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Suppose thatp, q, r, s are non-negative integers withm = p + q + r + s. The classX(p, q, r, s) of permutations that
contain no pattern of the formαβγ where|α| = r, |γ| = s andβ is any arrangement of{1, 2, . . . , p}∪{m−q+1, m−
q +2, . . . , m} is considered. A recurrence relation to enumerate the permutations ofX(p, q, r, s) is established. The
method of proof also shows thatX(p, q, r, s) = X(p, q, 1, 0)X(1, 0, r, s) in the sense of permutational composition.
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In their paper [2] Mansour and Vainshtein enumerated a three-parameter family of pattern-avoiding
classes of permutations using fairly complex recurrence equations and generating functions. We shall
derive a generalisation of their results by a very simple argument. Finally we observe that our proof gives
a structure theorem for the pattern-avoiding classes in question.

To make this note self-contained we recall the notion of pattern-avoiding class. A permutationπ is
said to be contained as a pattern in another permutationσ if σ has a subseqence order isomorphic toπ
(its terms are ordered in the same relative way asπ). If σ does not containπ it is said to avoidπ. A
pattern-avoiding class is a set of permutations defined by the property of avoiding some set of patterns.
A central problem in the theory of pattern-avoiding classes is to enumerate them, i.e. to determine the
number of permutations of each length in the class.

Let p, q, r, s be non-negative integers and letA(p, q, r, s) be the set of(p + q)!(r + s)! permutations of
lengthp + q + r + s which have the formαβγ where|α| = r, |γ| = s andβ is any arrangement of thep
smallest andq largest values in the set{1, 2, . . . , p + q + r + s}.

Let X(p, q, r, s) be the class of permutations that avoid all the permutations of this set. The following
lemma gives a recursive characterisation of the permutations of this class and shows how they can be
constructed.

Lemma 1 1. Let π = π1 · · ·πn ∈ X(p, q, r, s). Then there is at least one positioni of π among
the firstr or last s positions whose valueπi is among thep smallest orq largest values. If this
term is removed fromπ the resulting permutationπ′ (after appropriate renumbering) also lies in
X(p, q, r, s).
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2. Letπ′ = π′1 · · ·π′n−1 ∈ X(p, q, r, s). If we form a new permutationπ by inserting a new value
y (with appropriate renumbering of the old values) then, so long as we inserty among the firstr
or last s positions ofπ′ and so long asy is one of thep smallest orq largest values in the new
permutation, we haveπ ∈ X(p, q, r, s).

Proof: To prove the first part, suppose no such position existed. Then all of the values1, 2, . . . , p, n− q +
1, n−q+2, . . . , n would occur among the positionsr+1, r+2, . . . n−s+1. Therefore the subsequence
defined by the firstr and lasts positions together with the positions where the values1, 2, . . . , p, n− q +
1, n − q + 2, . . . , n occur would be order isomorphic to a member ofA(p, q, r, s). Henceπ has such a
position. If the term at this position was removed the resulting permutation would still avoid the patterns
of A(p, q, r, s).

The second part follows by observing that the insertion ofy into π′ cannot create a subsequence order
isomorphic to one inA(p, q, r, s). 2

Theorem 2 Lettn be the number of permutations of lengthn that avoid all the permutations ofA(p, q, r, s).
Letu = p + q, v = r + s. Then, for alln ≥ max(u, v),
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Proof: Consider permutations of lengthn that avoid all the permutations ofA(p, q, r, s). We shall call the
p smallest andq largest values the critical values of the permutation and ther initial ands final positions
the critical positions. Furthermore, we call a critical value that occurs in a critical position a critical term.
Lemma 1 shows that the permutations ofX(p, q, r, s) are precisely those with at least one critical term
which, if removed, results in a permutation ofX(p, q, r, s).

Since there areu critical values andv critical positions there are
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permutations with at least one such critical term. 2

The recurrence relation given in this theorem hasλ = min(u, v) terms on the right hand side and is
valid for all n ≥ µ = max(u, v). We may apply the standard method for deriving the ordinary generating
function

∑
tnxn; that is to say, we multiply the recurrence byxn and sum over alln ≥ µ. Such a

calculation expresses the generating function as a rational function in the form∑
tnxn =
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where the denominator is directly obtained from the recurrence as

q(x) = 1 − uvx + 2!
(

u

2

)(
v

2

)
x2 − 3!

(
u

3

)(
v

3

)
x3 + 4!

(
u

4

)(
v

4

)
x4 + · · ·



Some equinumerous pattern-avoiding classes of permutations 73

and has degreeλ. The numerator can be ascertained from the initial terms of the sequence(tn) which, for
n < u + v, are equal ton!. After some algebraic manipulation we obtain
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This generating function is the same as the one given in the main theorem of [2] for the enumeration
of another pattern-avoiding set of permutations. This is no coincidence since, by puttingq = 0, we can
obtain that theorem as follows. The permutations ofA(p, 0, r, s) are precisely those where the values
1, 2, . . . , p occur (in any order) at positionsr + 1, r + 2, . . . , r + p. The inverses of these permutations
are those where positions1, 2, . . . , p contain the valuesr + 1, r + 2, . . . , r + p (in any order); this is
exactly the set of avoided permutations considered in [2] (see the discussion following Lemma 2.1 of that
paper). However, permutation inversion is a symmetry of the pattern-avoidance relation and so the classes
X(p, 0, r, s) have the same enumerations as the classes in [2].

Finally we give a structural property ofX(p, q, r, s). Lemma 1 shows that every permutationπ ∈
X(p, q, r, s) can be generated as the output of a certain process that has the sequence1, 2, . . . , n as input.
This process hasn steps in each of which one value from the remaining input is moved to a position
of the output permutation. The input value moved is chosen from among thep smallest andq greatest
values remaining. The position where it is placed is chosen from among the firstr and lasts positions
still undefined.

This process can be regarded as taking place in two stages. In the first stage the sequence of values is
chosen and placed, from left to right, in a permutationγ. In the second stage the terms ofγ are processed
sequentially and inserted according to how the output positions are chosen. The permutationγ generated
by the first stage lies inX(p, q, 1, 0) while the permutation corresponding to the second stage lies in
X(1, 0, r, s). It follows that

X(p, q, r, s) = X(p, q, 1, 0)X(1, 0, r, s)

in the sense of composition of permutations (see [1] for an account of the composition operation on
pattern-avoiding classes).
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