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An extremal problem on potentially
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A sequenceS is potentiallyKp,1,1 graphical if it has a realization containing aKp,1,1 as a subgraph, whereKp,1,1

is a complete 3-partite graph with partition sizesp, 1, 1. Let σ(Kp,1,1, n) denote the smallest degree sum such that
everyn-term graphical sequenceS with σ(S) ≥ σ(Kp,1,1, n) is potentiallyKp,1,1 graphical. In this paper, we prove
thatσ(Kp,1,1, n) ≥ 2[((p + 1)(n − 1) + 2)/2] for n ≥ p + 2. We conjecture that equality holds forn ≥ 2p + 4.
We prove that this conjecture is true forp = 3.
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1 Introduction
If S = (d1, d2, . . . , dn) is a sequence of non-negative integers, then it is called graphical if there is a
simple graphG of ordern, whose degree sequence(d(v1), d(v2), . . . , d(vn)) is preciselyS. If G is such
a graph thenG is said to realizeS or be a realization ofS. A graphical sequenceS is potentiallyH
graphical if there is a realization ofS containingH as a subgraph, whileS is forcibly H graphical if
every realization ofS containsH as a subgraph. Letσ(S) = d(v1) + d(v2) + . . . + d(vn), and[x] denote
the largest integer less than or equal tox. We denoteG+H as the graph withV (G+H) = V (G)

⋃
V (H)

andE(G + H) = E(G)
⋃

E(H)
⋃
{xy : x ∈ V (G), y ∈ V (H)}. Let Kk, andCk denote a complete

graph onk vertices, and a cycle onk vertices, respectively. LetKp,1,1 denote a complete 3-partite graph
with partition sizesp, 1, 1.

Given a graphH, what is the maximum number of edges of a graph withn vertices not containingH
as a subgraph? This number is denotedex(n, H), and is known as the Turán number. This problem was
proposed forH = C4 by Erd̋os [3] in 1938 and in general by Turán [12]. In terms of graphic sequences,
the number2ex(n, H)+2 is the minimum even integerl such that everyn-term graphical sequenceS with
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σ(S) ≥ l is forcibly H graphical. Here we consider the following variant: determine the minimum even
integerl such that everyn-term graphical sequenceS with σ(S) ≥ l is potentiallyH graphical. We denote
this minimuml byσ(H,n). Erdős, Jacobson and Lehel [4] showed thatσ(Kk, n) ≥ (k−2)(2n−k+1)+2
and conjectured that equality holds. They proved that ifS does not contain zero terms, this conjecture is
true fork = 3, n ≥ 6. The conjecture is confirmed in [5], [7], [8], [9] and [10].

Gould, Jacobson and Lehel [5] also proved thatσ(pK2, n) = (p−1)(2n−2)+2 for p ≥ 2; σ(C4, n) =
2[ 3n−1

2 ] for n ≥ 4. Luo [11] characterized the potentiallyCk graphic sequence fork = 3, 4, 5. Yin and
Li [13] gave sufficient conditions for a graphic sequence being potentiallyKr,s-graphic, and determined
σ(Kr,r, n) for r = 3, 4. Lai [6] proved thatσ(K4 − e, n) = 2[ 3n−1

2 ] for n ≥ 7. In this paper, we prove
that σ(Kp,1,1, n) ≥ 2[((p + 1)(n − 1) + 2)/2] for n ≥ p + 2. We conjecture that equality holds for
n ≥ 2p + 4. We prove that this conjecture is true forp = 3.

2 Main results.
Theorem 1 σ(Kp,1,1, n) ≥ 2[((p + 1)(n− 1) + 2)/2], for n ≥ p + 2.

Proof: If p = 1, by Erd̋os, Jacobson and Lehel [4],σ(K1,1,1, n) ≥ 2n, Theorem 1 is true.
If p = 2, by Gould, Jacobson and Lehel [5],σ(K2,1,1, n) = σ(K4−e, n) ≥ σ(C4, n) = 2[(3n−1)/2],

Theorem 1 is true. Then we can suppose thatp ≥ 3.
We first consider oddp. If n is odd, letn = 2m + 1, by Theorem 9.7 of [2],K2m is the union of one

1-factorM andm− 1 spanning cyclesC1
1 , C1

2 , . . . , C1
m−1. Let

H = C1
1

⋃
C1

2

⋃
. . .

⋃
C1

p−1
2

+ K1 (1)

ThenH is a realization of((n− 1)1, pn−1), where the symbolxy stands for y consecutive termsx. Since
Kp,1,1 contains two vertices of degreep+1 while ((n−1)1, pn−1) only contains one integern−1 greater
than degreep, ((n− 1)1, pn−1) is not potentiallyKp,1,1 graphic. Thus

σ(Kp,1,1, n) ≥ (n− 1) + p(n− 1) + 2 = 2[((p + 1)(n− 1) + 2)/2]. (2)

Next, if n is even, letn = 2m + 2, by Theorem 9.6 of [2],K2m+1 is the union ofm spanning cycles
C1

1 , C1
2 , . . . , C1

m. Let

H = C1
1

⋃
C1

2

⋃
. . .

⋃
C1

p−1
2

+ K1 (3)

ThenH is a realization of((n− 1)1, pn−1), and we are done as before. This completes the discussion for
oddp.

Now we consider evenp. If n is odd, letn = 2m + 1, by Theorem 9.7 of [2],K2m is the union of one
1-factorM andm− 1 spanning cyclesC1

1 , C1
2 , . . . , C1

m−1. Let

H = M
⋃

C1
1

⋃
C1

2

⋃
. . .

⋃
C1

p−2
2

+ K1 (4)

ThenH is a realization of((n− 1)1, pn−1), and we are done as before.
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Next, if n is even, letn = 2m + 2, by Theorem 9.6 of [2],K2m+1 is the union ofm spanning cycles
C1

1 , C1
2 , . . . , C1

m. Let

C1
1 = x1x2 . . . x2m+1x1

H = (C1
1

⋃
C1

2

⋃
. . .

⋃
C1

p
2

+ K1)− {x1x2, x3x4, . . . , x2m−1x2m, x2m+1x1}

ThenH is a realization of((n− 1)1, pn−2, (p− 1)1). It is easy to see that((n− 1)1, pn−2, (p− 1)1) is
not potentiallyKp,1,1 graphic. Thus

σ(Kp,1,1, n) ≥ (n− 1) + p(n− 2) + p− 1 + 2
= 2[((p + 1)(n− 1) + 2)/2].

This completes the discussion for evenp, and so finishes the proof of Theorem 1 2

Theorem 2 For n = 5 andn ≥ 7,
σ(K3,1,1, n) = 4n− 2.

For n = 6, if S is a 6-term graphical sequence withσ(S) ≥ 22, then either there is a realization ofS
containingK3,1,1 or S = (46). (Thusσ(K3,1,1, 6) = 26.)

Proof: By Theorem 1, forn ≥ 5, σ(K3,1,1,n) ≥ 2[((3 + 1)(n− 1) + 2)/2] = 4n− 2. We need to show
that if S is ann-term graphical sequence withσ(S) ≥ 4n− 2, then there is a realization ofS containing
aK3,1,1 (unlessS = (46)). Let d1 ≥ d2 ≥ · · · ≥ dn, and letG be a realization ofS.

Casen = 5: If a graph has sizeq ≥ 9, then clearly it contains aK3,1,1, so thatσ(K3,1,1, 5) ≤ 4n− 2.

Casen = 6: If σ(S) = 22, we first considerd6 ≤ 2. Let S′ be the degree sequence ofG − v6, so
σ(S′) ≥ 22 − 2 × 2 = 18. ThenS′ has a realization containing aK3,1,1. ThereforeS has a
realization containing aK3,1,1. Now we considerd6 ≥ 3. It is easy to see thatS is one of(52, 34),
(51, 42, 33) or (44, 32). Obviously, all of them are potentiallyK3,1,1-graphic. Next, ifσ(S) = 24,
we first considerd6 ≤ 3. Let S′ be the degree sequence ofG − v6, soσ(S′) ≥ 24 − 3 × 2 = 18.
ThenS′ has a realization containing aK3,1,1. ThereforeS has a realization containing aK3,1,1.
Now we considerd6 ≥ 4. It is easy to see thatS = (46). Obviously,(46) is graphical and(46) is
not potentiallyK3,1,1 graphic. Finally, suppose thatσ(S) ≥ 26. We first considerd6 ≤ 4. Let S′

be the degree sequence ofG−v6, soσ(S′) ≥ 26−2×4 = 18. ThenS′ has a realization containing
aK3,1,1. ThereforeS has a realization containing aK3,1,1. Now we considerd6 ≥ 5. It is easy to
see thatS = (56). Obviously,(56) is potentiallyK3,1,1-graphic.

Casen = 7: First we assume thatσ(S) = 26. Supposed7 ≤ 2 and letS′ be the degree sequence
of G − v7, so σ(S′) ≥ 26 − 2 × 2 = 22. ThenS′ has a realization containing aK3,1,1 or
S′ = (46). ThereforeS has a realization containing aK3,1,1 or S = (51, 45, 11). Obviously,
(51, 45, 11) is potentiallyK3,1,1 -graphic. In either event,S has a realization containing aK3,1,1.
Now we assume thatd7 ≥ 3. It is easy to see thatS is one of(61, 51, 35), (61, 42, 34), (52, 41, 34),
(51, 43, 33) or (45, 32). Obviously, all of them are potentiallyK3,1,1-graphic. Next, ifσ(S) = 28,
Supposed7 ≤ 3. Let S′ be the degree sequence ofG − v7, soσ(S′) ≥ 28 − 3 × 2 = 22. Then
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S′ has a realization containing aK3,1,1 or S′ = (46). ThereforeS has a realization containing a
K3,1,1 or S = (52, 44, 21). Obviously,(52, 42, 21) is potentiallyK3,1,1-graphic. In either event,S
has a realization containing aK3,1,1. Now we assume thatd7 ≥ 4, thenS = (47). Clearly,(47)
has a realization containing aK3,1,1. Finally, suppose thatσ(S) ≥ 30. If d7 ≤ 4. Let S′ be the
degree sequence ofG − v7, soσ(S′) ≥ 30 − 2 × 4 = 22. ThenS′ has a realization containing a
K3,1,1 or S′ = (46). ThereforeS has a realization containing aK3,1,1 or S = (53, 43, 31). Clearly,
(53, 43, 31) has a realization containing aK3,1,1. In either event,S has a realization containing a
K3,1,1. Now we considerd7 ≥ 5. It is easy to see thatσ(S) ≥ 5× 7 = 35. Obviouslyσ(S) ≥ 36.
Clearly,S has a realization containing aK3,1,1.

We proceed by induction on n. Taken ≥ 8 and make the inductive assumption that for7 ≤ t < n,
wheneverS1 is at-term graphical sequence such that

σ(S1) ≥ 4t− 2 (5)

thenS1 has a realization containing aK3,1,1. Let S be ann-term graphical sequence withσ(S) ≥
4n − 2. If dn ≤ 2, let S′ be the degree sequence ofG − vn. Thenσ(S′) ≥ 4n − 2 − 2 × 2 =
4(n− 1)− 2. By induction,S′ has a realization containing aK3,1,1. ThereforeS has a realization
containing aK3,1,1. Hence, we may assume thatdn ≥ 3. By Proposition 2 and Theorem 4 of [5] (or
Theorem 3.3 of [7] )S has a realization containing aK4. By Lemma 1 of [5], there is a realization
G of S with v1, v2, v3, v4, the four vertices of highest degree containing aK4. If d(v2) = 3, then
4n − 2 ≤ σ(S) ≤ n − 1 + 3(n − 1) = 4n − 4. This is a contradiction. Hence, we may assume
thatd(v2) ≥ 4. Let v1 be adjacent tov2, v3, v4, y1. If y1 is adjacent to one ofv2, v3, v4, thenG
contains aK3,1,1. Hence, we may assume thaty1 is not adjacent tov2, v3, v4. Let v2 be adjacent
to v1, v3, v4, y2. If y2 is adjacent to one ofv1, v3, v4, thenG contains aK3,1,1. Hence, we may
assume thaty2 is not adjacent tov1, v3, v4. Sinced(y1) ≥ dn ≥ 3, there is a new vertexy3, such
thaty1y3 ∈ E(G).

Case1: Supposey3v3 ∈ E(G). If y3v4 ∈ E(G), thenG contains aK3,1,1. Hence, we may assume
thaty3v4 /∈ E(G). Then the edge interchange that removes the edgesy1y3, v3v4 andv2y2 and
inserts the edgesy1v2, y3v4 andy2v3 produces a realizationG′ of S containing aK3,1,1.

Case2: Supposey3v3 /∈ E(G). Then the edge interchange that removes the edgesy1y3, v3v4 and
v2y2 and inserts the edgesy1v2, y3v3 andy2v4 produces a realizationG′ of S containing a
K3,1,1.

This finishes the inductive step, and thus Theorem 2 is established. 2
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We make the following conjecture:

Conjecture 1 σ(Kp,1,1, n) = 2[((p + 1)(n− 1) + 2)/2], for n ≥ 2p + 4.

This conjecture is true forp = 1, by Theorem 3.5 of [4], forp = 2, by Theorem 1 of [6], and forp = 3,
by the above Theorem 2.
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Pk-graphic sequence is true, Science in China (Series A), 41:5, 1998, p. 510–520.

[11] Rong Luo, On potentiallyCk-graphic sequences, Ars Combinatoria 64, 2002, p. 301–318.
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