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An interval of a permutation is a consecutive substring consisting of consecutive symbols. For example, 4536 is an
interval in the permutation 71453682. These arise in genetic applications. For the applications, it makes sense to
generalize so as to allow gaps of bounded size δ − 1, both in the locations and the symbols. For example, 4527 has
gaps bounded by 1 (since 3 and 6 are missing) and is therefore a δ-interval of 389415627 for δ = 2.

After analyzing the distribution of the number of intervals of a uniform random permutation, we study the number of
2-intervals. This is exponentially large, but tightly clustered around its mean. Perhaps surprisingly, the quenched and
annealed means are the same. Our analysis is via a multivariate generating function enumerating pairs of potential
2-intervals by size and intersection size.

Keywords: intervals in random permutations, gene teams, annealed mean

1 Introduction
Let [n] denote the set {1, 2, . . . , n}. We are interested in counting the common intervals of a pair of
permutations. To be precise, if GA and GB are two permutations of [n], we are interested in counting
the pairs of intervals (I, J) for which GA(I) = GB(J). It is equivalent to count intervals I for which
G−1

B GA(I) is also an interval. Accordingly, we define

Definition 1.1 The interval I := [i, i+ k− 1] ⊆ [n] is called an interval of the permutation G if G−1(I)
is an interval, that is, if there is a j such that

G[j, j + k − 1] = [i, i+ k − 1] .

The proper intervals are those whose lengths are at least 2 and at most n− 1.

Here and throughout, we use vector notation for permutations rather than cycle notation, so that (σ1, . . . , σn)
denotes the permutation i 7→ σi rather than the permutation consisting of a single n-cycle.
Example: Let G be the permutation (3, 1, 2, 4, 5). Then the proper intervals of G are [1, 2], [4, 5], [1, 3]
and [1, 4].
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When G is a random variable, uniformly distributed over all permutations of [n], let Xk denote the
number of of intervals of length k of G and let X =

∑
k Xk denote the number of intervals of G. We will

show in Section 2 that as n→∞, the distribution of X converges to a Poisson with mean 2.
The number of intervals, or runs of a permutation, was studied in the forties by Kaplansky [11] and

Wolfowitz [18, 19] from a statistical point of view. See also [13]. Recently several algorithms were
designed to efficiently enumerate all common intervals of permutations [9, 17] and their time complexity
isO(n+K) where n is the size of the permutation andK the number of intervals. These algorithms were
designed because common intervals have several applications. They relate to the consecutive arrangement
problem [7]. Genetic algorithms for sequencing problems are based on common intervals [12, 14]. In
bioinformatics [4, 5, 8, 9, 10], genomes of prokaryotes can be modeled as a permutation of genes. A
common interval is then a set of orthologous genes that appear consecutively, possibly in different orders,
in two genomes. Therefore common intervals can be used to detect groups of genes that are functionally
associated [9, 10]. As the annotation of genomes is not perfect, the notion of consecutivity in intervals
needs to be relaxed. A notion of gene teams was defined in [6], where a gene team is a maximal set of
orthologous genes, possibly occurring in different orders in the two species, but separated in each case
by gaps that do not exceed a fixed threshold, δ. To study these, we consider a generalization of intervals,
namely δ-intervals (the previous case corresponds to δ = 1).

Definition 1.2 The set I ⊆ [n] is called a δ-interval of [n] of length k if I is a set of integers {i1, . . . , ik}
with 1 ≤ ir+1 − ir ≤ δ for each 1 ≤ r ≤ k − 1. We call I a δ-interval of length k of G if both I and
G−1(I) are δ-intervals. Proper δ-intervals are again those of cardinality at least 2 and at most n− 1.

Example: G = (3, 1, 2, 4, 5) possesses the 2−intervals:

{1, 2}, {1, 3}, {1, 2, 3}, {2, 3}, {1, 2, 3, 4}, {1, 3, 4}, {2, 3, 4},
{2, 4, 5}, {2, 4}, {2, 3, 5}, {2, 3, 4, 5}, {1, 3, 4, 5}, {1, 2, 4, 5}, {1, 2, 3, 5}

In [6] a polynomial time enumeration algorithm for gene teams is presented. Our notion of δ-intervals
removes the maximality constraint, whence the number of these may grow exponentially and it is natural
to enumerate asymptotically rather than enumerating exactly.

The main purpose of this paper is to investigate the asymptotic properties of X(δ)
k , where this denotes

the number of δ−intervals of length k of a uniformly chosen random permutation of [n], and of the total
number X(δ) :=

∑
k X

(δ)
k of δ-intervals of a random permutation. We are interested in all δ > 1 but in

the present manuscript we examine only the case δ = 2. To reduce the number of superscripts, we let Y
and Yk denote X(2) and X(2)

k respectively.

The number X(δ) of δ-intervals when δ > 1 behaves very differently from X . Whereas X is O(1) as
n → ∞, with all the contributions coming from short intervals, there will typically be many δ-intervals.
In fact for δ = 2, a thumbnail computation produces numbers αk in the unit interval (α2 ≈ 0.57939) such
that for k ∼ αn and α > αk, the random variable Yk will be typically exponentially large: the number
of 2-intervals of [n] of size k grows exponentially, the probability of G−1 of one of these also being a
2-interval decays exponentially, and the growth overcomes the decay when α > αk.

Seeing that Y grows exponentially in n, it is natural to look at the rescaled quantity n−1 log Y . We
compute the annealed mean, n−1 log EY . The term “annealed” means that we first take an expectation
over the (uniform) measure on permutations. The more interesting quantities are the quenched quantities,
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which refer to the typical, rather than the mean behavior of Y . Often one has a so-called lottery effect,
meaning that the mean of a quantity Y comes primarily from an exponentially small number of values that
are exponentially larger than the median value, and that consequently, E log Y < log EY . For example,
when there is a Gaussian limit law, n−1/2(log Y −nµ) → N (0, σ2), then one will typically have a lottery
effect. Perhaps surprisingly in light of the discussion in Section 7, there is no lottery effect. Our main
result, Theorem 4.1 below, is that for δ = 2, we have EY 2 = O(EY )2. This shows that as n → ∞, the
sequence Y := Y/EY is tight on (0,∞), meaning that when Y is rescaled by its mean, the probability of
Y/EY < ε is uniformly bounded by some g(ε) going to zero as ε→ 0.

The paper is organized as follows. In Section 2 we study the case δ = 1. We recall previous results
and show that the distribution of X converges to a Poisson with mean 2. In Section 3 we compute the
mean value of 2-intervals. We use basic counting arguments and then apply a saddle point argument.
Section 4 states the main result which is that the quenched and annealed means are the same, that is
EY 2 = O(EY )2. Then we outline in Section 4 all the steps of the proof. The proof itself is presented in
Sections 5, 6 and 7. In Section 5 we present a 4-variable generating function for pairs of 2-intervals of size
k and k′ which overlap on κ positions. Then in Section 6 we compute a rate function thanks to saddle point
analysis which gives us the asymptotics of the number of pairs of 2-intervals of size k and k′ which overlap
on κ positions. This gives the exponential part of EY 2. The full computation of the asymptotics of the
non-exponential part of EY 2 seems daunting. We will show in Section 7 that EY 2 − (EY )2 6= o(EY )2,
and that a Gaussian limit is not possible (Theorem 7.1). We are left to conjecture that Y converges in
distribution to an unidentified positive real random variable, whose properties are discussed in Section 7.

A preliminary version of this paper was presented at the Third International Colloquium of Mathematics
and Computer Science held at the Vienna University of Technology (Sep.2004).

2 Intervals
Recall that Xk denotes the number of of intervals of length k of G and that X =

∑
k Xk denotes the

number of intervals of G. Uno et al [17] computed

E(X2) =
2(n− 1)

n
;

E(X3) =
6(n− 2)
n(n− 1)

;

E(Xk) ≤ 24
n2

for k ≥ 4

Although this was not explicitly stated in [17], it is not hard to show that in fact

Proposition 2.1 As n→∞, the distribution of X converges to a Poisson with mean 2.

Letting X ′ :=
∑n−1

k=3 Xk, we see that

EX ′ ≤ 6
n

+ (n− 4)
24
n2

≤ 30
n

so X ′ → 0 in probability as n → ∞. Thus it suffices to show that X2 converges to a Poisson of mean 2.
Kaplansky proves this in [11]. We give here an independent argument via a more modern approach, using
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the Poisson approximation machinery first developed by Chen and Stein, and put in an explicit and usable
form in [1].

Proof: Recall that G is a random permutation of [n]. Given k ∈ [n − 1], let Ak be the event that
G−1{k, k + 1} is an interval. Let Bk = {k − 1, k, k + 1} ∩ [n − 1]. Write pk for P(Ak) and pk,l

for P(Ak ∩ Al). Theorem 1 of [2] concludes convergence to a Poisson with mean
∑

k pk provided the
following three quantities go to zero. In fact the distance in total variation to the Poisson for any fixed n
is bounded above by 2(b1(n)+ b2(n)+ b3(n)), so the argument will show that the total variation distance
is O(1/n).

b1 :=
∑

k

∑
j∈Bk

pjpk

b2 :=
∑

k

∑
k 6=j∈Bk

pk,j

b3 :=
∑

k

E |E (1Ak
− pk|σ(Aj : j /∈ Bk))| .

Each pk = (n − 1)/
(
n
2

)
= 2/n, since there are

(
n
2

)
pairs of positions, and n − 1 pairs of adjacent

positions. Similarly there are
(
n−2

2

)
pairs of pairs of adjacent positions and

(
n
4

)
quadruples of positions.

It follows that for |k − j| ≥ 2, pk,j = (1/3)
(
n−2

2

)
/
(
n
4

)
= 4/(n2 − n). Immediately we see that

b1 ≤ n[3(2/(n− 2))2] = O(1/n) and that b2 ≤ 3n4/(n2 − n) = O(1/n).
It remains only to show that b3 = O(1/n). Let σ denote σ(Aj : j /∈ Bk). A simple identity is

|E (1Ak
− pk|σ)| = 2 sup

H∈σ
[P(H ∩Ak)− pkP(H)]

= 2pk||µAk
− µ||TV ,

where || · ||TV is the total variation distance, µ is the unconditional probability measure on σ and µAk

is the µ conditioned on Ak. Now there is an easy way to generate a random permutation conditional
on Ak: pick G0 uniformly at random, pick a pair of positions {j, j + 1} independently uniformly at
random, switch the values of G−1 on k and G(j), and switch the values G−1 on k + 1 and G(j + 1).
With probability 1 − O(1/n), this does not change whether Aj occurs for any j 6= k. It follows that
||µAk

− µ||TV = O(1/n), which completes the proof. 2

More generally, consider Xk. There are T1,k = n − k + 1 possible k-tuples and each of them has a
probability

Π1,k = k!
1

n(n− 1) . . . (n− k + 2)
of being made of k consecutive integers (again irrespective of their order, we denote this property by Ck

). Hence

E(Xk) =
k!(n− k + 1)

n(n− 1) . . . (n− k + 2)
=
k(n− k + 1)(

n
k−1

) . (1)

Set

X :=
n−1∑
k=2

Xk.
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We see that, as n→∞, the dominant terms of E(X) are given by k = O(1) and k = n−O(1). Indeed,
by Stirling, and setting k = αn+ 1, we easily derive

E

 n/2∑
k=εn

Xk

 ∼
∫ 1/2

ε

[
ααn(1− α)(1−α)nαn(1− α)n

√
2πα(1− α)n

]
ndα ↓ 0, (2)

exponentially , n→∞, for fixed ε.
We obtain

E(X) ∼ 2 +
8
n

+
36
n2

+
228
n3

+ . . .

As an example of Xk behaviour, let us now turn to X3 and compute E2
3 := E

(
X2

3

)
. First we have

T1,3 = n− 2 triplets contributing by E(X3) to E2
3 . Next we have T2,3 = 2(n− 3) couple of triplets with

two common values and the probability of one of these couples contributing by 1 to E2
3 is given by

Π2,3 =
1

n(n− 1)(n− 2)(n− 3)
[2!T2,3].

Next we have T3,3 = 2(n− 4) couples of triplets with one common value and the probability of one of
these couples contributing by 1 to E2

3 is given by

Π3,3 =
1

n(n− 1)(n− 2)(n− 3)(n− 4)
[(2!)2T3,3].

Finally, there are T4,3 = (n− 4)(n− 5) couples of disjoint triplets and the probability of one of these
couples contributing by 1 to E2

3 is given by

Π4,3 = (3!)2
T4,3∏5

0(n− i)
= (3!)2

1
n(n− 1)(n− 2)(n− 3)

.

Note again that

4∑
1

Ti,3 = (n− 2) + 2(n− 3) + 2(n− 4) + (n− 4)(n− 5) = (n− 2)2

as it should. This leads to
E2

3 = E
(
X2

3

)
∼ 6
n

+
38
n2

+ . . . (3)

What is the asymptotic distribution of X3? Let Hi denote the event: the triplet [σi, σi+1, σi+2] is made of
three consecutive integers (again irrespective of their order). We obtain, by inclusion-exclusion,

Pr[X3 = 0] = Pr

[
n−2∏
i=1

[I −Hi]

]
= 1− T1,3Π1,3 + T2,3Π2,3/2 + T3,3Π3,3/2 + T4,3Π4,3/2 + . . .

= 1− (n− 2)
3!

n(n− 1)
+ (n− 3)

1
n(n− 1)(n− 2)(n− 3)

[4 + 4(n− 4)]
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+ (n− 4)O
(

1
n4

)
+

(n− 4)(n− 5)
2

(3!)2
1

n(n− 1)(n− 2)(n− 3)
+ . . .

Pr[X3 = 1] = Pr

n−2∑
i=1

Hi

∏
j 6=i

[I −Hj ]


= T1,3Π1,3 − T2,3Π2,3 − T3,3Π3,3 − T4,3Π4,3 + . . .

= (n− 2)
3!

n(n− 1)
− 2(n− 3)

1
n(n− 1)(n− 2)(n− 3)

[4 + 4(n− 4)]

− 2(n− 4)O
(

1
n4

)
− (n− 4)(n− 5)(3!)2

1
n(n− 1)(n− 2)(n− 3)

+ . . .

Pr[X3 = 2] = Pr

∑
i

∑
j>i

HiHj

∏
k 6=(i,j)

[I −Hk]


= T2,3Π2,3/2 + T3,3Π3,3/2 + T4,3Π4,3/2 + . . .

= (n− 3)
1

n(n− 1)(n− 2)(n− 3)
[4 + 4(n− 4)] + (n− 4)O

(
1
n4

)
+

(n− 4)(n− 5)
2

(3!)2
1

n(n− 1)(n− 2)(n− 3)
+ . . .

This leads to

Pr[X3 = 0] ∼ 1− 6
n

+
28
n2

+ . . .

Pr[X3 = 1] ∼ 6
n
− 50
n2

+ . . .

Pr[X3 = 2] ∼ 22
n2

+ . . . . (4)

Note that this also leads to E(X3) ∼ 6
n −

6
n2 + . . . and E(X2

3 ) ∼ 6
n + 38

n2 + . . . which is of course
comptatible with (1) and (3).

A simulation of X3 based on M = 3000 trials with n = 40 is given in Figure 1 (asymptotic =line,
observed =circle). The fit is reasonable.

3 The mean number of 2-intervals
Let N(k, n) denote the number of 2-intervals that are subsets of [n] and have cardinality k. We will take
advantage of the uniformity of G. For each of the N(k, n) 2-intervals of cardinality k, its inverse image
under G is uniformly distributed on k-subsets of [n]. Therefore, the probability is exactly N(k, n)/

(
n
k

)
for any given 2-interval of cardinality k, that its inverse image under G is again a 2-interval. Thus

EYk =
N(k, n)2(

n
k

) . (5)

To evaluate N(k, n), note that there may be anywhere from 0 to mk := min{k− 1, n−k} “holes” in a
2-interval, where a hole is an element not in the 2-interval but between its endpoints. Let Ti,k denote the
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Fig. 1: Observed and limiting (4) X3 distribution

number of 2-intervals of cardinality k with i holes. These may be enumerated by the following procedure.
Pick a starting position r with 1 ≤ r ≤ n−k−i+1 and let r be the least element of the 2-interval. Choose
any sequence with i occurrences of the word “skip” and k − 1 − i occurrences of the word “no-skip”.
If the first word in the sequence is “no-skip” then r + 1 is the next element of the 2-interval; if the first
word is “skip” then r+ 2 is the next element. Continue in this manner until the sequence is used up. This
method of enumeration makes it clear that

Ti,k := (n− k + 1− i) ·
(
k − 1
i

)
0 ≤ i ≤ mk, and

EYk =

(∑mk

i=0(n+ 1− k − i)
(
k−1

i

))2

(
n
k

) . (6)

When k/n < 1/2 then

N(k, n) =
k−1∑
i=0

(n+ 1− k − i)
(
k − 1
i

)
=
(
n+

3
2
− 3

2
k

)
2k−1 . (7)



196 Sylvie Corteel and Guy Louchard and Robin Pemantle

When k/n > 1/2 the sum is better approximated than evaluated exactly. We find that

N(k, n) =
n−k∑
i=0

(n+ 1− k − i)
(
k − 1
i

)
,

which has its maximum term near the endpoint i = n − k when k ≥ 2
3n, and near k/2 when k ≤ 2

3n.
More categorical asymptotics than we need are available by using a normal approximation near k = 2n/3.
For n/2 < k < 2n/3) with (2n/3− k)/

√
n→∞, we have

N(k, n) =
n−k∑
i=0

(n+ 1− k − i)
(
k − 1
i

)
(8)

∼
k−1∑
i=0

(n+ 1− k − i)
(
k − 1
i

)
=

(
n+

3
2
− 3

2
k

)
2k−1 .

which is asymptotically the same as when k < n/2. On the other hand, for (k − 2n/3)/
√
n → ∞, we

have

N(k, n) =
n−k∑
i=0

(n+ 1− k − i)
(
k − 1
i

)
(9)

∼
(
k − 1
n− k

)(
2k − 1− n

3k − 1− 2n

)2

.

Finally, for x := k−1/2(k − 2n/3) = O(1), the normal approximation yields directly

N(k, n) = 2k−1

(√
k

2

)
Ψx , (10)

where Ψx is the expected positive part of Z + x with Z a standard normal.
Via equation (6), these asymptotics for N(k, n) lead directly to asymptotics for EYk. To obtain asymp-

totics for EY , we then sum over k, using a saddle point approximation. The only significant terms are
near k = α∗n, where α∗ will be determined shortly but is evidently greater than 2/3. We therefore use (9)
with n→∞ and α := k/n to obtain

N(k, n)2(
n
k

) ∼

[
2k − n

k

(
k

n− k

)(
2k − n

3k − 2n

)2
]2(

n

k

)−1

∼ A(α)n−1/2 exp [nF1(α)]

where

A(α) :=
(2α− 1)5

(3α− 2)4

√
1

2πα(1− α)
;



Common Intervals in Permutations 197

Fig. 2: F1(α)

F1(α) := 3α lnα− (1− α) ln(1− α)− 2(2α− 1) ln(2α− 1) .

When α < 2/3, we obtain, by a similar analysis,

F1(α) = α log(α) + (1− α) log(1− α) + 2 log(2)α.

A plot of F1(α) is given in Figure 2. When α ≥ 2/3, the function F ′1(α) vanishes when α solves

17α4 − 33α3 + 24α2 − 8α+ 1 = 0 .

The unique root in [2/3, 1] is α∗ ≈ .7840013296 . . .. A saddle point approximation now gives us

EY =
n−1∑
k=2

EYk (11)

∼
n∑

k=3n/4

A(k/n) exp [nF1(k/n)]n−1/2
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∼ A(α∗) exp(nF1(α∗))

√
2π

−F ′′1 (α∗)

= exp(nF1(α∗))

√
(2α− 1)11(3α− 2)

(3− 2α)8

≈ 2.4253 exp(0.40122467n) .

4 The second moment of the number of 2-intervals
In the next three sections, we show:

Theorem 4.1 EY 2 = O(EY )2.

This section outlines, in three subsections, the argument for this. The subsequent section derives the
crucial generating function and the following one uses the generating function to verify certain key com-
putations.

4.1 Counting pairs of 2-intervals
Just as the mean of Y may be obtained from a saddle point analysis of EYk near k/n = α∗, we expect the
second moment of Y to be dominated by terms EY 2

k with k near some α∗∗. Because we have seen from
numerical data that the quenched and annealed behavior are the same, we expect to find, and do find, that
α∗∗ = α∗.

Again we will take advantage of symmetry. This time, if I and I ′ are 2-intervals, we will need to know
the cardinality of their intersection before we can determine the probability that G−1(I) and G−1(I ′) are
both 2-intervals. We therefore define N(k, k′, n, κ) to be the number of pairs of 2-intervals (I, I ′) of [n]
with |I| = k, |I ′| = k′ and |I ∩ I ′| = κ. For the computation of EY 2

k we will want to specialize to the
case k = k′, so we denote N(k, n, κ) := N(k, k, n, κ). Our computations will now be analogous to the
computation F1 and its argmax, α∗. Specifically, letting

α :=
k

n

β :=
k′

n

ρ :=
κ

n

we will find a rate function rate(α, β, ρ) such that

N(k, k′, n, κ) ∼ A0(α, β, ρ)n−3/2 exp(nrate(α, β, ρ)) (12)

for all parameter values in a range containing the dominant contributions to the second moment of Y .
To obtain the analogue of (5) for second moments, we will need the rate function for total number of

pairs of subsets A and B of [n] with |A| = k, |B| = k′ and |A ∩B| = κ. The total number is given by(
n

κ, k − κ, k′ − κ, n− k − k′ + κ

)
=

n!
κ!(k − κ)!(k′ − κ)!(n− k − k′ + κ)!

.
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It follows that for any pair of sets of respective cardinalities k and k′ whose intersection has cardinality
κ ≤ k, the probability that their union is a specific pair of sets is

P (k, k′, n, κ) :=
(

n

κ, k − κ, k′ − κ, n− k − k′ + κ

)−1

and that the rate function for this probability, limn−1 logP , which we denote ent for entropy, is given by

ent := ρ log ρ+ (α− ρ) log(α− ρ) + (β − ρ) log(β − ρ) + (1−α− β + ρ) log(1−α− β + ρ) . (13)

Observe that the function ent satisfies the identity

ent(α, β, α · β) = h(α) + h(β) (14)

where h(x) = x log(x)+ (1−x) log(1−x) is the usual entropy function, and in particular that ρ = α ·β
is a maximum for the function −ent for fixed α, β.

The rate function for the expected number of pairs of 2-intervals of respective sizes k and k′ with
overlap κ is given by

F2 := 2 · rate+ ent , (15)

which we now analyze.

4.2 The exponential order of the second moment
Since EY 2 =

∑
k,l EYkYl =

∑
k,l,κN(k, l, n, κ)2P (k, l, n, κ) is the sum of polynomially many sum-

mands, it follows that the exponential order of EY 2 is the same as the order of the largest summand,
namely

n−1 log EY 2 → sup
α,β,ρ

F2(α, β, ρ) := λ∗∗ . (16)

In order to compute λ∗∗ we must find the location, (α∗∗, β∗∗, ρ∗∗), of the maximum of F2. Without
computing, we may narrow the search considerably. First, from the inequality EYkYl ≤ 1

2 (EY 2
k + EY 2

l ),
we see that the maximum of EYkYl (for fixed n) can only occur when l = k, and therefore

λ∗∗ = F2(α, α, ρ) (17)

for some α, ρ.
Next, consider how N(k, k′, n, κ) varies with κ for fixed (k, k′, n). In other words, enumerate pairs of

2-intervals of fixed sizes k and k′ according to the size of their intersection, κ. Observe that
∑

κN(k, k′, n, κ)
counts all pairs of 2-intervals of sizes k and k′, so that∑

κ

N(k, k′, n, κ) = N(k, n)N(k′, n) .

Since the number of summands is linear in n, we have at the exponential level that

sup
ρ

rate(α, β, ρ) = u(α) + u(β) (18)
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where u(α) = limn−1 logN(k, n) as n→∞ with k/n→ α.
Later, we will show, for α and β in a range containing α∗∗, that this supremum occurs at ρ = α · β.

Assume this for now. We have previously remarked that −ent(α, β, ·) has a maximum at α · β as well.
Both functions are smooth, so the function F2 = 2 · rate + ent has a critical point there as well. With
some work, using a four-variable generating function, we will show that this critical point is a maximum.
It will then follow from (18) and (14) that

sup
ρ
F2(α, β, ρ) = F2(α, β, α · β)

= 2 · rate(α, β, α · β) + ent(α, β, α · β)

= 2u(α) + 2u(β) + h(α) + h(β)

= F1(α) + F1(β) .

Taking the maximum over α and β then would give

λ∗∗ = 2F1(α∗) . (19)

4.3 End of the outline
More precise information about EY 2 is obtained by a saddle point summation. In particular, from the
form of the generating function, it will follow that there is a n−3/2 correction term:

N(k, k′, n, κ) ∼ A0(k/n, k′/n, κ/n)n−3/2 exp(nrate(k/n, k′/n, κ/n))

in a neighborhood of the maximum. The product N(k, k′, n, κ)2P (k, k′, n, κ) is then asymptotically

A1(α, β, ρ)n−3/2 exp(nF2(α, β, ρ))

and the sum will be asymptotically C exp(nF2(α∗, α∗, α2
∗)) where

C =
A1(α∗, α∗, α2

∗)√
(2π)3H

and H is the Hessian of the rate function F2 in appropriate coordinates. In particular the polynomial
correction term is canceled by the summation, and the demonstration that EY 2 = O(EY )2 is completed.

To summarize, the foregoing outline proves Theorem 4.1 once we have verified several assertions:

(m1) that the supremum of rate(α, β, ·) occurs at α · β;

(m2) that the critical point of F2 at ρ = α · β is a maximum;

(m3) that exact asymptotics for EYkYl have an n−3/2 correction term to the exponential and that the
discrete saddle point summation exactly cancels this out.

We remark that this argument does not show that EY 2 − (EY )2 = Θ(EY )2. In principle we could
compute A(α∗, α∗, α2

∗) and H and compare to the constant computed in (11), but this computation seems
daunting. Instead, a separate argument ruling out the possibility that E(Y 2)− (EY )2 = o(EY )2 is given
in the last section.

Before turning to the generating function, we establish some helpful numerical bounds.
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Lemma 4.2 If α < 12/17 or if α > 0.847 then

F2(α, α, ρ) < 2F1(α∗) .

Proof: Suppose first that α > 0.847. A crude upper bound for F2(α, α, ρ) is limn→∞N(bαnc, n)2.
This latter quantity is equal to 2η where η := α log(α) − (1 − α) log(1 − α) − (2α − 1) log(2α −
1). We may verify that when α > 0.847 then η < 0.4001, which is known to be less than F1(α∗).
Verification: dη/dα is the log of an algebraic expression and vanishes exactly once on the interval [1, 2, 1]
namely at α = (5 +

√
5)/10 ≈ 0.7236; in particular, η is decreasing on [0.73, 1] and η(0.847) <

0.4001 < F1(α∗). For the case when α < 12/17, the most straightforward method is to divide the α-δ
plane into small squares. In each we may easily compute separate upper and lower bounds for 2 · rate
and ent, since these functions will have extremes at a vertex of the grid square. With the grid squares
sufficiently small, one may then check that the sum of the bounds does not exceed 2F1(α∗). For details,
see http://www.math.upenn.edu/˜pemantle/CLP04-grid1.mw 2

5 The Generating Function
Recall that N(k, k′, κ, n) denotes the number of pairs of 2-intervals (I, I ′) of [n] with |I| = k, |I ′| = k′

and |I ∩ I ′| = κ. Define the generating function

F (u1, u2, t, z) :=
∑

k,k′,κ,n

N(k, k′, κ, n)uk
1u

k′

2 t
κzn

so that N(k, κ, n) = [uk
1u

k
2t

κzn]F .
As a warm-up, let us compute the generating function for N(k, n) and recover the asymptotic formu-

lae (7) – (9). Recall from building the generic indicator function that a 2-interval consists of any number
of unused locations, followed by a single used location, followed by any sequence of pairs (unused , used)
and single used locations, followed by any number of unused locations. Each pair (unused , used) con-
tributes a factor of uz2 while each single used location gives a factor of uz. The generating function for
an arbitrary sequence of pairs and singles is thus uz/(1 − (uz + uz2)) = uz/(1 − (1 + z)uz). Taking
into account the initial and final strings of unused positions gives

F3(u, z) :=
∑

N(k, n)ukzn =
uz

(1− z)2(1− (1 + z)uz)
. (20)

To recover the asymptotics in the different regimes, write

F4(z) = [uk]F3(u, z) =
(1 + z)k−1zk

(1− z)2

and

N(k, n) = [zn]F4(z) =
1

2πi

∫
(1 + z)k−1zk

(1− z)2zn+1
dz .

Writing F5 := α log(1 + z)− (1− α) log z and setting (k − 1)/n := α we then have

N(k, n) =
1

2πi

∫
exp(nF5(z))

(1− z)2
dz .
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There is a double pole at z = 1 and a saddle point at F ′5(z) = 0, that is, at z∗ := (1−α)/(2α− 1). when
α < 2/3 the double pole is the dominant singularity and leads by residues to

N(k, n) ∼ −n2αnF ′5(1) = n2αn(1− 3α/2)

which is (7). When α > 2/3 the saddle point is dominant and leads to

N(k, n) ∼ 1
(1− z∗)2

√
−2πnF ′′5 (z∗)

exp(nF5(z∗))

which agrees with (9).
Now to derive F , we follow a similar route. A canonical way to build a pair of sets and keep track of

the intersection is as follows.

1. An initial sequence of positions before the first common position;

2. A common position followed by zero or more segments of the form: a sequence of positions not
common to either set, in such a way that no two positions in a row are absent from either set,
followed by a common position;

3. A final sequence of positions after the last common position.

The crucial part of the generating function is the one that grows exponentially with κ, namely the second
of the three parts. Nevertheless, in order to compute a valid leading order asymptotic, we must keep track
of all three parts.

To enumerate the second of the three parts, note that each segment between common positions can be
one of six possible classes of configuration. We list these here, along with the factor contributed by such
a step to the generating function.

a Empty. fa = 1.

b A single position, which can belong to either set or neither, but not both. fb = z(1 + u1 + u2).

c A positive number of pairs (j, j+1) where j ∈ I \I ′ and j+1 ∈ I ′\I . fc = z2u1u2/(1−z2u1u2).

c′ A positive number of pairs (j, j + 1) where j ∈ I ′ \ I and j + 1 ∈ I \ I ′. fc′ = fc.

d the same as (c) but there is a single position in I \ I ′ at the end. fd = zu1fc.

d′ the same as (c′) but there is a single position in I ′ \ I at the end. fd′ = zu2fc′ .

The generating function for an arbitrary sequence of these is

f =
zu1u2t

1− zu1u2t(fa + fb + (2 + z(u1 + u2)fc)
(21)

=
zu1u2t(1− z2u1u2)

(1− z2u1u2)(1− zu1u2t− z2u1u2t(1 + u1 + u2))− zu1u2t(2 + z(u1 + u2))z2u1u2
.
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Fig. 3: shaded squares in each row correspond to positions present in that set

For the first and last of the three parts, we first recall from (20) the generating function

F6(u, z) :=
uz

1− (1 + z)uz

for that part of a 2-interval between its first and last point. By symmetry, parts 1 and 3 have the same
generating function, which is equal to 1/(1 − z) times the generating function g for the segment to the
right of the last common position but to the left of the last position in I ∪ I ′. We may write g as the sum
of several cases.

e Empty. ge = 1.

f A position in neither set, followed by a non-empty string of positions, each of which is in neither
set or I , with no two in a row not in I . gf = zF6(u1, z).

f′ A position in neither set, followed by a non-empty string of positions, each of which is in neither
set or I ′, with no two in a row not in I ′. gf ′ = zF6(u2, z).

g A string of pairs as in case (c) above, followed by a nonempty sequence as in case (f). gg =
F6(u1, z)/(1− z2u1u2).

g′ A string of pairs as in case (c′) above, followed by a nonempty sequence as in case (f′). gg′ =
F6(u2, z)/(1− z2u1u2).

h The same as (g) except with a position in I ′ \I in the beginning. gh = zu2F6(u1, z)/(1−z2u1u2).

h′ The same as (g′) except with a position in I\I ′ in the beginning. gh′ = zu1F6(u2, z)/(1−z2u1u2).

Summing, we see that the factor from the first and last parts is

g =
1

1− z

(
1 + zF6(u1, z) + zF6(u2, z) +

F6(u1, z) + F6(u2, z)
1− z2u1u2

+
u2zF6(u1, z) + u1zF6(u2, z)

1− z2u1u2

)
.

Finally,
F (u1, u2, t, z) = fg2 . (22)
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6 The rate function
Let L denote the logarithmic gradient, that is, LQ is the vector whose jth coordinate is xj∂Q/∂xj .

Let h(x, y, z, τ) = 1 − xy − τ(1 + x + y + z + xy − xyz) and let Vo be the set of smooth points of
the variety where h vanishes. Let (µ, ν, δ) denote (α − ρ, β − ρ, 1 − α − β + ρ). In the next subsection
we will prove:

Theorem 6.1 Let s0 := (α∗∗, β∗∗, ρ∗∗) be the argmax for F2 as in (16). There is a neighborhood N of
s0 in RPd−1 and a continuous map x : N → V ∩ (R+)4 such for every s ∈ N there is a point x(s)
satisfying:

1. h(x) = 0;

2. Lh(x) = s;

3. if α = s1 + s4, β = s2 + s4 and ρ = s4 with s normalized so that
∑

j sj = 1, then

rate(α, β, ρ) = −µ log x1 − ν log x2 − δ log x3 − ρ log x4 (23)

and
N(k, k′, n, κ) ∼ A0(α, β, ρ)n−3/2 exp[nrate(α, β, ρ)] .

Readers not interested where this comes from may skip now to Section 6.1.
The general approach to extracting asymptotics from the generating function is taken from [3]. Let F be

a rational generating function in d variables, written as the quotient of polynomials P/Q with Q(0) 6= 0.
The coefficients of F =

∑
r arz

r may be evaluated via Cauchy’s integral formula

ar =
1

(2πi)d

∫
T

z−rF (z)
dz
z
.

The cycle of integration, T , is, initially, the product of small circles around the origin in each coordinate.
But, letting Dom denote the domain of holomorphy of F (that is (C∗)d \ V where V is the variety on
which Q vanishes), we may replace T by anything in the homology class [T ] ∈ Hd(Dom).

It is shown in [3] that Hd(Dom) is generated by cycles of the following sort. Fix a vector s ∈ (Rd)+,
projecting to a direction also denoted s in RPd−1. positive orthant of RPd−1, for which one wishes to
compute asymptotics of ar as r → s. Let {Sβ} be a Whitney decomposition of V into strata (e.g., if V is
smooth, then one has simply {V }). For generic values of s, the function hs := −

∑d
j=1 sj log |zj | will be

a Morse function on all strata of V and there will be a finite set of critical points {xβ,j} of the restriction
to stratum Sβ of hs. Then Hd(Dom) is generated by cycles C such that

• C is the product of a cycle C1 in some Sβ with an arbitrarily small cycle C2 orthogonal to Sβ ;

• C1 passes through some xβ,j and hs is maximized on C1 at xβ,j .

The integral of ω := z−rFdz/z over C2 will be computable as a residue, ω1. The integral of ω1 over C1

will be a saddle point integral, in the sense that it will be the integral of P1(z)z−r dz/z where for r → s,
the dominant term in the integrand, z−r, has maximum modulus and stationary phase at xβ,j . It is easy
to evaluate

∫
C1
ω1 as a stationary phase integral. Asymptotics of ar are then obtained by summing over
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critical points xβ,j in the support of [T ] (when [T ] is written as a linear combination of these, which have
positive coefficient). Among these, only those with the highest value of hs need be considered.

Carrying out this programme will require several steps:

i Find the critical points (routine but messy exercise in computer algebra)

ii Determine which of these are in the support of [T ] (nontrivial topological problem with tidy answer
in terms of local tangent cone)

iii Compute the functions rate and A0 (straightforward)

iv Optimize F2 in α, β and ρ (cajole the computer into performing the right simplifications)

v Sum in a neighborhood of the optimum (fairly routine discrete saddle point computation)

The first three of these are carried out in the next subsection, and the last two in the subsequent one.

6.1 Finding the dominating point
We now specialize to the generating function F = fg2. It will turn out to simplify the computations if we
change variables to τ := ztu1u2, u = zu1 and v = zu2. The [k, k′, n, κ] coefficient of F now becomes
the [k − κ, k′ − κ, n− k − k′ + κ, κ] coefficient of the function F̃ (x, y, z, τ). Thus

1
n

log[nα, nβ, n, nρ]F =
1
n

log[nµ, nν, nδ, nρ]F̃

when α = µ + ρ, β = ν + ρ, ρ = α + β + δ − 1 and F̃ is F under the change of variables. In the new
variables,

f̃ =
τ(1− xy)

1− xy − τ(1 + x+ y + xy + zxy − z)
.

The other divisors in V are factors in the denominator of g, namely, g1 := 1 − z, g2 := 1 − xy, g3 :=
1− (1 + z)x and g4 := 1− (1 + z)y. The variety V ef where f̃ vanishes is not smooth, since ∇f̃ vanishes
on the curve γ := (−1,−1, 1/t, t). Thus V ef has the strata Vo := V ef \ γ and γ. The other divisors of V
are smooth.

Define the function D : V → CP3 by D(x) = Lx for smooth points of V and otherwise by letting
D(x) be the closure of the limit points of L(y) as y → x. The point x(s) “controls” the asymptotics in
the direction s, as captured by the following result taken from [15].

Proposition 6.2 For any s in the positive orthant of RP3, there is a point x(s) with the following proper-
ties.

1. x ∈ V

2. s ∈ D(x)

3. if x is a smooth point of V , and if α = s1 + s4, β = s2 + s4 and ρ = s4 with s normalized so that∑
j sj = 1, then

rate(α, β, ρ) = −µ log x1 − ν log x2 − δ log x3 − ρ log x4
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Remark 6.3 The only difference between this proposition and Theorem 6.1 is that we would like x ∈ Vo

rather than just x ∈ V .

Proof: Let logD be the logarithmic domain of convergence of F̃ , that is, the closure of the set of x ∈ R4

such that
∑
ar exp(r ·x) is finite. Since F̃ has nonnegative coefficients, we may use the argument of [15,

Theorem 6.3] to see that there will be a minimal point x(s) for which conclusions (1) and (2) hold. Here
a minimal point means a point x which is the only intersection of V with the polydisk {y : |yj | ≤ xj∀j}
in C4. The minimal point in question will be the exponential (eu1 , eu2 , eu3 , eu4) of the contact point u
for the support hyperplane to logD in direction s. In other words, choosing u to maximize s · u on logD
will yield a point x = exp(u) which is minimal in direction s. The third conclusion follows from [15,
Theorem 3.5]. 2

Finding the asymptotics for n−1 log[nµ, nν, nδ, nρ]F̃ is now a matter of locating the minimal point.

Lemma 6.4 Let s0 be the maximizing direction (α∗∗, β∗∗, ρ∗∗) for F . There is a neighborhood N of s0

in RP3 such that for any s ∈ N , the critical point x = (x0, y0, z0, τ0) with maximum value of hs among
those in the support of [T ] is in Vo and the coordinates are positive and real.

Proof: Exponentiating logD, we obtain a set E in the positive orthant of R4 that may be described as
follows. First we compute the intersection with the plane τ = 0, or in other words, the positive minimal
points of the divisors of g. Recall that these divisors are {z = 1}, {x(1 + z) = 1}, {y(1 + z) = 1} and
{xy = 1}. Let E′ denote the connected component of the complement of the coordinate hyperplanes and
these four divisors that contains the origin in its closure. It is not hard to describeE′: it is the region below
the graph of the function z = min{1, 1/x−1, 1/y−1}. A lower boundary is the square {z = 0, 0 ≤ x ≤
1, 0 ≤ y ≤ 1}, an upper boundary is the square {z = 1, 0 ≤ x ≤ 1/2, 0 ≤ y ≤ 1/2} and there are sloping
curved ruled surfaces for the remaining upper boundary defined by S1 := {z = 1/x− 1, 0 ≤ y ≤ x ≤ 1}
and S2 := {z = 1/y − 1, 0 ≤ x ≤ y ≤ 1}. The divisor {xy = 1} intersects E′ only at the point (1, 1, 0)
and plays no role in bounding logD.

In R4, the set E will be a subset of the cylinder E′′ := E′ × [0,∞). In particular, it will be bounded
“below” (lowest τ ) by E′×{0} and “above” (highest τ ) by t = ψ(x, y, z) := (1−xy)/(1 +x+ y+ z+
xy − xyz). There will be side boundaries at the graph of ψ restricted to the boundaries of E′.

Now we rule out finding the minimal point at any place other than on the “upper” boundary, Vf = Vo∪γ.
As long as s is strictly positive, the support hyperplane to logD normal to s must contact logD either at
a smooth point whose normal is strictly positive or at a non-smooth point whose normals together have
positive values in each coordinate. Exponentiating, we see that the minimal point must be on the closure
of the “upper” surface, namely the graph of ψ on E′. We must now rule out the following places for the
minimal point to occur:

1. the graph E1 of ψ on S1;

2. the graph E2 of ψ on S2;

3. the graph E3 of ψ on the upper square, [0, 1/2]× [0, 1/2]× {1}.

To rule out E1, we compute L(y) as y in the graph of ψ in the interior of E′ converges to the graph on
E1. Recalling that the direction corresponding to such a point on V ∩ E1 is given by v := Lf̃ there, we
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compute the ratio of (v1 + v4)/(v1 + v2 + v3 + v4):

− −2x2 − 4x2y − x2y2 − 1 + x3y + xy + 2x3y2

3x2 + 6x2y + x2y2 − 2x3y + x4y2 + 1− 2x3y2
. (24)

Routine calculus shows this to attain a maximum value of 12/17 on Vo ∩ S1, at (1/2, 1/2, 1, 1/4). The
same is true of the ratio (v2 + v4)/(v1 + v2 + v3 + v4). Thus points on the graph of ψ on E1 control
asymptotics of N(k, k′, n, κ) only when α, β ≤ 12/17. We see from Lemma 4.2 that EXkXk′ is always
exponentially less than (EX)2 when α, β ≤ 12/17. This rules out E1, and an analogous argument rules
out E2.

To rule out E3, we argue combinatorially. Without the factor of 1/(1 − z)2, we have a generating
function F̂ := (1− z)2F̃ ) that counts the number N̂(k, k′, κ, n) of pairs of 2-intervals in which the union
of the two intervals contains 1 and n. Suppose, for a given (k, k′, κ, n) that

N̂(k, k′, λn, κ) ≥ N̂(k, k′, n, κ) (25)

for some λ ≤ 1 (this can happen, for example when µ = α− ρ is small). Then

N̂(k, k′, λn, κ)2P (k, k′, λn, κ) ≥ N̂(k, k′, n, κ)2P (k, k′, λn, κ)

> N̂(k, k′, n, κ)2P (k, k′, n, κ)

by an exponential factor. But supα,β,ρ F2(α, β, ρ) > 0, so if this supremum is achieved at α = k/n, β =
k′/n, ρ = κ/n, then the inequality would be reversed. Thus, in a neighborhood of where the supremum
is achieved, it is not possible for (25) to hold. Consequently, in this neighborhood the coefficients of F̂
are, on the exponential scale, as large as those of F̃ , whence the minimal point cannot occur on the divisor
1− z.

Finally, we must rule out x(s) ∈ γ. If x ∈ γ, and (µ, ν, δ, ρ) are the coordinates of s normalized to sum
to 1, with α = µ+ ρ and β = ν + ρ, then

rate(α, β, ρ) = µ log x1 − ν log x2 − δ log x3 − ρ log x4 .

The curve γ is parametrized by (1, 1, 1/t, t), so rate = (ρ − δ) log x3. Recalling that the minimal point
must lie in the region x3 := z ≤ 1, and that ρ > δ for α, β ≥ 2/3, we see that we have rate ≤ 0 anywhere
controlled by a point on γ with α, β ≥ 2/3. It follows that for α, β ≥ 12/17 > 2/3, the minimal point
cannot lie on γ. By Lemma 4.2, directions with α < 12/17 are not in a neighborhood of (α∗∗, α∗∗, ρ∗∗),
which completes the proof of the lemma. 2

Proof of Theorem 6.1: By Proposition 6.2, the rate function rate is controlled by a point x(α, β, ρ) with
properties stated in the proposition. The foregoing lemma then shows that x ∈ Vo ∩ (R+)4, which proves
Theorem 6.1. 2

Let us interpret Theorem 6.1 and its proof. Values of (α, β, ρ) whose corresponding minimal points
lie on Vo correspond to values of (k, k′, n, κ) for which almost all the pairs of 2-intervals counted by
N(k, k′, n, κ) nearly span the interval [n]. In other words, when the minimal point is on Vo, the exponen-
tial rate for coefficients of F is the same as that for f , which enumerates pairs of 2-intervals both of which
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have 1 and n for their first and last element respectively(i). We have interpreted f as generating a sequence
of blocks between common values; it is well known that the statistics of these blocks are asymptotically
independent. In particular, the intersection of two independent random 2-intervals, chosen uniformly
from pairs of sizes (k, k′), will be almost asymptotically of size N(k/n)N(k′/n) in probability. In other
words, when the conclusion of Theorem 6.1 holds, the assertion (1) also holds.

6.2 Optimization and algebraic simplification
Everything now rests on verifying (2), namely that the critical point for F2(α, β, ·) at α · β is actually
a maximum. This is mostly one long computer algebra computation. For replicability, we outline the
trickier steps. Verification of the maximum can be (and later will have to be) restricted to the diagonal
α = β. But in order also to verify (3) we will need a summation over all α and β, so we begin with all the
variables.

To find the critical point x(α, β, ρ) = (u0, v0, z0, τ0) ∈ Vo for f̃ , we tell Maple to compute the Groebner
basis for the ideal generated by

[h ,
(alpha+beta-1+delta)*vv[1] - (1-alpha-delta)*vv[4] ,
vv[2]*(1-alpha-delta) - vv[1]*(1-beta-delta) ,
(1-alpha-delta)*vv[3] - delta * vv[1]
];

where

h := 1 - u*v - (1 + u*v + z - z*u*v + u + v)*t;
vv := simplify([u*diff(h,u) , v*diff(h,v) , z*diff(h,z) , t*diff(h,t)]);

this is done using the Basis command of the Groebner package in Maple 10 (earlier versions use
variants such as gbasis and name the package differently).

In order to get Maple to halt we had to first use the term ordering tdeg[z,t,alpha,beta,delta,u,v]
and then compute a basis in the order plex[z,t,u,alpha,beta,delta,v] for the Groebner basis
coming from the previous computation. The resulting Groebner basis has 27 generators, that first one of
which (it will be the the last rather than the first in versions of Maple before Maple 10) is an elimination
polynomial for v, that is, it contains v, α, β and δ but not z, u or t. Factoring out (v + 1) and the constant
term (1− α− δ), we solve for v to obtain

v0 := 1/2*(alphaˆ2+4*beta*alpha-4*alpha+2*alpha*delta-betaˆ2
-2*beta*delta+1-(5-16*alpha-8*delta-16*beta+18*betaˆ2
-16*betaˆ2*delta-32*alphaˆ2*beta+40*beta*alpha+20*beta*delta
+18*alphaˆ2+20*alpha*delta+4*deltaˆ2+alphaˆ4+4*alphaˆ3*delta
-8*betaˆ3+8*alpha*deltaˆ2*beta+8*betaˆ3*alpha+4*betaˆ3*delta
+14*betaˆ2*alphaˆ2-8*alphaˆ3+4*alphaˆ2*deltaˆ2
+12*beta*delta*alphaˆ2-16*alphaˆ2*delta+betaˆ4
-32*alpha*beta*delta+4*deltaˆ2*betaˆ2-8*deltaˆ2*beta
-8*alpha*deltaˆ2-32*betaˆ2*alpha+12*betaˆ2*alpha*delta
+8*beta*alphaˆ3)ˆ(1/2))/(-delta+2*betaˆ2+2*beta*delta+1-3*beta)

(i) As an aside: when the minimal point is on E1, the first 2-interval tends to span only (1−Θ(1))n of the interval [n]; when it is
on E2, the second 2-interval is similarly short; when it is on E3, the union of the two 2-intervals is short.
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Luckily this can be simplified. First, we find the elimination polynomial for u in terms of v, α, β, δ, which
is the 3rd basis element, divided by (1 + v)2:

upoly := -u*delta*v-u*beta*v+u*v+alpha+delta-u-1+2*alpha*u;

Solving for u and plugging in the value v0 above yields

u0 = 2
(2β − 1) (−1 + α+ δ)

2α δ − 2β δ − 1 + 4β + α2 − 4β α− β2 −Q
.

where

Q =
√

(α2 + 4α δ − 6α+ 6β α− 6β + β2 + 4β δ − 8 δ + 4 δ2 + 5) (−1 + α+ β)2 . (26)

We then recover a simplified version of v0 by symmetry, switching α and β:

v0 = 2
(2α− 1) (−1 + δ + β)

2β δ − 2α δ − 1 + 4α+ β2 − 4β α− α2 −Q
.

Continuing with elimination polynomials, we find that

z0 = −
(
α2 + 4β α− 4α+ 2α δ + 3β2 + 2β δ + 3−Q− 2 δ − 6β

)
δ

−2 δ + 5β2 + 6β δ + 1− 4β − α2 + 2α δ +Q− 4αβ δ + 2α2β − 2β3 − 4β2δ − 2β Q

and

τ0 = −
(
(2β − 1)

(
−β2 + 2β − 2β δ − 1 + α2 + 2 δ − 2α δ −Q

))
÷
(
7α+ 5 δ + 9β − 9β2 + 5β2δ + 5α2β − 14β α− 10β δ − 5α2 − 8α δ − 2 δ2 + 3β3

+Q+ α3 − 3 + 3α2δ + 8αβ δ + 2 δ2β + 2α δ2 + 7β2α− β Q− αQ− δ Q
)
.

When we set β = α, things become a little simpler. We get

u0 =
2α− 1−R

2(α+ δ − 1)
;

z0 = − (2α− 1−R)δ
4δ2 − 6δ + 2δR+ 4δα− 6α+ 3 + 4α2 −R

;

τ0 = −4δ2 − 6δ + 2δR+ 4δα− 6α+ 3 + 4α2 −R

2δα− δ − δR− 4α+ 4α2 + q + 1− 2αR
;

here,
R :=

√
8α2 − 12α+ 5 + 8δα− 8δ + 4δ2 .

This is now manageable, meaning we can take two derivatives in δ. We get a mess, several pages long,
but when we evaluate it at δ = (1− α)2 (i.e., ρ = α2), the radical becomes a polynomial and we get −8
times the following rational function of α for the second derivative.
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[
−2 + 36α− 4940α4 + 1472α3 − 672α12 − 296α2 + 18580α9 (27)

− 9424α10 + 3232α11 + 11816α5 − 20728α6 + 27008α7 + 64α13 − 26146α8
]//[

α2
(
2− 12α+ 26α2 − 24α3 + 8α4

)2 (−4α+ 2 + 2α2
)2 (

1− 2α+ 2α2
)
(−1 + α)2

]
We may verify, by sign-change rules for polynomials, that twice this plus the second derivative 1/(α2(1−

α)2) of the entropy function is negative for all α > 2/3. This shows ρ = α2 to be a local maximum for all
α > 2/3. [Our research assistant points out that if the derivatives are taken directly in ρ rather than in δ,
then the second derivative comes out to be−(2α−1)/[α2(1−α)2(1−2α+2α2)]; doubling and adding the
second derivative of the entropy function gives a quantity which is negative for α > (

√
3−1)/2 ≈ 0.634.]

There are several crude numeric ways to see it is a global maximum. For example one may compute
an upper bound of −10 for the second derivative at δ = (1− α)2 for α > 12/17. One may then compute
an upper bound for the third derivative of 1700 on the region α ≤ 0.847 and any δ. Taylor’s Theorem
then tells us that the region in which the local maximum is global extends at least 3/170 in the δ direction
on either side of the curve δ = (1 − α)2. Away from this curve one may then divide the α-δ plane into
grid squares sufficiently small so that when one bounds 2 · rate and ent separately from above on the grid
square, the sum of the bounds is less than 2F1(α∗). For details, see

http://www.math.upenn.edu/˜pemantle/CLP04-grid2.mw

The final piece of the proof of Theorem 4.1 is the verification of (3).
From Theorem 6.1 we know that equation (12) holds with rate given by (23). Having maximized the

smooth function F2, we see that for a fixed n,

E(k, k′, n, κ) := N(k, k′, n, κ)2P (k, k′, n, κ)

has a global maximum at

r := (r1, r2, r3, r4) = (n+O(1))(α∗, α∗, 1, α2
∗) .

If |r′i − ri| ≤ n1/2+ε for 1 ≤ i ≤ 4 and any ε < 1/6, then

E(r′) ∼ E(r) exp(−n−1Q(r′ − r))

where Q is the quadratic approximation to F2.
Checking thatQ is non-degenerate, we see that we may use a Gaussian approximation to sum the values

of E(r′) to yield ∑
r′

E(r′) =

√
n3

(2π)3H
E(r) = O(exp (2nF1(α∗))

with H denoting the determinant of the quadratic form Q. This proves Theorem 4.1. 2
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7 A lower variance bound and a related model
Let us call a subset of [n] a strong δ-interval if it intersects all of the intervals of size δ of [n], including
cyclic ones, e.g., {n, 1, . . . , δ − 1}. For δ = 2, this means a strong interval must be an interval and also
must intersect {1, 2}, {1, n} and {n−1, n}. So, for example, the set {1, 3, 4, 6, 7, 8} is always a 2-interval
of [n], n ≥ 8, but is only a strong 2-interval if n = 8 or 9. A strong δ-interval of the permutation G is
a strong interval such that I and G−1(I) are strong intervals of [n]. This is a symmetrized definition,
aimed at making some of the analysis easier without fundamentally changing the problem. We may
reason heuristically that the least and greatest elements of a typical interval ofG will be respectivelyO(1)
and n − O(1), and that the strong intervals of G are a positive fraction of all intervals of G, so that in
some sense, the number of strong δ-intervals of a random permutation should behave like the number of
δ-intervals of a random permutation.

Given a permutation G, let us look at the complement Ic := [n] \ I of a 2-interval I of G. To say
that I is a strong 2-interval of [n] is exactly to say that Ic is an independent set of the cycle graph C with
edges between each j and (j + 1)modn. To say that G−1(I) is a strong 2-interval is equivalent to saying
that Ic is an independent set of the cycle graph G(C) with edges between G(j) and G((j + 1)modn). Let
H = H(G) denote graph with vertex set [n] whose edges are the union of the two n-cycles C and G(C).
Then a strong 2-interval ofG is exactly the complement of an independent set ofH(G). There is a natural
question, analogous to the question of how many 2-intervals there are in a typical permutation, namely,
Problem: Determine the (quenched) behavior of the random number Z of independent sets of the graph
C ∪G(C).

This appears difficult, and the simplest heuristics misleading. One might expect thatZ is asymptotically
log-normal for the following reason. Adding or deleting an edge should change the number of independent
sets by a factor of Θ(1). Changing an edge to a different edge should therefore also change by such a
factor. The randomness in G is the result of Θ(n) random selections, thus there should be a variance of
Θ(n) in logZ. We know this reasoning fails for 2-intervals, so it probably fails for strong 2-intervals as
well.

Indeed, one may think that for graphs of high girth and average degree d, the log of the number of
independent sets is very well approximated by the following mean field heuristic. If n is the number of
vertices, then the number of vertex subsets of size k = αn is

∼ Cn−1/2 exp
[
nα log

1
α

+ (1− α) log
1

1− α

]
.

Such a set contains ∼ α2n2/2 pairs, each being an edge of the graph with probability ∼ d/n. A mean
field heuristic would say that the probability of a k-set being independent is roughly exp(−α2dn/2).
Multiplying by the number of k-sets and taking the log gives

∼ α log
1
α

+ (1− α) log
1

1− α
− α2d

2
.

For fixed d one may optimize in α. For d = 4, one finds that the optimal α is roughly 0.26064 . . . and that
the number of independent sets would then be roughly exp(0.43786 . . . n). For the random graph H this
surely fails, since the number of 2-intervals is exponentially lower than this. It appears that d-regularity
is a stronger constraint than average degree d. Perhaps a large family of graphs, such as those of average
degree d, tends to be subject to the lottery phenomenon, with the typical log number of independent sets
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falling below the mean of≈ exp(.437n), while the more homogeneous family of d-regular graphs exhibits
the quenched behavior even in the mean.

Amid all this speculation, let us prove that the variance of Y must be at least of order (EY )2, ruling
out Gaussian behavior. We give a proof for Z instead of Y because the bookkeeping is simpler, with the
proof for Y being entirely analogous.

Theorem 7.1 There exists a positive number δ such that there is no number c for which Z ∈ [c, (1 + δ)c]
with probability at least 1− δ. It follows that Z/EZ, which has been shown to be tight, cannot converge
to a constant in probability.

Lemma 7.2 Let K be any finite graph with degrees bounded by d and let µ be the probability measure
which is uniform on independent sets of K. Then for any non-adjacent vertices x, y of K,

µ{I : x, y ∈ I} ≥ εd := 2−2d−2 .

Proof: Let K ′ be the subgraph of K induced on the vertices of K at distance at least 2 from both x and
y. Each independent set I of K ′ has at most 22d+2 supersets that are subsets of the vertices of K, and at
least one of these is an independent set containing both x and y. 2

Remark 7.3 This is a bad bound, but on the other hand it is sharp (letK be the union of two stars). What
is the right constant for d-regular graphs?

Proof of Theorem. Let G be a permutation for which {i, i+ 1} and {i′, i′ + 1} are both intervals, and
both ascending, i.e., G−1(i) = j,G−1(i+ 1) = j + 1, G−1(i′) = j′ and G−1(i′ + 1) = j′ + 1 for some
i, j, i′, j′. Suppose further that i′ ≥ i + 3 and that G has no other intervals of size 2. Let A denote the
set of such permutations, G. Reasoning from Proposition 2.1, we know that P(A) = (1/4)(2e−2 + o(1)).
For G ∈ A, define φ(G) to be the permutation G′ such that G′(j + 1) = i′ + 1, G(j′ + 1) = i + 1,
and G′ agrees with G except on j + 1 and j′ + 1. The graph H(φ(G)) is the graph H(G) with two extra
edges, namely {i, i′ + 1} and {i′, i + 1}. The set of independent sets of φ(G) is therefore a subset of
the set of independent sets of G, namely those not containing both endpoints of either new edge. Taking
just one new edge into consideration and using Lemma 7.2, we see that the number of independent sets
of φ(G) is most 1 − 2−10 times the number of independent sets of G. On the other hand, the measure
of the collection {φ(G) : G ∈ A} is (1/2)e−4 + o(1) by reasoning similar to that used in the proof of
Proposition 2.1. [The probability of no intervals of size 2 is e−2 and the probability of seeing (i, i′, j, j′)
as above is (1/4) · 2e−2.] Choosing δ < 2−10 completes the proof. 2

8 Conclusion
We could also have dealt with a more general problem. We could have allowed gaps of bounded size δ−1
in the positions and gaps of bounded size γ−1 in the positions in the symbols. We call these δ, γ-intervals.
We conjecture that similar results hold for these δ, γ-intervals. Let X(δ,γ) be the number of δ, γ-intervals
of G.

For example, the case δ = 2 and γ = 1 would follow using our previous analysis as,

EX(2,1) =
∑

k

N(n, k)(n− k + 1)(
n
k

)
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and
E(X(2,1))2 =

∑
k,`,κ

N(k, `, n, κ)(n− k − `+ κ+ 1)P (k, `, n, κ).
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