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A dominating set D of vertices in a graph G is called an efficient dominating set if the distance between any two
vertices in D is at least three. A tree 7' of order n is called maximum if 7" has the largest number of efficient
dominating sets among all n-vertex trees. A constructive characterization of all maximum trees is given. Their
structure has recurring aspects with period 7. Moreover, the number of efficient dominating sets in maximum n-
vertex trees is determined and is exponential. Also the number of maximum n-vertex trees is shown to be bounded
below by an increasing exponential function in n.
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1 Introduction

Our aim is to maximize the number of efficient dominating sets among n-vertex trees. This is a sequel
to our article [4]. Paper [4] presents characterizations of trees with largest or smallest (and still large)
numbers of dominating sets. Trees without any efficient dominating set exist. Determining whether or not
a graph has an efficient dominating set is an NP-complete problem, see [2}[8]. A constructive character-
ization of trees which have an efficient dominating set can be found in [2l]. That is why we concentrate
on characterizing trees with the largest number of efficient dominating sets. There are several papers
devoted to characterizing graphs with maximal numbers of specified substructures. Erdds is credited for
raising a question which is answered in the pioneering paper [9] of 1965 by Moon and Moser on max-
imizing the number of cliques among n-vertex graphs. There is a series of publications on the related
problem of maximizing the number of maximal independent sets among different graphs, and trees also
are considered [[16,[10,[17]. At the beginning of 1980s Tomescu, when dealing with cliques in specialized
hypergraphs, studied [14] number-theoretical problem of maximizing a constrained product of binomial
coefficients, the simplest possible subcase of the problem being solved by Moon and Moser [9]. The
second author, when dealing with maximizing the number of maximum path-factors among trees, arrived
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independently [[12] at another subcase of Tomescu’s problem. A solution to Tomescu’s problem was found
by Schinzel and Skupien, cf. [13]].

Given a graph G, a vertex set S C V(Q) is called a dominating set of G if any vertex of G either is in
S or has a neighbor in S. Following Bange et al. [[1]], a dominating set D of G is called an EDS (efficient
dominating set) if the distance between any two members of D is at least three in G. Bange, Barkauskas
and Slater [2]] proved the following result.

Proposition 1 If G has an efficient dominating set, then the cardinality of any efficient dominating set
equals the domination number of G. In particular, all efficient dominating sets have the same cardinality.

The number of efficient dominating sets in oriented graphs, and in particular, oriented trees was stud-
ied (3L [11]].

Observation 1 Given any dominating set D of a graph G, if v € V(G) then either v € D or a neighbor
ofvisin D. If D is any EDS and v ¢ D then exactly one neighbor of v is in D. O

Let 7,, be the class of unlabeled trees of order n, where isomorphic trees are considered identical. In
what follows T stands for a tree with vertex set V(T'), |T| denotes the cardinality of V(T'). A leaf (or
pendant vertex) and a B-vertex (or branch vertex) are vertices of degree at most one and at least three,
respectively. Let B(T') and b(T') denote respectively the set and number of B-vertices in T. A twigin T
is a nontrivial path joining a leaf of 7" to the closest vertex in 7" which is not of degree two. Hence the
number of twigs, say 6(T), either is the number of leaves if b(T") > 0 or is one less than the number of
leaves if T'is a path (whether trivial or not). Givenan i € {0,1,2} and x € B(T), let 7;(x) be the number
of twigs attached to x with lengths congruent to ¢ modulo 3.

Let 7" have a B-vertex. Consider the subtree obtained by ungluing all twigs from 7" (i.e., by deleting all
non-B-vertices of twigs together with all incident edges). Then every pendant vertex x of the subtree is
called a P B-vertex (or a pendant B-vertex) of T. Let PB(T') stand for the set of pendant branch vertices
inT.

Let ¢(T) denote the number of all efficient dominating sets of T Given a positive integer n, let G(n)
denote the maximum of q(T') over all trees T on n vertices, n = |T'|. Then each n-vertex tree such that
q(T) = §(n) is called a maximum tree.

We shall characterize all maximum trees 7" on n vertices. If n > 9 then the structure of T is quite easy
to describe. Namely, each maximum tree 7" has uniquely defined number b of branch vertices, b = b(n).
Branch vertices induce a subtree, and all remaining vertices of 1" are on twigs of length two only. To define
b = b(n) for any n > 39 or odd n > 33, let b = |2 ]. Then b is an integer such that b = n (mod 2)
and b € {b,b — 1}. Note that if 7|n and n > 35 then b = n/7. Moreover, b(n) = b for all n. = 7b + 2s
with s = —1,0,1,...,5 provided that b > 5. Thus s, which determines some structural aspects, is a
periodic function of n with period 7. Our main result is that any tree on b vertices is a subtree induced by
branch vertices of an n-vertex maximum tree with » such that b = b(n). Additionally we give a detailed
specification of the following estimation. The number of maximum trees on n vertices is exponential in
n because, for n > 39, it is at least the number | 73| of all trees on b vertices with b = b(n) ~ n/7 as
n — 00, the lower bound being attained if 7|n and n > 35. We determine §(n), and ¢(n) is exponential
in n, too.

EDS’ and maximum trees can possibly be used to design computer or communication networks, fa-
cility and guard locations, surveillance systems, interference-free transmission and/or cooperation, cf. [[7,
p. 891].
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2 Preliminaries

Using Proposition [I| we can see that in case of a nontrivial path P, (n > 2) each efficient dominating
set of P, contains no endvertex, both endvertices and exactly one endvertex depending on whether n is
congruent modulo 3 to 0, 1, 2, respectively. Hence the number of efficient dominating sets in P, is

(1 ifn=0,1(mod3),
q(P) = { 2 ifn =2 (mod 3). v

Assume that 7" is a tree with a twig P of length 3 or more. Let z be a leaf of 7" in P and wxyz a subpath
in P. Then wxyz is called a ferminal subtwig in T. The transformation 7' +— T — {x,y, z} is called a
3-reduction of T. Recursive repetition of a 3-reduction eventually gives a subtree of 7', say 7', which does
not have any twig of length 3 or more. Call T to be the 3-trim of T.

Proposition 2 Any 3-reduction T — T’ does not change the number of EDS’, i.e., ¢(T") = q(T).

Proof: Given a leaf z of T such that waxyz is a terminal subtwig in T, let T/ = T — {x,y, z}. Due to
Observationﬁ]and the definition of EDS, if D is an EDS of T"then {z,w} C D or, if T # Py, {y,u} C D
where u is a neighbor of w in T”. Hence, for each D, D — {z,y} is an EDS of T". Conversely, if D’ is
any EDS of 7" then, due to Observation 1] (with v = w in 7”), D’ is uniquely augmentable to an EDS of
T. Therefore D — D — {z,y} is a bijection from EDS’ in 7" onto those in 7". O

Corollary 1 ¢(T) = q(T) if T is the 3-trim of T. O

Recall that for z € B(T), ;(x) is the number of twigs of length congruent to ¢ modulo 3, ¢ = 0,1, 2,
twigs being attached to x.

Proposition 3 Ler T be a tree with exactly one branch vertex x. Let T, = 7;(x). Then

0 lf T2 2 1 and T1 > 2,

1 if m>1 and =1 or =0 and 7 > 2,
q(T) = or o, =1 =0,

2 if =0 and T =1,

To if 72>1 and T =0.

d

Corollary 2 Let T be an n-vertex tree with b(T) = 1, n > 7, n # 8, and with q(T') being the largest
possible number of EDS’. Then 71 = 0 and q(T') = 7o > 3 where

n—l for odd n,
T2 = 2
for even n,

whence all twigs are of length 2 but one of length 3 for even n only. a
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3 Useful recursive relations

We are going to present a recurrence relations for the number ¢(7"). Assume that b(7') > 2 and z is a
P B-vertex. Then there exists a unique vertex a(z) which is the neighbor of = on a path from z to another
B-vertex in T. The vertex a(x) is said to be the attachment vertex of x. Let T — *x be the tree obtained
from 7" by deleting the P B-vertex z together with all twigs attached to z. Call T' — *x to be tree T minus
star at x. Let T,(;)4; stand for a tree obtained from 7" — *x by adding a new y—a(x) path of length
i =0,1,2, where y = a(z) if i = 0. Let ¢(T(5)+i,y) be the count of all efficient dominating sets that
contain y. The following result is easily seen due to Observation [I]

Lemma 1 Let b(T) > 2 and 79 = 0 at all B-vertices of T. Assume that x € PB(T), a(x) is the
attachment vertex of x, and 7; = 71;(x) for i = 1,2. Let y be the endvertex of path y—a(x) of length
J=0,1,2 in the tree T, (34 ;. Then

0 l:f’7'122and7'22].,
q(T) _ Q(Ta(m)+17y) if m>2and =0,
q(Ta(z)+2: ) if m=1and 7 >1,

72(2)q(Ta(z)+2,Y) + ¢(Ta@)+0,y) if 71 =0 and 7 > 2.
O
One can easily check that orders of trees T}, ;)11 and Tg(5) 42 involved in Lemmaare at most |T'| — 2.
Using some of the above results and inspecting the list of small trees in Harary [5] gives the following.
Proposition 4 All trees T' on n vertices with n. < 10 which are maximum, i.e., with ¢(T') = §(|T|), are
listed in Fig.|l| T being unique if n # 4,6, 8. a
The symbol S(G) (which appears in Fig.|1)) stands for subdivision graph of G. Recall that S(G) results

in inserting a new vertex of degree 2 into each edge of G.
A vertex x of a tree 7' is called EDS-avoided if x does not belong to any efficient dominating set of 7.

Proposition 5 Each tree of order n > 3 has an EDS-avoided vertex. In fact, each vertex at distance 2
from a leaf is EDS-avoided. O

Lemma 2 Let b(T) > 2, x € PB(T), 11(x) = 1o(x) = 0, and o (x) > 2. Then
q(T) < 72(x) ¢(T — xx),
where T minus star at x is involved, and equality is true if and only if a(x), the attachment vertex of x, is
EDS-avoided in T — xx (i.e., ¢(Tq(z)10,y) = 0).
Proof: On applying Lemma [T we have

Q(T) = Q(Ta(a:)—i-Ov y) + T2 (I) Q(Ta(w)—i-% y) (2
Due to Observation one can see that (17" — *x) = q(T4(2)10,¥) + ¢(Ta(a)+2, y)- Hence, by ,
Q(T) = q(Ta(I)+0a y) + T2 (I’) [Q(T - *l’) - q(Ta(z)+0a y)]
= 7-2(33) Q(T - *l‘) + [1 - 7-2(3:)] Q(Ta(a:)+05 y)
< ma(2)g(T — *x),

where equality holds whenever q(7T} ()40, ) = 0, which ends the proof. O

N
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For n=1,2,3,5, T = P, (uniquely), § € {1, 2},
n=4,G=1, T=Pyor K3

n==6,q¢=1, T=Fs Ky, ’—‘—‘—I—' '—L
n="74=3, S(Kys3): /

n:8’q:2’ szg, ,_4_4_4 »—4«
n=09G=4, S(K1.4): ._\;4

n =10, q =4, H:

Fig. 1: All maximum n-vertex trees 7" with n < 10

4  Preliminary maximization

Let 72 be the family of unlabeled trees T' such that b(7) > 1 with both 71 = 79 = 0 and 75 > 2 at each
B-vertex. Moreover, all §(T) twigs are of length two and contain all degree-2 vertices of 7. Let 7,2 be
the subclass comprising n-vertex elements of 72. Let T € 72 and let b = b(T), = 6(T). It follows
that T includes a subtree, say T, > =1+ 20 > 7 whence [T is odd
and T' = S(K ), the unique subdivision of the star K g. If b > 2 then § > 2band |T| = b + 26 > 5b.
Hence

7 for b=1,

np := min{|T|: T € T%,b(T) = b} = { 5b for b> 2

3)

Proposition 6 Let T € T,2. Then branch vertices induce a subtree (B(T)) of T and
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n = |T|=bT)+26(T), 4)
b(T) = |T| (mod 2), 3)
o(T) = (1) ifo(T) =1, ©

To< [T #8, @)
OT) = Y m(x)>max{2b(T),3} > 3. (®)

z€B(T)
a

The following observation complements Proposition 5}

Proposition 7 If T € T2 then EDS-avoided vertices in T coincide with B-vertices. g
From (@), Lemmaand Proposition for T € T2, we get the following.
oq0)= [ ). )
z€B(T)

Observation 2 The RHS (right-hand side) of @ determines the corresponding tree T up to the distri-
bution of twigs in the following sense.

Consider a finite product [ ], t; of integers ¢; > 2 where |I| > 1. Let b = |I|, the number of factors in
the product, § = > ier tis the sum of factors, and let n = b + 26. Let T} be any tree on b vertices with
arbitrarily assigned mutually distinct labels z;, ¢ € I. Let T be a tree obtained from T} by attaching ¢;
twigs of length two to the vertex @; for each i € 1. Hence o(2;) = t;, T € 7,2, and q(T) = [[;; t:.

For n. > ny, let 7,2(b) comprise T € 7,2 with b(T') = b and such that q(T') is the largest possible.

Lemma 3 IfT € 7,>(b) and b > 1 then the numbers 5 at any two B-vertices of T differ by at most one.

Proof: If values of 75 are m and k such that m > k + 1 then mk < (m — 1)(k + 1) whence making the
values closer one to another (by moving a twig from one B-vertex to the other) increases the value of q.
O

Corollary 3 IfT € T,?(b) and 6 = 9(T) then

0= (n—"0)/2 by (@) and ).
q(T): Le/be—(Omodb)w/b"Qmodb (10)

due to , @, and Lemma O
Let g2(n) denote the maximum of q(T') among n-vertex trees T' € T2 where n = |T| satisfies require-
ment (7). Let 72™2 = {T € T2 : ¢(T) = q2(|T|)}, each element of 7>™** is called a 7 2-maximum
tree. Let 7,2™2% stand for the subset of 7 2™ comprising n-vertex elements.
Let by(n) be the largest b(T') among 7 ?-maximum n-vertex trees T', T € 7,>™2%, Small trees T’ € 7,2
have the unique b(T), either 1 or 2 (as determined by the parity of n), and then ¢2(n) can be obtained
from (9). Namely (see Tab.][T),
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-1
bg(n)zlandqg(n):nT foroddn, n;=7<n <ng=15,

-2 -2
52(71):22111(1%(7”&):{n4 J{nzl -‘ forevenn, ng =10 <n < nyg = 20.

Then T € 7,>™2% is unique.

Tab. 1:
n 7 9 10 11 12 13 14 16 18
bg(n) 1 1 2 1 2 1 2 2 2
q2(n) 3 4 22 5 2.3 6 3-3 34 4-4

For larger n, if n is fixed and 7" ranges over 7,2 then, by (3) and , b = b(T') ranges over all natural
numbers < n/5 such that b = n (mod 2). Then g2(n) can be found by inspection using Corollary [3|
Namely, for each admissible value of b, we find 6 and next ¢(T"). Then g2(n) is the largest of numbers
q(T) thus found. Moreover, the corresponding b equals bz (n).

Let RHS stand for the product on the right-hand side of formula (10). Then b(T) is the sum of two
exponents of which one can be 0, 6 is the sum of the single factors in RHS, cf. (8). Consequently, formula
@) gives n.

The results of search for two largest products, L < R, where both L and R are RHS corresponding to
a fixed n, are presented in Tab. for some values of n as stated. Consequently, for those n, R = ¢2(n)
whence the corresponding b = ba(n).

Tab. 2: Inequalities L < R = g2(n) for some n > 15

7T o< 23 (b=3) n=15; 24 < 4.5, n = 20;
8 < 22.3, n =17, 22.3 < 52 n = 22;
9 < 2-32 n=19; 5.6 < 22.32, (b=4) n=24;
23.32 < 42.5, n=29; 62 < 2-3% n = 26;
4-52 < 22.3% (b=5) n=3l; 23.3% < 44 n = 36;
5 < 2-3% n = 33; 43.5 < 22.3% (b=6) n=38;
22.35 < 4% n = 45; 22.36 < 3.4°, n=52;
4.5 < 2.35  (b=7) n=4T; 46 < 2.3", (b=8) n=54.

Tab. [2| serves two purposes. Firstly, it suggests that the function b weakly increases when restricted to
n of either parity. Moreover, each value of b displayed within parentheses in Tab. |2|is first attained at the
corresponding underlined value of n so that b = ba(n) for that n and all larger n which are smaller than
the next underlined one. Secondly, if L is displayed at n = k then no g2(n) with n > k includes L as
a subproduct. Otherwise replacing L in g2(n) by the corresponding R = g2(k) gives ¢(T) as in formula
(@) where |T'| =n, T € 7,2, and q(T) > g2(n), a contradiction.
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Maximum product R = ¢2(n) and the corresponding b = by(n) for each admissible n < 40 are
presented in Tab.

Theorem 1 For eachn suchthatn = 7or9 < n < 40, Tab. presents both the number qa2(n) of efficient

dominating sets and the number b = by(n) of B-vertices in any T € T,>™*, O
Tab. 3:
n b qgn) n b qan)
7 1 3
9 1 4 10 2 4=22
1 1 5 12 2 6=2-3
13 1 6 14 2 9=232
15 3 8=23 16 2 12=3-4
17 3 12=2%2.3 18 2 16 =42
19 3 18=2-32 20 2 20=4-5
21 3 21=33 22 2 25=52
23 3 36=3%2-4 24 4 36=22.32
25 3 48 =3 .42 26 4 54=2.3°
27 3 64 =43 28 4 81=3*
20 3 80=42%2.5 30 4 108=3%-4
31 5 108=2%2.33 32 4 144 =32.42
33 5 162=2-3% 34 4 192=3.43
35 5 243=3° 36 4 256 =4*
37 5 324=3%*.4 38 6 324=22.3%
39 5 432=3%.42 40 6 486=2-3°

5 Large trees

ForaT € T2max,
my = |[{z € B(T): ma(x) = k}|. (11)

Proposition 8 Let T € T,2™ where n > 39 or n = 33, 35, 37. Then my, = 0 unless k € {2,3,4}.
Hence b(T) = ms + m3 + my. Additionally, mamy = 0, my < 1, my < 5, and mg is unbounded. The
stated bounds on n (odd n > 33 or any n > 39) are sharp because mo = 2 if n = 31 or 38.

Proof: Tab. [T]and products L together with the corresponding values of n in Tab. [2] are chosen so as to
show that, fora T € 7;2"“‘4", all the factors 7, = k # 3 have bounded multiplicity my. Namely, m; = 0
for k = 7,8,9 by Tab.]2|land for k = 7-+r > 10 because then 7+r < 3%r withn = 15+2r and b € {1, 3}.
Furthermore, products L at n = 24,26 show that mg = 0 if n is not too small. Actually mg = 0 for
n > 14 and the bound is tight because ¢5(13) = 6 (Tab. . Similarly, products L at n = 38,47 and R at
n = 29 show that ms = 0 for n > 30. Analogously, products L at n = 45, 52 show that mgy < 1 for large
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n. On the other hand, products R at n = 47, 54 show that mo = 1 is possible for large n. Products R at
n = 45,52 show that my4 > 5 is allowed for large n but, due to L at n = 54, m4 = 5 at most. Lemma|§|
implies that momy4 = 0. The value my = 2 in R for n = 31 and 38 shows sharpness of the stated bounds

for n.

A tree T is called a large tree if its order |T'| > 39 or |T'| = 33, 35, 37.

Theorem 2 Let T be a large tree from 1,23, b = b(T), and s = m4 — mq whence s = —1,0, ...
s = —1ifmg = 1, otherwise s = my. Then s uniquely depends on n (Tab. ,

-1 ifnmod 7 =25,
S =
1. even (nmod 7, 7+ (nmod 7)) otherwise,
n—2s
"%‘2 ifn mod 7 =5,
= QozlnmedD e mod 7 =0,2,4,6,
M ifnmod7=1,3,
(n) = 231 ifpnmod 7 =5,
© B 3b=5.4%  otherwise

n—>5

2-377
3(n79(7+(n mod 7))/2)/7 . 4(7+(n mod 7))/2
3(n79(n mod 7)/2)/7 . 4(n mod 7)/2

Tab. 4:
s | -1]o|1]2]3]

ifnmod 7 =25,
ifnmod7=1,3,

415
1]3

3
nmod7 || 5 |02 |46

d

75’

12)

13)

(14)

15)

Proof: By Proposition[§] m3 = b—my—m.4. Hence, by @) and §), n = b+26 = b+4mo+6ms+8my =
7b+ 2(my4 — my) = Tb + 25 whence (13). Consequently 7|n — 2s. Hence, by Proposition[8] we get Tab.

[ whence (12)) and (T4) follow. On the other hand,
go(n) = 2M2 33 4m4

where momy4 = 0, which implies (T3).
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Theorem 3 Forn > 38, ga(n + 1) > go(n).

Proof: The inequality holds for n = 38, see Tab. [3] Otherwise, using formula we get the following
quotients all larger than 1.

256/243 if mmod7=0,2,

@n+1) ] 9/8 if nmod7 =4,
@(n) ) 32/27 if mmod7=25,
81/64 if mmod7=1,3,6.
In order to see this result, consider the case n mod 7 = r,7 =0, ...,6. Next on finding (n+1) mod 7,
use formula (T3). 0

The function g2 is not monotone because of its small values precisely at n = 15,22,29. Moreover,
g2(n + 1) = g2(n) precisely for n = 23, 30, 37. Nevertheless, the following important result holds.

Lemma4 Forn > 7andn # 8, g2(n + 3) > g2(n).

Proof: The result follows from Tab. [B|for n < 37; otherwise from Theorem a

6 Main results

For maximum trees 7 with |T'| < 10, see Proposition

Theorem 4 Maximum trees T with |T| > 7 and |T| # 8 are T *-maximum.

Proof: Theorem is true for n = 7,9, 10 by Proposition 4] Let 7" be a maximum tree of order n > 11.
Then ¢(T') > g2(n) > 5 by Tab.[3and Lemma[d] Due to Corollary [2] for even n > 10 each n-vertex tree
T with b(T) = 1 has ¢(T) < 252 < go(n) by Tab. and Theorem Therefore b(T') = 1 is possible
only if n is odd and then by Corollarymaximum tree is 7 2-maximum.

We proceed by induction on n. Consider the case b(7') > 2. For any fixed x € B(T), let 7; = 7;(x),

i=0,1,2.

A. All twigs in T have length 1 or 2 (whence 7o = 0). Due to Lemmal[l] there is no € PB(T) with
71 > 2 and 79 > 1. Hence precisely two following subcases A1, A2 are possible.

Al. There exists an x € PB(T) such that (i) 71 > 2 and 7 = 0 or (i4) 71 = 1 and 75 > 1. Let

T — {T — {two leaves at z} in case (2),
T — {twig of length 2 at z} in case (ii).
Then |T'| = |T'| —2 > 9. We consider two subcases 71 = 2, 79 > 2 in case (i), two ones 7 = 1,
75 > 1in case (i7), we use Lemmal(l] and we see that ¢(T') < ¢(T”). Let 7" be a maximum tree
of order |T”|. Then T” € T?2. Attaching a twig of length 2 to a P B-vertex of 7" gives a tree T*
of order |T'| such that T* € 72 and, by @) q(T*) > q(T") > q(T") > q(T), a contradiction.
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A2. 71 = 0and 7o > 2 foreach x € PB(T). Let n = 11. Consider an auxiliary 6-vertex graph H

of the capital letter H. Then T = S(H ), the subdivision of H, is the only possibility. However,
q(T) =1 < g2(11) = 5, a contradiction, cf. Tab.[3]
Let n > 12. Assume that x € PB(T) and degree of x is as small as possible. Let 7" = T — .
Then |T| — |T'| = 272(x) + 1 which is odd and > 5. Hence, by the choice of z, |T7| > |T'|/2
and [T"| > 7. Moreover, by Lemmal[2] ¢(T') < 72 - q(T”) where the equality holds whenever the
attachment vertex a(z) is EDS-avoided in 7" and 7’ is a maximum tree since so is 7'. Therefore
if |T’| # 8 then, by induction hypothesis, 77 € 7?2 whence, by Proposition (7} T € T2 (as
required). Otherwise |7”| = 8, each maximum 7" has an EDS-avoided vertex and ¢(7") = 2, cf.
Proposition[d] Consequently, ¢(T') = 27, (z). Hence, by Observation 2} ¢(T') = ¢(T"") for some
T" € T? with b(T") = 2 and |T"”'| = |T| — 3, a contradiction in view of Lemma 4]

B. T has a twig of length 3 or more. Assume that a tree 7" is a 3-reduction of 7" whence |T”| = |T|—3 >
8. By Proposition 2} ¢(T") = ¢(T'). Moreover, T is clearly a maximum tree on |T'| — 3 vertices.
If |T"| = 8 then ¢(1") = 2 by Proposition [ However, |T| = 11 and ¢(T') > 5 by Tab. 3] whence
q(T) # q(T"), a contradiction. Otherwise |T”| > 9 and T € 7?2 by the induction hypothesis. Due to
Lemma] ¢2(|7"] + 3) > ¢(1"), a contradiction to ¢(T') = ¢(T").

d

Theorem 5 The number of maximum n-vertex trees is bounded below by the number |Tp| of b-vertex trees
where b = b(n) ~ n/7 asn — oc. The lower bound is exponential in n and is attained if T|n and n > 35.

Proof: Let n be a natural number, n > 39 or n = 33,35,37. Thenn = 7b + 2s with s = —1,0,...,5
and b > 5 being uniquely defined in and (T3), respectively. Due to Theorem ] any maximum n-
vertex tree, T, is an element of ’Z;f”“ax. The structural parameters my, of T', defined in formula , are
determined in Proposition and Theoremin terms of s. Hence, due to very definition of the class 72 in
Sect. 4 and Observation 2} the tree 7T is obtained in the following way. Choose any tree 7" on b vertices,
select a subset S of |s| vertices in T”; for s # 0, attach two or four twigs of length two to each vertex in
S according as s = —1 or s > 0, and, finally, attach three such twigs to each of remaining vertices in T”.
Then the resulting graph includes 7" as an induced subgraph and has really 7b + 2s vertices as required.
Define r:(7"”) to be the number of distinct selections of ¢ vertices in 77, t < b, two such selections being
distinct if no automorphism of 7’ transforms one selection into another. Therefore

T = g (T). (16)

T'eTy

If n mod 7 = 0 and n > 35 then, by Theorem [2} b = = and T" has exactly three twigs of length two
at every B-vertex. Hence |7,"**| = |7;|. In remaining cases, by formula (16}, the number of maximum
n-vertex trees is greater than |7;|. Therefore |7,2#*| > |7;|. The lower bound is exponential in n since so
is the cardinality of the class of b-vertex unlabeled trees [[6, Sect. 9.5]. O

Corollary 4 Formula gives the number of maximum n-vertex trees for large enough n. O
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7 Concluding remarks

Let T;, be an n-vertex tree with largest possible number of EDS’. Letn > 7and n # 8. Then T}, € 7,2™ax
and T), has the following properties. Each leaf is on a twig of length 2. At least two and at most six twigs
are attached to each branch vertex of 7,,. Numbers of twigs at different branch vertices differ by O or 1
only. Branch vertices induce a subtree, say T;,”, T,,” = (B(T},)), and the number, b, of branch vertices
depends on n only, see Tab. [3|and formula for values of b. Moreover, each tree T} of order b > 1 is
T,,” for a certain T,,. Let b > 5 and let n = 7b — 2,7b, ..., 7b + 10. Then there is a T}, with T,,” = T}
for each T} and each of listed n only. Furthermore, if s := (n — 7b)/2 then s € {—1,0,...,5} and if
three twigs are attached to each of any n — |s| vertices of any 7}, and 3 + sign(s) twigs (2 or 4) to each of
remaining |s| vertices, then the resulting tree is a T,,. Conversely, for each of listed n’s and any T,,, T,,”
is of order b.

Notice in this context the importance of Observation [2] It shows how to pass from an integer ¢ to a
variety of trees 7" such that ¢(T") = ¢ (but to a single T only, if ¢ is a prime).

We conclude this paper with a few open problems that we find interesting. Let dg(z,y) stand for
the distance between vertices x and y in G. Let p be a positive integer, p > 1. A vertex subset S*,
S* C V(Q), is called an efficient p-dominating set of G if the following two properties are satisfied.

e for each x ¢ S*, there exists y € S* at distance at most p from x, dg(z,y) < p,

e the distance between any two vertices of S* is at least 2p + 1 (i.e. dg(z,y) > 2p+ 1), if x,y € S*
and x #£ y.

Thus an efficient dominating set is efficient 1-dominating.

Open problems. For any integer p > 2, characterize trees
(1) which have an efficient p-dominating set,

(2) which have a fixed order and the largest number of efficient p-dominating sets.
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