t+A is an odd number When t+A is odd, suppose that t+A = 2j+1. Let a = t−A+1, b = t+A, u =
2t− 2A and v = 2. As 1× b− jv = 1, let s ≡ 1× (t−A + 1) + j(2t− 2A) (mod n) = t2 −A2 + 1.
By Lemma 2.7, we see that (u, v) and (−a, b) are two 0-points. By Lemma 2.5 we have d(n; 1, s) = t.

t + A is an even number When t + A is even, let a = 2, b = 2t − 2A, u = t + A and v = t − A + 1.
Since t−A

2 b+(1−t+A)v = 1, let s ≡ t−A
2 a−(1−t+A)∗u (mod n) = t2−A2−2A. By Lemma 2.7,

we see that (u, v) and (−a, b) are two 0-points. By Lemma 2.5 we have d(n; 1, s) = t.
Thus when t ≥ A2+A

2 , 0 < A ∈ Z+, 2t2 + 2t− (2A2 + 2A− 2) is optimal. 2

By Theorem 3.5, it is easy to prove the following corollary.

Corollary 3.6 Let Γ = {2t2−2 | t = A2 +A−2, A ≥ 2, A ∈ Z+}. Then Γ is an optimal infinite family.
When A is odd, the optimal step s is t2 −A2 + 1. When A is even, the optimal step s is t2 −A2 − 2A.

By APPENDIX B [19], we see that 390 = 2 × 142 − 2 is suboptimal. In other words, there are some
suboptimal integers in the set Σ = {2t2 − 2 | t > 2, t ∈ Z+}. From Corollary 3.6, we see that the set Γ,
which is a subset of the set Σ, is optimal. It would be interesting to find out a subset of the set Σ which is
a suboptimal infinite family.

Theorem 3.7 (1) Let n = 2t2 +2t−14 and Θ = {2t2 +2t−14 | t > 14, t 6= 14e+6 and t 6= 14e+7,
e ∈ Z+}. Then Θ is an optimal infinite family, and when t = 14e, 14e + 1, 14e + 2, 14e + 3, 14e +
4, 14e+5, 14e+8, 14e+9, 14e+10, 14e+11, 14e+12, 14e+13 respectively, the optimal step s is
28e2, 28e2 +4e−2, 140e2 +48e, 140e2 +68e+2, 84e2 +52e+6, 84e2 +64e+8,−84e2−104e−
28 (mod n),−84e2 − 116e − 38 (mod n),−140e2 − 212e − 74 (mod n),−140e2 − 232e − 92
(mod n),−28e2 − 52e− 22 (mod n),−28e2 − 56e− 28 (mod n) correspondingly.

(2) Let Ψ = {2t2 + 2t − 14 | t = 14e + 6 or t = 14e + 7, where e ∈ Z+ and e ≥ 1}. Then Ψ is a
suboptimal infinite family, and when t = 14e+6 or 14e+7, the suboptimal step s is t2 +2t−4, t2−5
correspondingly.

Proof:

( 1) In the following we consider two cases:

(A) t = 14e, or t = 14e + 2, or t = 14e + 4, or t = 14e + 8, or t = 14e + 10, or t = 14e + 12;

(B) t = 14e + 1, or t = 14e + 3, or t = 14e + 5, or t = 14e + 9, or t = 14e + 11, or t = 14e + 13.
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Case A When t = 14e, or t = 14e+2, or t = 14e+4, or t = 14e+8, or t = 14e+10, or t = 14e+12,
we have gcd(t + 1, 14) = 1.

Case B When t = 14e + 1, or t = 14e + 3, or t = 14e + 5, or t = 14e + 9, or t = 14e + 11, or
t = 14e + 13, we have gcd(t, 14) = 1.

As 2 × 14 + 1 = 29 and 29 is a prime number, by Corollary 3.2, we see that Θ is an optimal infinite
family.

When t = 14e, let a = t, b = t + 1, u = 2t− 14, and v = 14. As 1× b− e× v = 1, s = 1× a + e×u
(mod n) = 28e2.

When t = 14e + 1 or 14e + 2 or 14e + 3 or 14e + 4 or 14e + 5 or 14e + 8 or 14e + 9 or 14e + 10
or 14e + 11 or 14e + 12 or 14e + 13, the corresponding optimal step s can be computed similarly.
They are 28e2 + 4e − 2, 140e2 + 48e, 140e2 + 68e + 2, 84e2 + 52e + 6, 84e2 + 64e + 8,−84e2 −
104e−28 (mod n),−84e2−116e−38 (mod n),−140e2−212e−74 (mod n),−140e2−232e−92
(mod n),−28e2 − 52e− 22 (mod n),−28e2 − 56e− 28 (mod n) respectively.

( 2) When t = 14e+6, we have gcd(t, 14) = gcd(14e+6, 14) = gcd(6, 14) = 2 and gcd(t+1, 14) =
gcd(14e + 7, 14) = gcd(7, 14) = 7.

When t = 14e+7, we have gcd(t, 14) = gcd(14e+7, 14) = 7 and gcd(t+1, 14) = gcd(14e+8, 14) =
gcd(8, 14) = 2.

As 2 × 14 + 1 = 29 and 29 is a prime number, by Corollary 3.2, we see that when t = 14e + 6 or
t = 14e + 7, 1 ≤ e ∈ Z+, n = 2t2 + 2t− 14 can not be optimal.

When t = 14e + 6, let a = 2, b = 2t− 4, u = t + 2 and v = t− 3. As 4−t
2 × b + (t− 3)× v = 1, let

s = 4−t
2 × a− (t− 3)× u ≡ 10− t2 (mod n) = t2 + 2t− 4. By Lemma 2.7, we see that (t + 2, t− 3)

and (−2, 2t− 4) are two 0-points. By Lemma 2.5, we have d(n; 1, s) = t + 1.
When t = 14e + 7, let a = t − 3, b = t + 2, u = 2t − 4 and v = 2. As 1 × b − t+1

2 × v = 1, let
s ≡ 1× a + t+1

2 × u (mod n) = t2 − 5. By Lemma 2.7, we see that (2t− 4, 2) and (−t + 3, t + 2) are
two 0-points. Thus by Lemma 2.5 we have d(n; 1, s) = t + 1.

From above we see that when t = 14e + 6 or t = 14e + 7, where 1 ≤ e ∈ Z+, 2t2 + 2t − 14 is
suboptimal. 2

Theorem 3.8 1. Let Θ = {2t2 + 2t − 15 | t > 15, t 6= 15e + 5 and t 6= 15e + 9, e ∈ Z+}. Then Θ
is an optimal infinite family, and when t = 15e, 15e + 1, 15e + 2, 15e + 3, 15e + 4, 15e + 6, 15e +
7, 15e + 8, 15e + 10, 15e + 11, 15e + 12, 15e + 13, 15e + 14 respectively, the optimal step s is
30e2, 240e2 + 46e − 5, 240e2 + 78e − 3, 120e2 + 54e + 3, 120e2 + 70e + 5,−60e2 − 54e − 9
(mod n), 60e2 + 58e + 13, 60e2 + 66e + 15, 330e2 + 460e + 150, 330e2 + 504e + 180, 210e2 +
348e + 138,−30e2 − 56e− 24 (mod n),−30e2 − 60e− 30 (mod n) correspondingly.

2. {G(2t2 + 2t− 15; 1, 2t2 − 10) | t = 15e + 5 or t = 15e + 9, where 1 ≤ e ∈ Z+} is a suboptimal
infinite family.

Proof:

(1) In the following we consider two cases:

(A) t = 15e, or t = 15e + 1, or t = 15e + 3, or t = 15e + 6, or t = 15e + 7, or t = 15e + 10, or
t = 15e + 12, or t = 15e + 13;
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(B) t = 15e + 2, or t = 15e + 4, or t = 15e + 8, or t = 15e + 11, or t = 15e + 14.

Case A When t = 15e, or t = 15e+1, or t = 15e+3, or t = 15e+6, or t = 15e+7, or t = 15e+10,
or t = 15e + 12, or t = 15e + 13, we have gcd(t + 1, 15) = 1.

Case B When t = 15e + 2, or t = 15e + 4, or t = 15e + 8, or t = 15e + 11, or t = 15e + 14, we have
gcd(t, 15) = 1.

As 2 × 15 + 1 = 31 and 31 is a prime number, by Corollary 3.2 , we see that Θ is an optimal infinite
family.

When t = 15e, let a = t, b = t + 1, u = 2t− 15, and v = 15. As 1× b− e× v = 1, s = 1× a + e×u
(mod n) = 30e2.

When t = 15e + 1 or 15e + 2 or 15 + 3 or 15e + 4 or 15e + 6 or 15e + 7 or 15e + 8 or 15e + 10
or 15e + 11 or 15e + 12 or 15e + 13 or 15e + 14, the corresponding optimal step s can be computed
similarly. They are 240e2 +46e−5, 240e2 +78e−3, 120e2 +54e+3, 120e2 +70e+5,−60e2−54e−9
(mod n), 60e2 + 58e + 13, 60e2 + 66e + 15, 330e2 + 460e + 150, 330e2 + 504e + 180, 210e2 + 348e +
138,−30e2 − 56e− 24 (mod n),−30e2 − 60e− 30 (mod n) respectively.

(2) When t = 15e + 5, we have gcd(t, 15) = gcd(15e + 5, 15) = gcd(5, 15) = 5 and gcd(t + 1, 15) =
gcd(15e + 6, 15) = gcd(6, 15) = 3.

When t = 15e + 9, we have gcd(t, 15) = gcd(15e + 9, 15) = gcd(9, 15) = 3 and gcd(t + 1, 15) =
gcd(15e + 10, 15) = gcd(10, 15) = 5.

As 2 × 15 + 1 = 31 and 31 is a prime number, by Corollary 3.2 , we see that when t = 15e + 5 or
t = 15e + 9, 1 ≤ e ∈ Z+, n = 2t2 + 2t− 15 can not be optimal.

When t = 15e+5 or t = 15e+9, let a = t, b = t+3, u = 2t− 5 and v = 1. As 0× b+1× v = 1, let
s = 0× a− 1×u ≡ 5− 2t (mod n) = 2t2 − 10. By Lemma 2.7, we see that (2t− 5, 1) and (−t, t + 3)
are two 0-points. By Lemma 2.5, we have d(n; 1, s) = t + 1.

From above we see that when t = 15e+5 or t = 15e+9, where 1 ≤ e ∈ Z+, G(2t2 +2t−15; 1, 2t2−
10) is suboptimal. 2

Acknowledgements
The authors thank the referees for their helpful comments that improved the accuracy and clarity of our
presentation.

References
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