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We consider relational periods where the relation is a compatibility relation on words induced by a relation on letters.
We introduce three types of periods, namely global, external and local relational periods, and we compare their
properties by proving variants of the theorem of Fine and Wilf for these periods.
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1 Introduction
Similarity relations, i.e., compatibility relations on words induced by relations on letters were introduced
as a generalization of partial words in [9](i). There and in [10, 11] the main focus was on the effect of
these relations on coding properties and on the defect theorem of words. In the article [8] we started
the study of the interaction properties of periods with respect to similarity relations. By the interaction
property we mean that if a sufficiently long word has two periods then it also has another nontrivial
period depending on the original periods. The theorem of Fine and Wilf is one of the cornerstones in
combinatorics on words. In this theorem the derived period is the greatest common divisor of the original
periods [7]. Actually, this topic was the starting point of the study of partial words in the seminal paper of
J. Berstel and L. Boasson in 1999 [1]. They proved a variant of the theorem of Fine and Wilf for partial
words with one hole. Since then several papers on period properties of partial words has been published
[2, 3, 4, 5, 6, 12]. F. Blanchet-Sadri et al. studied the theorem of Fine and Wilf for partial words with local
periods and with arbitrarily many holes. A.M. Shur and Yu.V. Gamzova investigated the case of global
periods. We continue the study of this topic by introducing global, external and local relational periods as
generalizations of periods of partial words. Using these periods we prove new variants of Fine and Wilf’s
theorem. Especially, our aim is to compare the interaction properties of different types of periods.

2 Similarity relations
An alphabet A is a nonempty finite set of symbols, called letters, and a word overA is a (finite or infinite)
sequence of symbols from A. Denote by A+ the set of all finite nonempty words over A. The length of
a word w, denoted by |w|, is the total number of (occurrences of) letters in w. For a finite word of length
n, we use the notation w = w1w2 · · ·wn, where wi ∈ A is the ith letter of w. If a word w = w1w2w3 · · ·
(i) Note that in [9] we use word relation instead of the less ambiguous similarity relation.
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is an infinite catenation of a word x ∈ A+, we denote w = xω. We shall consider rational powers of
words, i.e., if w = a1a2 . . . an, where ai is a letter for each positive integer i ≤ n, and t = k · n + r for
0 ≤ r < n, then

wt/n = wk · a1a2 . . . ar.

For a relation R ⊆ X ×X , we often write xR y instead of (x, y) ∈ R. The restriction of R on Y ⊆ X
is RY = R ∩ (Y × Y ). A relation R is a compatibility relation if it is both reflexive and symmetric, i.e.,
(i) ∀x ∈ X : xR x, and (ii) ∀x, y ∈ X : xR y =⇒ y R x. For example, both the identity relation
ιX = {(x, x) | x ∈ X} and the universal relation {(x, y) | x, y ∈ X} are compatibility relations on X .

A relation R on words overA is called a similarity relation, if its restriction on letters is a compatibility
relation and, for words u = u1 · · ·um and v = v1 · · · vn (ui, vj ∈ A), the relation R satisfies

u1 · · ·um R v1 · · · vn ⇐⇒ m = n and ui R vi for all i = 1, 2, . . . ,m.

Note that R is a compatibility relation. For an arbitrary relation S on letters, 〈S〉 denotes the similarity
relation generated by S, i.e., 〈S〉 is the similarity relation induced by the reflexive and symmetric closure
of S. For a similarity relation R, words u and v satisfying u R v are said to be R-similar or R-compatible.
If the words are not R-compatible, they are said to be R-incompatible.

Example 1 On the binary alphabet {a, b} the only compatibility relation different from the identity rela-
tion is the universal relation of all words of equal length. Namely, the relation

R = 〈{(a, b)}〉 = {(a, a), (b, b), (a, b), (b, a)}

makes all words with equal length similar with each other. On the other hand, over the ternary alphabet
{a, b, c}, where

S = 〈{(a, b)}〉 = {(a, a), (b, b), (a, b), (b, a), (c, c)},

we have abba S baab but, for instance, the words abc and cac are not S-similar.

Example 2 A partial word of length n over an alphabet A is a partial function

w : {1, 2, . . . , n} → A.

The domain D(w) of w is the set of positions p ∈ {1, 2, . . . , n} such that w(p) is defined. The set
H(w) = {1, 2, . . . , n} \D(w) is the set of holes of w. A partial word can also be seen as a word over the
augmented alphabetA♦ = A∪{♦}, where♦ is interpreted as a special “do not know” symbol [1]. In [9]
we have shown that using similarity relations the compatibility relation of partial words can be expressed
by

R↑ = 〈{(♦, a) | a ∈ A}〉.

3 Types of relational periods
Let x = x1 · · ·xn be a word over the alphabet A. An integer p ≥ 1 is a (pure) period of x if, for all
i, j ∈ {1, 2, . . . , n}, we have

i ≡ j (mod p) =⇒ xi = xj .
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In this case, the word x is called (purely) p-periodic. The smallest integer which is a period of x is called
the (minimal) period of x. Here we denote it by π(x), or shortly by π, if the word x is clear from the
context.

For partial words, two types of periods were defined in [1]: A partial word w has a (partial) period p
if, for all i, j ∈ D(w),

i ≡ j (mod p) =⇒ w(i) = w(j).

A partial word w has a local (partial) period p if

i, i + p ∈ D(w) =⇒ w(i) = w(i + p).

For words with compatibility relation on letters, we will now define three types of periods. We call these
periods relational periods.

Definition 1 Let R be a compatibility relation on an alphabet A. For a word x = x1 · · ·xn ∈ A+, an
integer p ≥ 1 is

(i) a global R-period of x if, for all i, j ∈ {1, 2, . . . , n}, we have

i ≡ j (mod p) =⇒ xi R xj ;

(ii) an external R-period of x if there exists a word y = y1 · · · yp such that, for all i ∈ {1, 2, . . . , n}
and j ∈ {1, 2, . . . , p}, we have

i ≡ j (mod p) =⇒ xi R yj .

In this case, the word y is called an external word of x.

(iii) a local R-period of x if, for all i ∈ {1, 2, . . . , n− p}, we have xi R xi+p.

These definitions generalize naturally to infinite words. For a word x, the minimal global (resp. ex-
ternal, local) R-period is denoted by πR,g(x) (resp. πR,e(x), πR,l(x)). In the sequel, we may omit the
subscript R or the argument x if the relation R or the word x is clear from the context. Of course, these
periods may coincide. Next we give an example where all the above mentioned minimal periods are
different.

Example 3 Let A = {a, b, c, d} and define

x = babbbcbd.

Let R = 〈{(a, b), (b, c), (c, d), (d, a)}〉 be a compatibility relations on the alphabet A. Clearly, the min-
imal pure period π(x) = 8. By the definition of R, we see that 2 is a local R-period of x. Since
(x7, x8) = (b, d) 6∈ R, 1 is not a local period and therefore, we have πR,l(x) = 2. Neither 1 nor 2 is an
external R-period of x, since otherwise the letter y1 or respectively y2 in the external word y is related to
every letter of the alphabet, which is a contradiction. Since y = bab satisfies the conditions of an external
word in Def. 1(ii), we have πR,e(x) = 3. Furthermore, since (b, d) 6∈ R, we have πR,g(x) > 5. Indeed,
πR,g(x) = 6, because of the relation aR d. Hence, for a word x, we have

π = 8 > πg = 6 > πe = 3 > πl = 2.
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The next theorem shows how different types of periods are related to each other.

Theorem 1 Every pure period of a word x is a relational (global, external and local) R-period for any
compatibility relation R on A. Every global R-period of x is an external R-period of x and a local
R-period of x. Thus, for a word x, we always have

π ≥ πg ≥ max(πe, πl).

Proof: Let R be a compatibility relation. By reflexivity, ι ⊆ R, and therefore the first statement holds.
Note that if x = x1 · · ·xn has a period p, then y = x1 · · ·xp is an external word of x. Similarly, this
choice of y also shows that a global R-period is an external R-period. Clearly, a global period satisfies
the definition of a local period. For the minimal periods, these considerations imply the inequalities of the
statement. 2

Note that every external period is not necessarily a local period and every local period need not be an
external period. For example, in Example 3 the minimal local R-period πl is not an external R-period,
and furthermore, πe is not a local R-period. There we have πe > πl. Next we give an example where
πl > πe.

Example 4 Let R = 〈{(a, b), (b, c), (c, d), (d, a)}〉 and let

x = adcbccccbd.

Consider first the minimal local R-period of x. Since (x9, x10) = (x4, x2) = (b, d) 6∈ R and 3 is a
local R-period, we have πl = 3. Since x1 = a, x4 = b, x7 = c and x10 = d, there cannot exist any
external word y = y1y2y3 of length 3. Otherwise, y1 would be compatible with all letters of the alphabet
{a, b, c, d}. Hence, 3 is not an external R-period. For the same reason 1 is not an external R-period, but
by choosing y = bc, we see that πe = 2. As noted above, 2 is not a local period. Since (a, c) 6∈ R, the
minimal global period satisfies πg > 7. Actually, πg = 8 since aR b. Clearly, π = 10. Hence,

π = 10 > πg = 8 > πl = 3 > πe = 2.

If the compatibility relation R is also transitive, all relational periods coincide. This is clear, since tran-
sitive compatibility relation R is actually a congruence, and there is a one-to-one correspondence between
any relational period p of a word w = w1 · · ·wn ∈ Σ∗ and the pure period p of [w] = [w1] · · · [wn] ∈
Σ∗/R, where [w] denotes the congruence class of a word w. Hence, we have the following result.

Theorem 2 If a similarity relation R is transitive, then Pg(x) = Pe(x) = Pl(x), where Pg(x) (resp.
Pe(x), Pl(x)) is the set of all global (resp. external, local) R-periods of a word x. Moreover,

πg(x) = πe(x) = πl(x).

If R is not transitive, local R-periods differ from global and relational periods by the following property.

Lemma 1 If p is a global R-period or an external R-period, then any multiple of p is a global R-period
or an external R-period, respectively. This need not be the case for local R-periods.
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Proof: Suppose that p is a global R-period of x and let i ≡ j (mod kp), where k is a nonnegative integer.
Then clearly i ≡ j (mod p) and, by the assumption, xi R xj . Hence kp is a global R-period. The proof
is similar for external R-periods. Consider then a word x = abc and a relation R = 〈{(a, b), (b, c)}〉. The
word x has 1 as a local R-period, but 2 is not a local R-period. Thus multiples of local R-periods are not
necessarily local R-periods. 2

Finally we note that external periods are not very meaningful with partial words. Namely, any integer
p ≥ 1 is an external R↑-period of any partial word. Indeed, we may choose y = (♦)p for an external
word. Consequently, for partial words, we always have πe = 1.

4 Variants of the theorem of Fine and Wilf
The theorem of Fine and Wilf [7] is well-known in combinatorics on words:

Theorem 3 If a word x has periods p and q, and is of length at least p + q− gcd(p, q), then x also has a
period gcd(p, q).

J. Berstel and L. Boasson gave a variant of this theorem for partial words with one hole in [1].

Theorem 4 Let w be a partial word of length n and suppose that it has local R↑-periods p and q. If
H(w) is a singleton and if n ≥ p + q, then w is purely gcd(p, q)-periodic.

Furthermore, they showed that this bound on the length is sharp. Generalizations for several holes were
considered, for example, by F. Blanchet-Sadri in [3] and F. Blanchet-Sadri and R.A. Hegstrom in [6],
where it was shown that local partial periods p and q force a sufficiently long word to have a (global)
partial period gcd(p, q) when certain unavoidable cases (special words) are excluded. The bound on the
length depends on the number of holes in the word. On the other hand, A.M. Shur and Yu.V. Gamzova
found bounds for the length of a word with k holes such that (global) partial periods p and q imply a
(global) partial period gcd(p, q) [12]. These results of partial words with several holes show that finding
good formulations for the interaction of periods in the case of arbitrary relational periods is not possible
except for equivalence relations. Namely, any non-transitive compatibility relation R must have letter
relations (x1, x2), (x2, x3) ∈ R, but (x1, x3) 6∈ R for some letters x1, x2, x3. Then the role of the letter
x2 in R is exactly the same as the role of ♦ in R↑ and all binary counter examples of Fine and Wilf’s
theorem for partial words apply to words with compatibility relation R over the alphabet {x1, x2, x3}.
However, some interaction results can be obtained.

If the relation R is an equivalence relation, we do not have to specify the type of an R-period, since the
definitions of the relational periods coincide by Theorem 2. We have the following theorem proved in [8].

Theorem 5 Let R be an equivalence relation. If a word has R-periods p and q and the length of the word
is at least p + q − gcd(p, q), then the word has also an R-period gcd(p, q). The bound on the length is
strict.

As was mentioned above, the theorem of Fine and Wilf cannot be generalized for relational periods of
a non-transitive compatibility relation unless some restrictions on the number of relations (holes) and
exclusions of some special cases are given. Despite this fact, it might be possible to get some new
interesting variations of the theorem, for example, by assuming that one of the periods is pure and only
the other one is relational by the relation R 6= ι. Unfortunately, this restriction seems to be insufficient in
that extent that sometimes no finite bound on the length of the word can be obtained for the interaction of
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periods. For example, there exists an infinite word with a pure period q and a local R-period p such that it
does not have a local R-period gcd(p, q).

Example 5 Let R = 〈{(a, b), (b, c)}〉. Note that every non-transitive compatibility relation must have a
subrelation similar to this one such that a and c are not compatible. Consider an infinite word

x = (bbcab)ω.

Clearly, w has a pure period q = 5. It also has a local R-period p = 3, since the distance of the letters a
and c in x cannot be 3. Since (x3, x4) = (a, c) 6∈ R, gcd(p, q) = 1 is neither a local period nor a global
period by Theorem 1.

In the previous example the notion of a local relational period is too weak for the desired interaction
result. However, depending on the type of the relational period p we get diverse results as will be shown in
the sequel. One variant of Fine and Wilf’s theorem was already considered in [8]. The following theorem
was obtained.

Theorem 6 Let P and Q be positive integers with gcd(P,Q) = d. Denote P = pd and Q = qd. Suppose
that a word w has a (pure) period Q and a global R-period P . Let Bg = Bg(p, q) be defined by Table 1.
If |w| ≥ Bgd, then also gcd(P,Q) = d is a global R-period of the word w. This bound on the length is
sharp.

Bg(p, q) p < q p > q

p, q odd
p + 1

2
q q +

q − 1
2

p

p odd, q even
p + 1

2
q

p + 1
2

q

p even, q odd q +
q − 1

2
p q +

q − 1
2

p

Tab. 1: Table of bounds Bg(p, q)

Hence, one global period with one pure period is strong enough to imply another nontrivial global
period. Moreover, according to Theorem 1, one global period must also imply an external and a global
relational period. However, the optimal bound on the length of the word can be different in these cases.
The bound Bg in Theorem 6 is just one example of interaction bounds defined more precisely in the
following.

Definition 2 Let P ≥ 2 and Q ≥ 3 be positive integers with gcd(P,Q) = d and let t1 and t2 be types of
relational periods. A positive integer B = B(P,Q) is called the bound of t1-t2 interaction for P and Q,
if it satisfies the following conditions:

(i) The bound B is sufficient, i.e., for any similarity relation R and for any word w with length |w| ≥ B
having a (pure) period Q and a t1-type R-period P , the number gcd(P,Q) = d is a t2-type R-period
of w.
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(ii) The bound is strict, i.e., there exist a similarity relation R and a word w with length |w| = B − 1
having a (pure) period Q and a t1-type R-period P such that gcd(P,Q) = d is not a t2-type
R-period of w.

Note that in the definition we exclude trivial cases by assuming that P ≥ 2 and Q ≥ 3. Namely, if
Q ≤ 2, then the word contains at most two letters. This is the case of Theorem 5, since there are no
non-transitive compatibility relations on a binary alphabet.

The following lemma shows that it is sufficient to consider the case where gcd(P,Q) = 1. In the proof
we use a standard approach which was also used in the proof of Theorem 5 in [8].

Lemma 2 Let P and Q be positive integers with gcd(P,Q) = d > 1. Denote P = pd and Q = qd. If B
is the bound of t1-t2-interaction for p and q, then Bd is the bound of t1-t2-interaction for P and Q.

Proof: Suppose that a word w has a pure period Q and a relational t1-type period P . Denote the ith letter
of w by wi and assume that |w| ≥ Bd. Let us now consider the word

w(i) = wiwi+d · · ·wi+kid,

where 1 ≤ i ≤ d and ki =
⌊
|w|−i

d

⌋
. Clearly, the word w(i) has a pure period q and a t1-type relational

R-period p. Since |w(i)| ≥ B for every i = 1, 2, . . . , d, then 1 is a t2-type relational R-period for all the
words w(i). Consequently, d is a t2-type relational R-period of w.

In order to prove that the bound Bd is strict, we give an example of a word u of length Bd−1 such that
it has a period Q and an R-period P but no R-period d. Suppose that v = v1v2 · · · vB−1 is a word such
that it has a pure period q and a t1-type period p, but gcd(p, q) = 1 is not a t2-type relational period of v.
By the definition of B, such a word exists. Let a be some letter in the alphabet A and define the word u
by the following formula:

u = ad−1v1a
d−1v2 · · · ad−1vB−1a

d−1.

Now u has a pure period Q = qd and a t1-type period P = pd, but by the properties of v, gcd(P,Q) = d
cannot be a t2-type R-period of u. 2

Hence, using our new notation and the previous lemma we may state the result of Theorem 6 in the
following way.

Theorem 6 (reformulated) Let p and q be positive integers with gcd(p, q) = 1. The bound of global-
global interaction for p and q is Bg(p, q) given by Table 1.

5 Global-local interaction
Instead of attaining a global period gcd(p, q) we loosen our requirements and consider the case where the
greatest common divisor becomes a local relational period.

Theorem 7 Let p and q be positive integers with gcd(p, q) = 1. Let k be the smallest integer satisfying
kp ≡ ±1 (mod q). The bound of global-local interaction for p and q is

Bl(p, q) =
{

q + kp− 1 if 1 ≡ q − 1 (mod p) and kp ≡ +1 (mod q),
q + kp otherwise.
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We divide the proof into two parts. In the sequel, we use the notation [n]q for the least positive residue
of an integer n (mod q), i.e., [n]q is the positive integer m satisfying 1 ≤ m ≤ q and m ≡ n (mod q).

Lemma 3 The bound Bl(p, q) defined in Theorem 7 is sufficient.

Proof: Denote Bl = Bl(p, q). Assume that a word w has a pure period q and a global R-period p. We
show that 1 is a local R-period of w if |w| ≥ Bl. By the assumption, the word w is a rational power of a
word of length q. Thus in w there are at most q different letters. Hence, the word w has a local R-period 1
if and only if, for all n = 1, 2, . . . , q, we have

w[n]q R w[n+1]q . (1)

We show that, for each n ∈ {1, 2, . . . , q}, there exist integers in, jn ∈ N such that

[n]q + inq ≡ [n + 1]q + jnq (mod p) (2)

and both sides of the congruence belong to the set {1, 2, . . . , Bl}. This implies together with the global
period p of w that Eq. (1) must be satisfied if |w| ≥ Bl.

Case 1. Assume first that kp ≡ 1 (mod q). For n ∈ {1, 2, . . . , q − 1}, choose jn = kp−1
q and in = 0.

Note that jn is an integer by the definition of k. Then

(n + 1) + jnq = n + 1 + kp− 1 = n + kp ≡ n (mod p).

Clearly, both sides of the congruence belong to {1, 2, . . . , Bl}. Furthermore, let jq = kp−1
q + 1 and

iq = 0. Now
1 + jqq = 1 + kp− 1 + q = q + kp ≡ q (mod p).

The left hand side is less than or equal to Bl only if 1 6≡ q − 1 (mod p). However, in the special case
1 ≡ q − 1 (mod q), we can choose iq = kp−1

q and jq = 0 so that

q + iqq = q + kp− 1 ≡ q − 1 ≡ 1 (mod p).

Now the left hand side is exactly Bl.
Case 2. Assume that kp ≡ −1 (mod q) and, for n ∈ {1, 2, . . . , q − 1}, let in = kp+1

q and jn = 0.
Note that in is an integer by the definition of k. Hence,

n + inq = n + kp + 1 ≡ n + 1 (mod p).

Choose furthermore iq = kp+1
q − 1 and jq = 0. Then

q + iqq = q + kp + 1− q ≡ 1 (mod p).

Note that both sides of both congruences belong to the set {1, 2, . . . , Bl}. Hence, we have shown that
Eq. (1) is satisfied for all n = 1, 2, . . . , q, if |w| ≥ Bl. Therefore w must have gcd(p, q) = 1 as a local
relational period. 2

Lemma 4 The bound Bl(p, q) defined in Theorem 7 is strict.
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Proof: We prove that there exists a word w of length Bl−1 such that it has a global period p and a pure pe-
riod q but no local period gcd(p, q) = 1. We show that, at least for one index n ∈ {1, 2, . . . , q}, there is no
solution in, jn of Eq. (2) such that both sides of the equation belong to the set {1, 2, . . . , Bl−1}. Without
contradicting the assumption that p is a global period of w we may then assume that (w[n]q , w[n+1]q ) 6∈ R
and therefore gcd(p, q) = 1 is not a local R-period of w.

Case 1. Let us first assume that kp ≡ 1 (mod q) and 1 6≡ q − 1 (mod p). Consider the equation

q + iq ≡ 1 + jq (mod p).

Note that in the solution j = jq = kp−1
q + 1, i = iq = 0, we have 1 + jqq = q + kp = Bl. We prove that

there is no smaller solution, i.e., there are no integers i and j such that max(q + iq, 1 + jq) < Bl. Note
that if such a solution exists, then we may assume that either i = 0 or j = 0. Namely, if i > j for some
solution, then q + (i− j)q ≡ 1 (mod p) is a smaller solution. Similarly, if j > i, then q ≡ 1 + (j − i)q
(mod p) is a smaller solution. Thus, assume first that, for some j ∈ N, we have

q ≡ 1 + jq (mod p)

and max(q, 1+jq) < q+kp. Now j > 0. Otherwise, 1+lp = q for some l ∈ N. This means that lp ≡ −1
(mod q). By the definition of k, we have l > k so that 1 ≡ kp (mod q) and 1 < kp < lp = q − 1. This
is a contradiction. Hence, j 6= 0 and max(q, 1 + jq) = 1 + jq. Since q ≡ 1 + jq (mod p), there exists
s ∈ N such that 1 + jq − q = sp. This means that sp ≡ 1 (mod q) and therefore s ≥ k. Thus, we have

max(q, 1 + jq) = 1 + jq = sp + q ≥ kp + q.

Again, we have a contradiction.
Assume next that, for some i ∈ N, we have

q + iq ≡ 1 (mod p)

and max(q+iq, 1) = q+iq < q+kp. Hence, there exists s ∈ N such that q+iq−1 = sp and consequently
sp ≡ −1 (mod q). By the definition of k, we again have s > k. Now q > q+ iq−kp = sp+1−kp > 1.
On the other hand, q + iq − kp ≡ −1 (mod q). We conclude that q + iq − kp = q − 1. Hence,

1 ≡ q + iq ≡ q + iq − kp = q − 1 (mod p)

and we end up in a contradiction with our assumption. Thus, let us define a rational power

w = (acq−2b)(Bl−1)/q

in ternary alphabet {a, b, c} with length Bl − 1. By the above considerations, if aR c and b R c and
gcd(p, q) = 1, then the word w has a period q and a global R-period p. However, 1 is not a local R-period
of w if a and b are unrelated by the compatibility relation R.

Case 2. Assume next that kp ≡ 1 (mod q) and 1 ≡ q − 1 (mod p). Consider the congruence

(q − 1) + iq ≡ q + jq (mod p).
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Note that in the solution i = iq−1 = 0, j = jq−1 = kp−1
q we have q + jq−1q = q +kp−1 = Bl. Assume

then that there is a smaller solution. Again, we may assume that either i = 0 or j = 0. Suppose that, for
some j ∈ N, we have

q − 1 ≡ q + jq (mod p)

and max(q − 1, q + jq) < Bl. Now jq + 1 = sp for some s ∈ N. As before, we have sp ≡ 1 (mod q).
Thus we must have s ≥ k. Hence

max(q − 1, q + jq) = q + jq = q + sp− 1 ≥ q + kp− 1 = Bl;

a contradiction. Suppose then that, for some i ∈ N,

q − 1 + iq ≡ q (mod p)

and max(q − 1 + iq, q) < Bl. Note that i > 0. Now there exists s ∈ N such that iq − 1 = sp. Hence
sp ≡ −1 (mod q) and s > k. Thus,

max(q − 1 + iq, q) = q − 1 + iq = q − 1 + sp + 1 > q + kp > Bl.

Again we end up in a contradiction. In this case, the rational power

w = (cq−2ab)(Bl−1)/q

and the relation R = 〈{(a, c), (b, c)}〉 together with the above calculations show that our bound Bl is
strict as in the previous case.

Case 3. Finally assume that kp ≡ −1 (mod q). Consider the same congruence as in Case 2. However,
note that now Bl = q + kp. Similarly as above, we see that, for any i ∈ N satisfying

q − 1 + iq ≡ q (mod p),

we must have max(q − 1 + iq, q) ≥ kp + q = Bl. If j ∈ N satisfies

q − 1 ≡ q + jq (mod p),

then j > 0 and q + jq − q + 1 = sp for some positive integer s. We have sp ≡ 1 (mod q) and therefore
s > k. It follows that

max(q − 1, q + jq) = sp + q − 1 ≥ (k + 1)p + q − 1 = (kp + q) + p− 1 > Bl.

Hence, the word
w = (cq−2ab)(Bl−1)/q

and R = 〈{(a, c), (b, c)}〉 show that Bl is strict also in this case. 2

Theorem 7 follows now directly from Lemma 3 and Lemma 4. Note that the value of k can be calculated
easily using an elementary theorem by Fermat and Euler. Namely, the smallest solution k′ of the equation
k′p ≡ 1 (mod q) is called the reciprocal of p modulo q and, by the theorem,

k′ = [pϕ(q)−1]q,

where ϕ is the Euler’s totient function. Thus, we have k = min(k′, q − k′), since (q − k′)p ≡ −1
(mod q).
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6 Global-external interaction
Under the same assumptions as in the previous section but replacing the local relational periodicity by
external periodicity we obtain the next interaction theorem. Like before, [n]q is the least positive residue
of an integer n (mod q).

Theorem 8 Let p and q be positive integers with gcd(p, q) = 1. Denote h = 1 +
⌊

q
2

⌋
p. The bound of

global-external interaction for p and q is

Be(p, q) =
{

min(h + [h]q − 1, h + (q − [h]q) + 1) if q is odd,
max(h, h + [h]q − (p + 1)) if q is even.

The proof of the theorem is divided into two lemmata like in the previous section.

Lemma 5 The bound Be(p, q) defined in Theorem 8 is sufficient.

Proof: Assume that a word w has a pure period q and a global R-period p. Like in Lemma 3, the word
w is a rational power of a word of length q and therefore contains at most q different letters. If one of the
letters, say a, is R-compatible with all the other letters, then the word w has also an external relational
period 1. Namely, y = a is an external word of w. On the other hand, if this is not the case and the
considered alphabet A does not contain any letters not occurring in w, then 1 is not an external R-period.
Hence, the existence of such a letter a is crucial for the bound of global-external interaction.

We use the following notation. For an integer n ∈ {1, 2, . . . , q}, we define τ(n) = max{m | 1 ≤ m ≤
|w|, m ≡ n (mod q)}. Note that if the word w has q different letters, then τ(n) is the last occurrence
of the letter wn in w. Since w has the global relational period p, it follows that wn must be related to all
letters in the positions

S(n) = {n + ip | i = 0, 1, . . . ,

⌊
|w| − n

p

⌋
}

and

T (n) = {τ(n)− ip | i = 1, 2, . . . ,

⌊
τ(n)− 1

p

⌋
}.

Next we prove that if |w| ≥ Bl, then the union S(n) ∪ T (n) contains at least q numbers, i.e.,

|S(n) ∪ T (n)| = 1 +
⌊
|w| − n

p

⌋
+

⌊
τ(n)− 1

p

⌋
≥ q. (3)

Since τ(n) ≡ n (mod q), these numbers form a complete residue system (mod q). Since q is a period
of w, this means that wn is R-compatible with all letters wi for i = 1, 2, . . . , q, and therefore 1 is an
external R-period of w.

Consider the case where q is odd. Suppose first that |w| ≥ Be = h + [h]q − 1, where h = 1 + q−1
2 p.

Then the letter wh = w[h]q occurring in the positions h and [h]q is related to all the other letters. Namely,
by the definition of Be, we have τ([h]q) ≥ h and

1 +
⌊
|w| − [h]q

p

⌋
+

⌊
τ([h]q)− 1

p

⌋
≥ 1 +

q − 1
2

+
q − 1

2
= q.
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Hence, Eq. (3) is satisfied for n = [h]q. Suppose next that |w| ≥ Be = h + (q− [h]q) + 1. Now the letter
in position 1 is related to all other letters. Namely, we have τ(1) ≥ Be and⌊

|w| − 1
p

⌋
≥

⌊
τ(1)− 1

p

⌋
≥ q − 1

2
.

Hence, |S(1) ∪ T (1)| ≥ 1 + q−1
2 + q−1

2 = q as above and Eq. (3) is satisfied for n = 1.
Let us then assume that q is even. Hence h = 1+ q

2p. We note first that max(h, h+[h]q− (p+1)) = h
if and only if [h]q ≤ p + 1. If this is the case, we have⌊

|w| − [h]q
p

⌋
≥

⌊ q
2p + 1− [h]q

p

⌋
≥ q

2
− 1.

On the other hand, if [h]q > p + 1, we have⌊
|w| − [h]q

p

⌋
≥

⌊ q
2p + 1 + [h]q − (p + 1)− [h]q

p

⌋
=

q

2
− 1.

Furthermore, τ([h]q) ≥ h in both cases and⌊
τ([h]q)− 1

p

⌋
≥

⌊ q
2p + 1− 1

p

⌋
=

q

2
.

Thus, Eq. (3) is satisfied for n = [h]q. 2

Lemma 6 The bound Be(p, q) defined in Theorem 8 is strict.

Proof: In order to prove that our bound is strict, we show that, for some suitable R, there exists a word w
of length Be−1 with a period q and with a global period p such that none of its letters is related to all other
letters. We use the notation of Lemma 5. It suffices to prove that, for every integer n ∈ {1, 2, . . . , q},
the set S(n) ∪ T (n) does not contain a complete residue system (mod q), i.e., Eq. (3) is not satisfied if
|w| = Be − 1. Namely then we may define a relation R on the alphabet A = {a1, a2, . . . , aq} in such a
way that wn is R-compatible only with the letters in the positions S(n) ∪ T (n) and hence none of the q
different letters is related to all other letters. Then the rational power

w = (a1a2 · · · aq)
Be−1

q

has a pure period q and a global period p, but it does not have gcd(p, q) = 1 as an external R-period. We
consider four cases:

Case 1. Let q be odd and Be = h+[h]q−1 = q−1
2 p+[h]q. Assume that |w| = Be−1 = q−1

2 p+[h]q−1.
Let 1 ≤ n ≤ q and suppose furthermore that n = [h]q + ip + j, where i ∈ Z and 0 ≤ j < p− 1. Now⌊

|w| − n

p

⌋
=

⌊
q−1
2 p + [h]q − 1− ([h]q + ip + j)

p

⌋
=

q − 1
2

− i− 1.
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By the definition of the bound, we have Be = h + [h]q − 1 ≤ h + (q − [h]q) + 1. Since q is odd, the
inequality must be strict. This implies that, for any number l ∈ {h, h + 1, . . . , Be}, we have [l]q ≥ [h]q.
Therefore,

τ(n) =
{

h + ip + j if n ∈ {1, 2, . . . , [Be]q − 1},
h− q + ip + j if n ∈ {[Be]q, [Be]q + 1, . . . , q}

and moreover, ⌊
τ(n)− 1

p

⌋
≤

⌊
1 + q−1

2 p + ip + j − 1
p

⌋
=

q − 1
2

+ i.

We conclude that the set S(n) ∪ T (n) contains at most ( q−1
2 − i) + ( q−1

2 + i) = q − 1 elements. Hence,
it does not form a complete residue system (mod q).

Case 2. Let q be odd and Be = h + (q − [h]q) + 1 = q−1
2 p + q + 2 − [h]q. Then |w| = Be − 1 =

q−1
2 p + q + 1 − [h]q. Like above, denote n = [h]q + ip + j, where i ∈ Z and 0 ≤ j < p − 1. By the

assumption, h + [h]q − 1 ≥ h + q − [h]q + 1 and therefore 2[h]q ≥ q + 2. Thus, we have⌊
|w| − n

p

⌋
=

⌊
q−1
2 p + q + 1− [h]q − ([h]q + ip + j)

p

⌋

≤

⌊
q−1
2 p− 1− ip− j

p

⌋
=

q − 1
2

− i− 1.

By the same reasoning as in Case 1, we have τ(n) ≤ h + ip + j and⌊
τ(n)− 1

p

⌋
≤ q − 1

2
+ i.

This means that Eq. (3) is not satisfied for any n.
Case 3. Let q be even and |w| = Be − 1 = h− 1 = q

2p. For any n ∈ {1, 2, . . . , B}, we have⌊
|w| − n

p

⌋
≤ q

2
− 1 and

⌊
τ(n)− 1

p

⌋
≤ q

2
− 1.

Thus, again Eq. (3) is not satisfied.
Case 4. Let q be even and |w| = Be − 1 = h + [h]q − (p + 1) − 1 = q

2p + [h]q − p − 1. As in the
previous cases, denote n = [h]q + ip + j, where i ∈ Z and 0 ≤ j < p− 1. We have⌊

|w| − n

p

⌋
=

⌊ q
2p + [h]q − p− 1− ([h]q + ip + j)

p

⌋
=

q

2
− i− 2.

Next we prove that, for each l ∈ {h, h + 1, . . . , Be − 1}, we have [l]q ≥ [h]q. Let us assume the contrary.
Then, for some l ∈ {h, h + 1, . . . , Be − 1}, we have [l]q = 1. Consider now the number l − q

2p. On one
hand,

l − q

2
p ≡ l − q

2
p + qp ≡ 1 +

q

2
p ≡ [h]q (mod q),

and on the other hand,
l − q

2
p ≤ Be − 1− q

2
p < [h]q.
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This is a contradiction. Hence, [l]q ≥ [h]q and therefore τ(n) ≤ h + ip + j, and⌊
τ(n)− 1

p

⌋
≤

⌊ q
2p + 1 + ip + j − 1

p

⌋
=

q

2
+ i.

Thus, |S(n) ∪ T (n)| ≤ 1 + ( q
2 − i− 2) + ( q

2 + i) = q − 1. 2

7 External interactions
In the previous two sections we found interaction bounds for one pure period and one global relational
period. On the other hand, Example 5 shows that if we replace the global period by a local period such
bounds do not necessarily exist. Is this also true if the global period is replaced by an external period?

Let us assume that a word w has a pure period q and an external period p. Let y = y1 · · · yp be an
external word of w, i.e., for every j ∈ {1, 2, . . . , p}, yj R wi whenever i ≡ j (mod p). Denote by
Alph(w) the set of the letters occurring in w. The succeeding example shows that some conditions on the
letters of the external word are needed for external-global and external-local interactions.

Example 6 Consider a three letter alphabet A = {a, b, c} and let R = 〈{(a, c), (b, c)}〉. Consider the
infinite word w = (aq−1b)ω for an integer q ≥ 2 and choose p such that gcd(p, q) = 1. Clearly any p is
an external R-period of w, since c is related to both a and b. However, 1 is neither a global nor a local
R-period of w.

Hence, the example implies the following.

Theorem 9 No finite bounds exist for external-global and external-local interactions.

Because of this, in the formulation of the next theorem we consider only external periods satisfying a
special condition.

Definition 3 An external period p of a word w is called holding if there exists an external word y =
y1 · · · yp of w satisfying

|Alph(w) \ Alph(y)| ≤ 1. (4)

By restricting considerations to the holding external periods it is possible to find a bound of interaction.

Theorem 10 Let p and q be positive integers with gcd(p, q) = 1. The bound of external-global interaction
Cg(p, q) for a holding external period p and a pure period q is pq. Similarly, the bound of external-local
interaction Cl(p, q) for a holding external period p and a pure period q is pq.

Proof: Suppose that w is of length pq and it has a pure period q and a holding external period p. Let y =
y1 · · · yp be an external word of w satisfying Eq. (4). Consider a letter wn in position n ∈ {1, 2, . . . , q}.
Since q is a period of w, the letter wn occurs in positions n + iq for i = 0, 1, . . . , p− 1. These positions
form a complete residue system (mod p), which means that wn is related to all letters in Alph(y) by the
external period p. By Eq. (4), there may exist only one letter in Alph(w) such that it does not occur in y.
If this letter is wn, then it is trivially related to itself and therefore to all letters in Alph(w). On the other
hand, if wn ∈ Alph(y), then there exists a position k such that yk = wn. Now yk is related to letters in
positions k + jp for j = 0, 1, . . . , q − 1, and these positions form a complete residue system (mod q).
Hence, yk = wn is related to all letters of w. Since the above considerations hold for all n = 1, 2, . . . , q,
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all letters in Alph(w) are compatible with all other letters. Hence, 1 is a global and therefore also a local
period of w.

Modification of the previous example shows that the bound Cg(p, q) = Cl(p, q) = pq is strict. Assume
that R is like in Example 6 and

w = (aq−1b)p−1aq−1.

We may choose y = cp−1a. Namely, yp = a must only be related to letters in positions p + ip for
i = 0, 1, . . . , q − 2, which are all a’s. Hence, w has an external word which satisfies Eq. (4), but 1 is
neither a local nor a global R-period of w. 2

For the external-external interaction additional conditions are not necessary.

Theorem 11 Let p and q be positive integers with gcd(p, q) = 1. The bound of external-external interac-
tion for p and q is C(p, q) = 1 + (q − 1)p.

Proof: Assume that y = y1 · · · yp is an external word of w. Clearly, if |w| ≥ C(p, q), then y1 is related to
all letters in Alph(w). Namely, the set {1+ ip | i = 0, 1, . . . , q−1} is a complete residue system (mod q).

In order to prove that this bound is strict, consider the rational power

w = (a1 · · · aq)(C(p,q)−1)/q

with q different letters a1, . . . , aq. Furthermore, let us assume that the alphabet A under consideration
has p extra letters not occurring in w. Suppose that these letters are y1, . . . , yp. We define that yk,
where k ∈ {1, 2, . . . , p}, is not related to the letter a[k+(q−1)p]q , but it is related to all letters wk+ip for
i = 0, 1, . . . , q − 2. Note that the length of w and the assumption that w has q different letters ensures
that this is well defined. Hence, y = y1 · · · yp is an external word of w. Furthermore, we may assume that
two different letters in Alph(w) are not compatible with each other. Hence, no letter in the alphabet A is
related to all letters in Alph(w). Therefore, the word w does not have 1 as an external R-period. 2

Of course, we may as well restrict our considerations to holding external periods like in Theorem 10.

Theorem 12 Let p and q be positive integers with gcd(p, q) = 1. Then the bound of external-external
interaction for a holding period p and a pure period q is

Ce(p, q) =
{

(p− 1)q + 1 if p is even and q > p,
(q − 1)p + 1 otherwise.

Theorem 12 is a direct consequence of the succeeding Lemmata 7 and 8.

Lemma 7 The bound Ce(p, q) defined in Theorem 12 is sufficient.

Proof: First of all, Theorem 11 implies that the bound (q − 1)p + 1 is sufficient for all external periods.
Hence, let us consider the remaining case such that a word w of length |w| ≥ (p− 1)q + 1 has a holding
external R-period p and a pure period q, where p is even and q > p. Let y = y1 · · · yp be an external word
satisfying Eq. (4). Suppose also that gcd(p, q) = 1 is not an external R-period of w.

Since w has a pure period q, it is of the form (w1 · · ·wq)p−1w1. Denote v = v1 · · · vpq = (w1 · · ·wq)p.
For 1 ≤ i ≤ p, set

Wi = {wj | j ≡ i (mod p)} and W = Alph(w). (5)
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We also denote
Vi = {vj | j > (p− 1)q + 1, j ≡ i (mod p)}. (6)

Note that W \Wi ⊆ Vi, since |v| = pq. The notation aR Y means that the letter a is compatible with all
letters in the set Y . For example, the ith letter yi of the external word y is, by the definition of an external
word, compatible with all letters in Wi, i.e., yi R Wi. Note that if also yi R Vi, then yi R W and yi is an
external word of w, which contradicts the assumption that 1 is not an external period of w. Furthermore,
for each a = vm ∈ Vi, we have a = w[m]q+nq for n = 0, 1, . . . , p− 2 and a ∈ Wj for every j 6= i.

We make two observations. Firstly, we conclude that

yi 6= yj for i 6= j. (7)

Otherwise, we have Vi ⊆ Wj and therefore yi = yj R Vi. Hence, yi R W and we get a contradiction the
same way as above.

Secondly, we note that
Vi \ {yi} 6= ∅. (8)

Namely, if Vi = {yi}, then yi R Vi by the reflexivity of R and, consequently, yi R W . As above, this is a
contradiction.

Next we show that w1 = yk for some k = 1, 2, . . . , p. By the structure of w, we have

w1 ∈ Wi, i = 1, 2, . . . , p. (9)

If w1 does not occur in y, then Eq. (4) implies that Alph(y) = W \ {w1}. Hence, by the definition of an
external word, we have w1 R Alph(y). Since R is reflexive, this means that w1 R W . Again, we end up
in a contradiction.

It also follows that there exists exactly one letter a ∈ Vk such that a does not occur in y. Namely,
there cannot exist two such letters since this would contradict the holding property Eq. (4). Suppose next
that all letters of Vk occur in y. By Eq. (9), we have yk = w1 R Vk, which implies w1 R W . This is a
contradiction. Hence, we have a ∈ Vk. Moreover, it holds that

a 6∈ Vi for i 6= k. (10)

Let us assume, on the contrary, that a ∈ Vi for some i 6= k. Then a ∈ Wj for all j = 1, 2, . . . , p,
since a ∈ Wj for every j 6= i and a ∈ Wj for every j 6= k. Thus, aR W , since aR yj for all j and
Alph(y) = W \ {a}. Again, this contradicts the fact that 1 is not an external R-period of w.

Suppose next that there exists a letter b ∈ Vk such that b = yi for some i 6= k. Consider a letter
c 6= b belonging to Vi. Note that by Eq. (8) such c exists and by Eq. (10) c 6= a. Hence, there must
exist an index j such that yj = c. Since b ∈ Vk, we have b ∈ Wl for all l 6= k, especially for l = j.
Therefore, yj = cR b. Since this holds for all letters of Vi, we conclude that b R W . Again we end up in
a contradiction and we may deduce that

Vk = {a}. (11)

Consider now the letter yi = x 6= w1 in some position i 6= k. By Eq. (8) and by Eq. (10), we have
Vi \ {x, a} 6= ∅. Moreover, there exists at least one letter z ∈ Vi \ {x} such that if yj = z then x ∈ Vj .
Otherwise, x ∈ Wj and yj = z R x. If x 6∈ Vj for any j such that yj = z ∈ Vi \ {x}, then xR Vi and,
consequently, xR W , which again implies a contradiction. Suppose next that there exists another letter
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z′ ∈ Vi \{x} in a position j′ of y such that x ∈ Vj′ . This implies that x ∈ Wl for all l 6= j′, especially for
l = j. Hence, xR yj = z. Since this holds for all z ∈ Vi \ {x}, we have xR Vi, which is a contradiction.
Therefore, the letter z must be unique. In other words, we have

Vi \ {x} = {z}. (12)

By the equations Eq. (7), Eq. (11) and Eq. (12) we conclude that, for a letter yi where i 6= k, there exists
a unique index j such that Vi \ {yi} = {yj} and Vj \ {yj} = {yi}. Hence, there must be a partition of
integers {1, 2, . . . , p} \ {k} into pairs, i.e., subsets of cardinality two. Since p is even, this is impossible.
Hence, gcd(p, q) = 1 must be an external period of w. 2

Lemma 8 The bound Ce(p, q) defined in Theorem 12 is strict.

Proof: We adopt the notation of Lemma 7. Recall especially definitions (5). For each k, also denote

k′ = [(q − 1)p + k]q. (13)

Let Ce = Ce(p, q). In the sequel, we consider four cases. In each case, we show that it is possible to
define a relation R, a word w with period q and of length Ce − 1 and an external word y = y1 · · · yp of w
in such way that no letter in the alphabet A under consideration is related to all letters in Alph(w), and in
addition, y satisfies yi R Wi for 1 ≤ i ≤ p and |Alph(w) \ Alph(y)| ≤ 1. These properties imply that w
has a holding external period p, but 1 cannot be an external period.

Case 1. Assume that q < p and q is even. Then Ce = (q − 1)p + 1. Set A = {a1, . . . , aq} and

w = (a1 · · · aq)(Ce−1)/q. (14)

Since q is even, we can make a partition P of the set {k′ | k = 1, 2, . . . , q} = {1, 2, . . . , q} into pairs,
i.e., subsets of cardinality two. If m and n belong to the same subset in P , we denote (m,n) ∈ P and let

(am, an) 6∈ R. (15)

Let these be the only R-incompatible pairs. Hence, each letter in A is R-incompatible with exactly one
other letter in Alph(w).

Taking benefit of the partition P , we set for every i, j ∈ {1, 2, . . . , q} satisfying (i′, j′) ∈ P that

yi = aj′ and yj = ai′ . (16)

Then yi = aj′ R Wi = A\{ai′} for i ∈ {1, 2, . . . , q}. Furthermore, set yi = y[i]q for i = q+1, q+2, . . . , p.
Note that Wi ⊆ W[i]q . Namely, if i = [i]q + tq ≤ p, then

Wi = {wj | j ≡ [i]q + tq (mod p)} ⊆ {wj−tq | j − tq ≡ [i]q (mod p)} = W[i]q ,

since q is a period of w. Hence, yi R Wi for all i = 1, 2, . . . , p, and Alph(y) = Alph(w).
Case 2. Assume that q < p and q is odd. We have Ce = (q − 1)p + 1. Let A = {a1, . . . , aq, b, c}

and set w as in Eq. (14). Assume that r,s and t are three different integers in {1, 2, . . . , q}, where
s = [(q − 1)p + (q + 1)]q. Since q − 3 is even, we can make a partition P of the set {1, 2, . . . , q} \
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{r, s, t} into pairs. Define R-incompatible pairs by Eq. (15) for indices {1, 2, . . . , q} \ {r, s, t}. Let also
(ar, as), (ar, b), (as, at), (at, c) 6∈ R. Hence, no letter in A is compatible with all letters of Alph(w).

Use Eq. (16) to determine the letters yi, where i = 1, 2, . . . , q and i′ ∈ {1, 2, . . . , q} \ {r, s, t}. Fur-
thermore, for i = 1, 2, . . . , q, set

yi =

 b if i′ = r,
ar if i′ = s,
c if i′ = t.

Set also yq+1 = at so that as is the only letter in Alph(w) not occurring in the external word y. Hence,
|Alph(w) \ Alph(y)| ≤ 1. For i = q + 2, q + 3, . . . , p, set yi = y[i]q like in Case 1. We may assume
that there are no more incompatible pairs than those mentioned above. Therefore, yi R Wi for all i, since
Wi = Alph(w) \ {ai′}. Especially, yq+1 = at R Wq+1, where Wq+1 = Alph(w) \ {as}.

Case 3. Assume that q > p and p is odd. Then Ce = (q − 1)p + 1. Let the alphabet be A =
{a, aq−p+1, aq−p+2, . . . , aq} and set

w = (aq−paq−p+1aq−p+2 · · · aq)(Ce−1)/q.

Since p is odd, we can partition the set {q−p+1, q−p+2, . . . , q−1} and make (p−1)/2 incompatible pairs
using Eq. (15). Additionally, set (aq, a) 6∈ R. Assume moreover that these are the only R-incompatible
pairs. Again, each letter is incompatible with exactly one other letter. Since i′ = q − p + i for all
i = 1, 2, . . . , p, we may define y1 · · · yp−1 using Eq. (16). Furthermore, set yp = a. Now yi R Wi for
i = 1, 2, . . . , p. Especially, yp = aR Wp = A \ {aq} and Alph(w) \ Alph(y) = {aq}.

Case 4. Assume that q > p and p is even. We have Ce = (p−1)q+1. Consider a word (w1 · · ·wq)p−1

where wi = wj if 1 ≤ i, j ≤ q and i ≡ j (mod p). Assume also that A = Alph(w). We make a
partition P of the set {q − p + 1, q − p + 2, . . . , q} into pairs. Note that the set has an even number
of elements. Define R-incompatible pairs by Eq. (15) and let these be the only R-incompatible pairs.
Since {wq−p+1, wq−p+2, . . . , wq} = Alph(w) = A, no letter is compatible with Alph(w). As above,
i′ = q − p + i for all i = 1, 2, . . . , p and we may define y1 · · · yp using Eq. (16). Now we have yi R Wi

for all i. Moreover, we have Alph(y) = Alph(w). 2

On the other hand, it might be more interesting to consider the case where the external word of w
consists only of letters occurring in w.

Definition 4 An external period p of a word w is called inclusive if there exists an external word y =
y1 · · · yp of w satisfying

Alph(y) ⊆ Alph(w). (17)

Using this definition we have one more result concerning the external-external interaction.

Theorem 13 Let p and q be positive integers with gcd(p, q) = 1. Then the bound of external-external
interaction for an inclusive external period p and a pure period q is

C(p, q) =
{

(q − 2)p + (q − 1) if q is odd and q ≤ p + 1,
(q − 1)p + 1 otherwise.

Lemma 9 and Lemma 10 imply Theorem 13.

Lemma 9 The bound C(p, q) defined in Theorem 13 is sufficient.
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Proof: First of all, Theorem 11 implies that the bound (q − 1)p + 1 is sufficient for all external periods.
Hence, let us consider the remaining case such that a word w of length |w| ≥ (q − 2)p + (q − 1) has an
inclusive external period p and a pure period q, where q is odd and q ≤ p + 1.

We use the notation of Lemmata 7 and 8. Recall especially that Wi = {wj | j ≡ i (mod p)},
W = Alph(w) and k′ = [(q − 1)p + k]q. Hence, by the definition of an external word, yk R Wk.
Furthermore, set U = {1, 2, . . . , q − 1}. Note that since q − 1 ≤ p, the set Wk is defined for all k ∈ U .
Moreover, if k ∈ U , then |w|−k ≥ (q−2)p. Since gcd(p, q) = 1 and q is a pure period of w, this implies
that

wm ∈ Wk =
{

wk+ip

∣∣∣∣ i = 0, 1, . . . ,

⌊
|w| − k

p

⌋}
(18)

for any m 6≡ k′ (mod q). Since yk R Wk, it follows that

yk R wm if m 6≡ k′ (mod q). (19)

Next we state three important properties, which will be needed throughout the proof: (i) If k ∈ U and
yk = wk′ , then yk R W; (ii) If there exist k, l ∈ U (k 6= l) such that yk = yl, then yk R W; (iii) If there
exist k, l ∈ U (k 6= l) such that yl = wk′ and yk ∈ W \ {wl′}, then yk R W .

The first statement follows directly from Eq. (19), since the similarity relation R is reflexive.
Next, consider the second property. By Eq. (19), we have yk R (W \ {wk′}) and yl R (W \ {wl′}).

Now k′ 6= l′, since k, l ∈ {1, 2, . . . , q − 1}. Hence, yk R wl′ and yl R wk′ by Eq. (19). Since yk = yl, we
have yk R W .

Finally, consider (iii). Again, yk R (W \{wk′}) and yl R (W \{wl′}). Since yk ∈ W \{wl′}, we have
wk′ = yl R yk, which implies that yk R W . Note that, if k, l ∈ U (k 6= l), yl = wk′ and yk = wl′ , then
relations yk R Wk and yl R Wl do not imply wk′ R wl′ .

If any of the assumptions of (i)–(iii) is satisfied, then the word w necessarily has an external period 1.
Namely, y = yk is an external word of w. Thus, from now on we assume that none of them is satisfied.

Assume first that, at least for one index k ∈ U , the letter in the position k′ occurs also in another
position 1 ≤ n ≤ q. Denote wk′ = wn = a. Since Wk must contain a letter which is in a position
congruent to n, we have a ∈ Wk and Wk = W . Thus, yk R W and 1 is an external period of w.

Finally, assume that, for each k ∈ U , the letter wk′ occurs only in positions congruent to k′ (mod q).
This means that all letters wk′ (1 ≤ k ≤ q) are different. Moreover, this implies that Alph(y1 · · · yq−1) =
W\{ws′} for some 1 ≤ s ≤ q, since Alph(y1 · · · yq−1) ⊆ W by Eq. (17) and all letters in Alph(y1 · · · yq−1)
are different by (ii).

Suppose now that s = q. Since q′ 6∈ {k′ | k ∈ U}, we have yk R wq′ for 1 ≤ k ≤ q − 1 by Eq. (19).
Since Alph(y1 · · · yq−1) = W \ {wq′}, it follows that wq′ R (W \ {wq′}). By the reflexivity of R, we
have wq′ R W and y = wq′ is an external word of w.

Moreover, the case s 6= q is impossible. This is based on the fact that q−1 is even. Indeed, assume that
yr = wq′ for some r ∈ U . Now consider n ∈ U \ {r}. Since Alph(y1 · · · yq−1) ⊆ {wk′ | 1 ≤ k ≤ q},
we have yn = wm′ for some m ∈ {1, 2, . . . , q}. Since the letters {wk′ | 1 ≤ k ≤ q} are distinct, the
integer m is unique. In addition, m 6= n by (i) and m 6= q by (ii). Furthermore, ym = wn′ by (iii) and
therefore m 6= r, since wq′ 6∈ {wk′ | k ∈ U}. Thus, m ∈ U \ {r, n}. Since the set U \ {r} has odd
number q − 2 elements, there cannot be such unique m for each n. This is a contradiction. Hence, we
have shown that gcd(p, q) = 1 is an external period of w. 2
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Lemma 10 The bound C(p, q) defined in Theorem 13 is strict.

Proof: Let p and q be positive integers with gcd(p, q) = 1. Denote C = C(p, q) and adopt the notation
of Lemma 7 and Lemma 8. In this proof, we want to define a relation R, a word w with period q and of
length C − 1 and an external word y = y1 · · · yp of w in such way that no letter in the alphabet A under
consideration is related to all letters in Alph(w), and in addition, y satisfies yi R Wi for 1 ≤ i ≤ p and
Alph(y) ⊆ Alph(w).

Consider first the situation where q is odd and q < p. Hence, C = (q − 2)p + (q − 1). We set
A = {a1, . . . , aq} and

w = (a1 · · · aq)(C−1)/q.

Case 1. Assume that q < p, q is odd and neither p + 1 nor p− 1 is divisible by q. Denote

a = a[(q−2)p+(q−1)]q , b = a[(q−2)p+q]q ,
c = a[(q−1)p+(q−1)]q , d = a[(q−1)p+q]q .

Note that by the above divisibility properties, all these four letters are different. Now {ai′ | i =
1, 2, . . . , q − 2} = A \ {c, d}. Hence, there exist numbers k, l ∈ {1, 2, . . . , q − 2} such that ak′ = a and
al′ = b. We make a partition P of the set {i′ | i ∈ {1, 2, . . . , q − 2}, i 6= l} into pairs. This is possible
since the set contains an even number q − 3 of elements. We use Eq. (15) to define R-incompatible pairs
of P and, in addition, we set (b, c) 6∈ R and (b, d) 6∈ R. Let these be the only incompatible pairs. Hence,
except for b, all other letters are R-incompatible with exactly one other letter. Now consider an external
word y = y1 · · · yp. For indices i ∈ {1, 2, . . . , q− 2} \ {l}, use Eq. (16) as before. In addition, set yl = c,
yq−1 = yk and yq = d. Moreover, as in Case 1 of Lemma 8, set yi = y[i]q for i = q + 1, q + 2, . . . , p.
Now

yl = cRWl = A \ {b},
yq−1 = yk RWq−1= A \ {a, c},

yq = d RWq = A \ {b, d},

and yi R Wi by Eq. (16) for all the other indices i ∈ {1, 2, . . . , q − 2} \ {l}.
Case 2. Assume that q < p, q is odd and p + 1 ≡ 0 (mod q). We use the same notation as in Case 1.

Since p + 1 ≡ 0 (mod q), a = d. Clearly b 6∈ {c, a}. Now {ai′ | i = 1, 2, . . . , q − 2} = A \ {c, a}.
Thus, there does not exist k ∈ {1, 2, . . . , q − 2} such that ak′ = a, but we have l like in Case 1. Define
the relation R and the external word y as in Case 1 except that now yq−1 = b. Hence, no letter is related
to all other letters occurring in w and y is well defined. Namely,

yq−1 = b RWq−1 = A \ {a, c}.

Case 3. Assume that q < p, q is odd and p−1 ≡ 0 (mod q). Using the notation of Case 1, we conclude
that b = c. Clearly a 6∈ {b, d}. Now we have {ai′ | i = 1, 2, . . . , q − 2} = A \ {b, d}. Hence, using the
notation of Case 1, there exists k but no l in {1, 2, . . . , q − 2}. This time we make a partition P of the set
{i′ | i = {1, 2, . . . , q − 2}, i 6= k} into subsets of cardinality two. Define R such that it satisfies Eq. (15)
and furthermore that (a, b) 6∈ R and (a, d) 6∈ R. Assume again that these are the only R-incompatible
pairs. In addition to Eq. (16) set yk = b, yq−1 = b and yq = a. Again no letter is compatible with all
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other letters and y is well defined, since

yk = b RWk = A \ {a},
yq−1 = b RWq−1= A \ {a, c},

yq = aRWq = A \ {b, d}.

Case 4. Next assume that q > p + 1 and p is even. Hence, C = (q − 1)p + 1. Set A and w as in
the previous cases. Make a partition P of the set {i′ | i = 1, 2, . . . , p} = {q − p + 1, q − p + 2, . . . , q}
into pairs. Define R-incompatible pairs by Eq. (15) and use Eq. (16) to define the external word y. Since
q − p ≥ 2, we also set (a, a1) 6∈ R for each a ∈ {a2, . . . , aq−p}. Hence, no letter is R-compatible with
all other letters of Alph(w). Moreover, yi R Wi for all i.

In all other cases we may use the constructions in Cases 1, 3 and 4 of Lemma 8. Note that the external
words in these cases satisfy the condition Alph(y) ⊆ Alph(w). Note also that if q is odd and q = p + 1,
then C(p, q) = (q − 2)p + (q − 1) = (p− 1)q + 1 = Ce(p, q) and the construction in Case 4 is suitable
for our purposes. Hence, we have shown that in all cases there exists a word w of length C−1 such that it
has a pure period q and an external word y = y1 · · · yp but 1 is not an external R-period of w. Moreover,
the external word y satisfies Eq. (17) in every case. 2

8 Local interactions
Despite the negative result in Example 5 there exist interaction bounds for some integers p and q also in
the case where p is local. If no bound B(p, q) of interaction for p and q exists, i.e., there is an infinite
word w such that gcd(p, q) is not a t2-type period of w, we set B(p, q) = ∞.

Theorem 14 Let p and q be positive integers with gcd(p, q) = 1. Then the bound of local-local interac-
tion for p and q is

Dl(p, q) =
{

p + q if p− 1 ≡ 0 (mod q) or p + 1 ≡ 0 (mod q),
∞ otherwise.

Proof: Let w be a word of length Dl = Dl(p, q) with a pure period q and a local period p. Suppose that
gcd(p, q) = 1. Assume first that p + 1 ≡ 0 (mod q). By the periodicity assumption, we then have

wi R wi+p = wi−1

for all i = 2, 3, . . . , q and furthermore w1 R w1+p = wq. Since q is a period of w, 1 is a local R-period
of w. On the other hand, if we set R = 〈{(a, c), (b, c)}〉, the word

w = (cq−2ab)(p+q−1)/q

has a pure period q and a local R-period p. However, gcd(p, q) = 1 is not a local R-period of w, since
(wq−1, wq) 6∈ R. Note that in order to check that w has a local period p, it suffices to ensure that the
distance from any occurrence of a to any occurrence of b is not p. By the length of w this holds. Namely,
we have a = wq−1 R wq−1+p = wq−2 = c and if q = p + 1, then also b = wq R wq−p = w1 = c.
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Assume next that p − 1 ≡ 0 (mod q). Now wi R wi+p = wi+1 for all i = 1, 2, . . . , q. As above, this
means that w has a local R-period 1. Our bound is strict, since setting again R = 〈{(a, c), (b, c)}〉, the
word

w = (acq−2b)(p+q−1)/q

has a pure period q and a relational R-period p. However, (wq, wq+1) 6∈ R and 1 is not a local R-period.
Again the length of w ensures that a and b do not have to be related. We only check that a = w1 R w1+p =
w2 = c, which is satisfied.

Finally, assume that q does not divide p− 1 nor p + 1. Then i + p 6≡ i + 1 (mod q) and i + p 6≡ i− 1
(mod q). Thus, if R = 〈{(a, c), (b, c)}〉, then the infinite word

w = (abcq−2)ω

has a pure period q and a local R-period p, but clearly 1 is not a local R-period of w. 2

Local periods are also weak when considering other interactions.

Theorem 15 Let p and q be positive integers with gcd(p, q) = 1. The bounds De(p, q) of local-external
interaction and Dg(p, q) of local-global interaction do not exist, except for q = 3, in which case De(p, q) =
p + 2 and Dg(p, q) = p + 3.

Proof: As usual, denote De(p, q) = De and Dg(p, q) = Dg . Consider first the case where q = 3. Assume
that a word w has a pure period 3 and a local R-period p. Recall that [n]q is the least positive residue of
an integer n (mod q). If |w| ≥ p + 2, then

w1 R w[1+p]3 and w2 R w[2+p]3 . (20)

Since gcd(p, q) = 1, the letter w[1+p]3 is equal to w2 or w3 and w[2+p]3 is equal to w3 or w1, respectively.
This implies that in the first case y = w2 is an external word of w, whereas in the second case we may
choose y = w1. If |w| ≥ p+3, then in addition to Eq. (20), we have w3 R w[3+p]3 where w[3+p]3 is equal
to either w1 or w2. Hence, we must have wi R Alph(w) for i = 1, 2, 3 and therefore 1 is a global R-period
of w. On the other hand, u = (abc)b(p+1)/3c with R = 〈{(a,w[1+p]3)}〉 and v = (abc)b(p+2)/3c with
S = 〈{(a,w[1+p]3), (b, w[2+p]3)}〉 show that the bounds De and Dg are strict for q = 3.

Otherwise, let q ≥ 4. Consider a four letter alphabet {a, b, c, d} and set R = 〈(a, b), (b, c), (c, d), (d, a)〉.
Define an infinite word w = (w1 · · ·wq)ω in the following way. Set

w1 = a, w[1+p]q = b, w[1+2p]q = c and w[1+ip]q = d

for i = 3, 4, . . . , q − 1. Now, by the definition of R, wi R wi+p for all i = 1, 2, . . . , q. Hence, p is a local
R-period of w. However, 1 is neither an external nor a global R-period, since no letter is compatible with
all the other letters. Hence, De = Dg = ∞. 2

9 Summary of bounds
In order to get a clearer picture of all the different variants of Fine and Wilf’s theorem represented in the
previous sections, we summarize the bounds in Table 2.
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interaction type bound

global-global Bg =


p + 1

2
q if (p < q and p is odd) or (p > q and q is even),

q +
q − 1

2
p otherwise.

global-external Be =

{
min(h + [h]q − 1, h + (q − [h]q) + 1) if q is odd,

max(h, h + [h]q − (p + 1)) if q is even.

global-local Bl =

{
q + kp− 1 if 1 ≡ q − 1 (mod p) and kp ≡ +1 (mod q),
q + kp otherwise.

holding external-global Cg = pq

holding external-external Ce =

{
(p− 1)q + 1 if p is even and q > p,

(q − 1)p + 1 otherwise.

holding external-local Cl = pq

external-global ∞

inclusive external-external C =

{
(q − 2)p + (q − 1) if q is odd and q ≤ p + 1
(q − 1)p + 1 otherwise.

external-external C = 1 + (q − 1)p

external-local ∞

local-global Dg =

{
p + 3 if q = 3
∞ otherwise

local-external De =

{
p + 2 if q = 3
∞ otherwise

local-local Dl =

{
p + q if p− 1 ≡ 0 (mod q) or p + 1 ≡ 0 (mod q),
∞ otherwise.

Tab. 2: Interaction bounds for p and q, where gcd(p, q) = 1, h = 1 + bq/2cp and k is the smallest integer such that
kp ≡ ±1 (mod q).
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By Theorem 1, a global period is a stronger attribute than the other periods, and therefore

Bg(p, q) ≥ Be(p, q) and Bg(p, q) ≥ Bl(p, q),

for every p and q. Observe also that B-bounds (Bg , Be and Bl) are in many cases smaller than the other
bounds.

On the other hand, if we compare the bounds of global-external and global-local interaction we see, for
example, that

Be(5, 9) = 23 > 19 = Bl(5, 9),
Be(4, 7) = 15 = 15 = Bl(4, 7),
Be(3, 5) = 8 < 10 = Bl(3, 5).

This indicates the incomparability of external relational period and local relational period, which was
already seen in Examples 3 and 4 with respect to minimal periods. However, in some sense the local
period seems to be the weakest. In the case where p is an external period, we get interaction bounds, at
least, if we assume extra conditions. In the case of a local period p, bounds usually do not exist. As a final
example, we give a complete table (Table 3) of interaction bounds for p = 6 and q = 7.

XXXXXXXXXXt1

t2 global external local

global 25 22 13
holding external 42 36 42

inclusive external 36
external ∞ 37 ∞

local ∞ 13 ∞

Tab. 3: Interaction bounds for p = 6 and q = 7.
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