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Let a and b be two positive integers. A culminating path is a path of Z2 that starts from (0, 0), consists of steps
(1, a) and (1,−b), stays above the x-axis and ends at the highest ordinate it ever reaches. These paths were first
encountered in bioinformatics, in the analysis of similarity search algorithms. They are also related to certain models
of Lorentzian gravity in theoretical physics.

We first show that the language on a two letter alphabet that naturally encodes culminating paths is not context-free.

Then, we focus on the enumeration of culminating paths. A step by step approach, combined with the kernel method,
provides a closed form expression for the generating function of culminating paths ending at a (generic) height k. In
the case a = b, we derive from this expression the asymptotic behaviour of the number of culminating paths of length
n. When a > b, we obtain the asymptotic behaviour by a simpler argument. When a < b, we only determine the
exponential growth of the number of culminating paths.

Finally, we study the uniform random generation of culminating paths via various methods. The rejection approach,
coupled with a symmetry argument, gives an algorithm that is linear when a ≥ b, with no precomputation stage nor
non-linear storage required. The choice of the best algorithm is not as clear when a < b. An elementary recursive
approach yields a linear algorithm after a precomputation stage involving O(n3) arithmetic operations, but we also
present some alternatives that may be more efficient in practice.

Keywords: Lattice paths – Enumeration – Random generation

1 Introduction
One-dimensional lattice walks on Z have been extensively studied over the past 50 years. These walks
usually start from the point 0, and take their steps in a prescribed finite set S ⊂ Z. A large number
of results are now known on the enumeration of sub-families of these walks, and can be obtained in a
systematic way once the set S is given. This includes the enumeration of bridges (walks ending at 0),
meanders (walks that always remain at a non-negative level), excursions (meanders ending at level 0),
excursions of bounded height, and so on. In particular, the nature of the associated generating functions is
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(π-vert)” of ACI Nouvelles Interfaces des Mathématiques, French Ministry of Research.
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Fig. 1: A culminating path (for a = 5 and b = 3) and the corresponding word.

well understood: these series are always algebraic, and even rational for bounded walks [2, 5, 10, 8, 19, 26,
31, 32, 37]. These algebraicity properties actually reflect the fact that the languages on the alphabet S that
naturally encode these families of walks are context-free, and even regular in the bounded case. In many
papers, these one-dimensional walks are actually described as directed two-dimensional (2D) walks, upon
replacing the starting point 0 by (0, 0) and every step s by (1, s). This explains why excursions are often
called generalized Dyck paths (the authentic Dyck paths correspond to the case S = {1,−1}). This two-
dimensional setting allows for a further generalisation, with steps of the form (i, j), with i > 0 and j ∈ Z,
but this does not affect the nature of the associated languages and generating functions. The uniform
random generation of these walks has also been investigated, through a recursive approach [39, 24, 20] or
using an anticipated rejection [6, 33].

This paper deals with a new class of walks which has recently occurred in two independent contexts,
and seems to have a more complicated structure than the above mentioned classes: culminating walks. A
2D directed walk is said to be culminating if each step ends at a positive level, and the final step ends at
the highest level ever reached by the walk (Figure 1). We focus here on the case where the steps are (1, a)
and (1,−b), with a and b positive, hoping that this encapsulates all the possible typical behaviours.

In the case a = b = 1, culminating walks have recently been shown to be in bijection with certain
Lorentzian triangulations [18], a class of combinatorial objects studied in theoretical physics as a model
of discrete two-dimensional Lorentzian gravity. Using a transfer matrix approach, the authors derived the
generating function for this case. We give two shorter proofs of their result. Also, while it is not clear
how the method used in [18] could be extended to the general (a, b)-case, one of our approaches works
for arbitrary values of a and b.

The general (a, b)-case appears in bioinformatics in the study of the sensitivity of heuristic homology
search algorithms, such as BLAST, FASTA or FLASH [1, 34, 11]. These algorithms aim at finding the
most conserved regions (similarities ) between two genomic sequences (DNA, RNA, proteins...) while
allowing certain alterations in the entries of the sequences. In order to avoid the supposedly intrinsic
quadratic complexity of the deterministic algorithms, these heuristic algorithms first consider identical
regions of bounded size and extend them in both directions, updating the score with a bonus for a match
or a penalty for an alteration, until the score drops below a certain threshold. The evolution of the score
all the way through the final alignment turns out to be encoded by a culminating walk.

In [30], we first studied the probability of a culminating walk to contain certain patterns called seeds,
as some recent algorithms make use of them to relax the mandatory conservation of small anchoring
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Fig. 2: Two walks that are not culminating, violating the final record condition (left) or the positivity condition (right).

portions. Then, we proposed a variant of the recursive approach for the random generation of these walks.
Finally, we observed that the naive rejection-based algorithm, which consists in drawing uniformly at
random up and down steps and rejecting the resulting walk if is not culminating, seemed to be linear
(resp. exponential) when a > b (resp. a < b). This observation, which is closely related to the asymptotic
enumeration of culminating walks, is confirmed below in Section 6.2.

To conclude this introduction, let us fix the notation and summarize the contents of this paper. Let a
and b be two positive integers. A walk (or path) of length n is a sequence (0, η0), . . . , (n, ηn) such that
η0 = 0 and ηi+1 − ηi ∈ {a,−b} for all i. The height of the walk is the largest of the ηi’s, while the final
height is ηn. The walk is culminating if the two following conditions hold:

∀i ∈ [1, n], ηi > 0 (Positivity),

∀i ∈ [0, n− 1], ηi < ηn (Final record).

See Figures 1 and 2 for examples and counter-examples. We encode every walk by a word on the alphabet
{m,m} in a standard way: each ascending step (1, a) is replaced by a letter m and each descending
step (1,−b) is replaced by a letter m. We denote by {m,m}∗ the set of words on the alphabet {m,m}.
From now on, we identify a path and the corresponding word. Since these objects are essentially one-
dimensional, we will often use a 1D vocabulary, saying, for instance, that our paths take steps +a and −b
(rather than (1, a) and (1,−b)). We hope that this will not cause any confusion. Without loss of generality,
we restrict our study to the case where a and b are coprime.

For any word w, we denote by |w|m (resp. |w|m) the number of occurrences of the letter m (resp. m)
that it contains. We denote by |w| the length of w. The function φa,b : {m,m}∗ → N maps a word to the
final height of the corresponding walk. That is, φa,b(w) = a|w|m − b|w|m. The culmination properties
can be translated into the following language-theoretic definition:

Definition 1.1 The language of culminating words is the set Ca,b ⊂ {m,m}∗ of words w such that, for
every non-empty prefix w′ of w:

φa,b(w′) > 0 (Positivity),

and, for every proper prefix w′ of w:

φa,b(w′) < φa,b(w) (Final record).

The main result of Section 2 is that the language Ca,b is not context-free. In Section 3, we obtain a
closed form expression for the generating function of culminating walks. This expression is complicated,
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but we believe this only reflects the complexity of this class of walks. This enumerative section is closely
related to the recent work [10], devoted to a general study of excursions confined in a strip. In particular,
symmetric functions play a slightly surprising role in the proof and statement of our results. We then
derive in Section 4 the asymptotic number of culminating walks, in the case a ≥ b. Our result implies
that, asymptotically, a positive fraction of (general) (a, b)-walks are culminating if a > b. We prove that
this fraction tends to 0 exponentially fast if a < b. More precisely, we determine the exponential growth
of the number of culminating walks. This asymptotic section uses the results obtained in [5] on the
exact and asymptotic enumeration of excursions and meanders. Finally, in Section 6, we present several
algorithms for generating uniformly at random culminating walks of a given length. Our best algorithms
are linear when a ≥ b. When a < b, the choice of the best algorithm is not obvious. An elementary
recursive approach yields a quasi-linear generating stage but requires the precomputation and storage of
O(n3) numbers. We exploit in this section several generation schemes, like the recursive method [39, 24],
the rejection method [14] and Boltzmann samplers [20]. Moreover, we address in Section 5 the random
generation of positive walks, which is a preliminary step in some of our algorithms generating culminating
walks. We have implemented our algorithms in Java, and we invite the reader to generate his/her own paths
at the address http://www.lri.fr/∼ponty/walks. Figure 3 shows random culminating paths
of length 1000 generated with our software, for various values of a and b.
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Fig. 3: Random culminating paths of size 1000, when (a, b) = (1, 1), (a, b) = (2, 1), (a, b) = (1, 2). In the first
two cases, four paths are displayed, while for the sake of clarity, only one path is shown in the third case.

http://www.lri.fr/~ponty/walks
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2 Language theoretic properties
We denote by Ca,b⇒k the subset of Ca,b that consists of the walks (words) ending at height k. It will be
easily seen that this language (for a fixed k) is regular. However, we shall prove that the full language Ca,b
is not context-free. We refer to [27] for definitions on languages.

2.1 Culminating walks of bounded height
Proposition 2.1 For all a, b, k ∈ N, the language Ca,b⇒k of culminating words ending at height k is
regular.

Proof: The culminating paths of final height k move inside a bounded space. This allows us to construct
a (deterministic) finite-state automaton that recognizes these paths. The states of this automaton are the
accessible heights (that is, 0, 1, . . . , k), plus a garbage state ⊥. The initial state is 0, the final state is k,
and the transition function δ is given, for 0 ≤ q < k, by:

δ(q,m) =
{
q + a if q ≤ k − a,
⊥ otherwise , δ(q,m) =

{
q − b if q > b,
⊥ otherwise ,

while
δ(k, ·) = δ(⊥, ·) =⊥ .

Clearly, this automaton sends any word attempting to walk below 0 (resp. above k) in the garbage
⊥, where it will stay forever and therefore be rejected. Moreover, it only accepts those words ending in
the state k. Hence this automaton recognizes exactly Ca,b⇒k. Since the state space is finite, Ca,b⇒k is a
regular language. 2

2.2 Unbounded culminating walks
Proposition 2.2 For all a, b ∈ N, the language Ca,b of culminating walks is not context-free.

Proof: Recall that the intersection of a context-free language and a regular language is context-free [27].
Let L be the following regular language: L = m∗.m∗.m∗. It can be seen as the language of “zig-zag”
paths. Let K = Ca,b ∩ L. It is easy to see that

K = {mi.mj .mk| i > 0, bj < ai and bj < ak}.

Assume that Ca,b is context-free. Then so isK, and, by the pumping lemma for context-free languages [27,
Theorem 4.7], there exists n ∈ N such that any word w ∈ K of length at least n admits a factorisation
w = x.u.y.v.z satisfying the following properties:

(i) |u.v| ≥ 1,

(ii) |u.y.v| ≤ n,

(iii) ∀` ≥ 0, w` := x.u`.y.v`.z ∈ K.
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Where is the factor u.y.v? ` w` Failing condition
A 0 mi−h.mj .mi Pos.: φ(mi−h.mj) = 1− ah ≤ 0
B 2 mi.mj+h.mi Pos.: φ(mi.mj+h) = 1− bh ≤ 0
C 0 mi.mj .mi−h Fin. rec.: φ(w`) = φ(mi)− ah ≤ φ(mi)

A ∪B
|u|m.|u|m + |v|m.|v|m 6= 0 2 mp.mk.mk′ .mp′ .mi w` /∈ L (Too many peaks)

u = mk, v = mk′ 2 mi+k.mk′+j .mi Final record:
φ(w`) = φ(mi+k) + 1− bk′ ≤ φ(mi+k)

B ∪ C
|u|m.|u|m + |v|m.|v|m 6= 0 2 mi.mp.mk.mk′ .mp′ w` /∈ L (Too many valleys)

u = mk, v = mk′ 2 mi.mj+k.mk′+i Pos.: φ(mi.mj+k) = 1− kb ≤ 0

Tab. 1: Why the pumping lemma is not satisfied.

Since a and b are coprime, there exist i > n and j > n such that ia − jb = 1 (this is the Bachet-Bezout
theorem). Hence the word w = mimjmi belongs to K. In the rest of the proof, we will refer to the first
sequence of ascending steps of w as A, to the descending sequence as B and to the second ascending
sequence as C.

In Table 1, we consider all eligible factorisations of w of the form w = x.u.y.v.z. Five cases arise,
depending on which part of w contains the factor u.y.v. Condition (ii) implies that this factor cannot
overlap simultaneously with the parts A and C. Each of the cases A∪B and B ∪C is further subdivided
into two cases, depending on whether u and v are monotone or not.

For each factorisation, the table gives a value of ` for which the word w` does not belong to K. This is
justified in the rightmost column: either w` does not belong to the set L of zig-zag paths, or the positivity
condition does not hold, or the last step of the walk is not a record.

Once all the possible factorisations have been investigated and found not to satisfy the pumping lemma,
we conclude that the languages K and Ca,b are not context-free. 2

3 Exact enumerative results
In this section, we give a closed form expression for the generating function of (a, b)-culminating walks.
More precisely, we give an expression for the series counting culminating walks of height k, and then sum
over k. This summation makes the series a bit difficult to handle, for instance to extract the asymptotic
behaviour of the coefficients (Section 4). We believe that this complexity is inherent to the problem. In
particular, we prove that the generating function of (1, 1)-culminating walks is not only transcendental,
but also not D-finite. That is, it does not satisfy any linear differential equation with polynomial coeffi-
cients [37, Ch. 6].

3.1 Statement of the results and discussion
Let us first state our results in the (1,1)-case and then explain what form they take in the general (a, b)-case.



Culminating paths 131

4
5
6
7
8

3
2
1

Fig. 4: When a = 5 and b = 3, there is no culminating walk of height k, for k ∈ J1, 8K \ {5, 7, 8}. For k = 5, 7, 8,
there is exactly one culminating walk.

Proposition 3.1 Let a = b = 1 and k ≥ 1. The length generating function of culminating paths of height
k is

Ck(t) =
tk

Fk−1
= t

U1 − U2

Uk1 − Uk2
=

1− U2

1 + U2

Uk

1− U2k
,

where

• Fk is the kth Fibonacci polynomial, defined by F0 = F1 = 1 and Fk = Fk−1 − t2Fk−2 for k ≥ 2,

• U1 and U2 are the two roots of the polynomial u− t(1 + u2):

U1,2 =
1∓
√

1− 4t2

2t
,

• U stands for any of the Ui’s.

The generating function of culminating walks,

C(t) =
1− U2

1 + U2

∑
k≥1

Uk

1− U2k
, (1)

is not D-finite.

The above expression of C(t) is equivalent to the case x = y = 1 of [18, Eq.(2.26)].

The first expression of Ck, in terms of the Fibonacci polynomials, is clearly rational. As explained in
Section 2.1, the language of culminating walks of height k is regular for all a and b, so that the series Ck
will always be rational. Of course,Ck is simply 0 when k < a. When k = a, there is only one culminating
path, reduced to one up step, so thatCk = t. More generally, the following property, illustrated in Figure 4
and proved in Section 3.2.1, holds.

Property 3.2 For k ≤ a+ b, there is at most one culminating path of height k.

As soon as k > a, culminating walks of height k have at least two steps. Deleting the first and last ones
gives Ck = t2Wk, where Wk counts walks (with steps +a,−b) going from a to k − a on the segment
J1, k − 1K. General (and basic) results on the enumeration of walks on a digraph provide [36, Ch. 4]:

Ck = t2Wk = t2
(
(1− tAk)−1

)
a,k−a = t2

Nk
Dk

, (2)
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where Ak = (Ai,j)1≤i,j≤k−1 is the adjacency matrix of our segment graph:

Ai,j =
{

1 if j = i+ a or j = i− b,
0 otherwise, (3)

Dk is the determinant of (1− tAk) and Nk/Dk is the entry (a, k − a) of (1− tAk)−1.
We note from Proposition 3.1 that, in the (1, 1)-case, both Nk and Dk are especially simple. Indeed,

Nk = tk−2, while Dk = Fk−1 satisfies a linear recurrence relation (with constant coefficients) of order
2. We will prove that, for all a and b, both sequences Nk and Dk satisfy such a recurrence relation (of a
larger order in general). The monomial form of Nk will hold as soon as a = 1.

The second expression of Ck given in Proposition 3.1 appears as a rational function of the roots of the
polynomial u − t(1 + u2). Even though both series U1 and U2 are algebraic (and irrational), the fact
that Ck is symmetric in U1 and U2 explains why Ck itself is rational. In general, we will write Ck as a
symmetric rational function of the a+ b roots of the polynomial ub− t(1 +ua+b), denoted U1, . . . , Ua+b.

The third expression of Ck follows from the fact that U1U2 = 1. In general, t = U b/(1 + Ua+b) for
U = Ui, so that it will always be possible to writeCk as a rational function of U . However, this expression
will not be always as simple as above. The equivalence of the three expressions of Proposition 3.1 follows
easily from the fact that

Fk =
1− U2k+2

(1− U2)(1 + U2)k
.

This can be proved by solving the recurrence relation satisfied by the Fk’s — or can be checked by
induction on k.

Let us now state our generalisation of Proposition 3.1 to (a, b)-culminating walks. Our first expression
ofCk, namely the rational form (2), involves the evaluation of two determinants of size (approximately) k.
Our second expression of Ck will be a fixed rational function of U1, . . . , Ua+b, U

k
1 , . . . , U

k
a+b, symmetric

in the Ui, which involves two determinants of constant size a + b. The existence of such smaller deter-
minantal forms for walks confined in a strip has already been recognized in [3, Ch. 1]. More recently, the
case of excursions confined in a strip has been simplified and worked out in greater detail [10]. As in [10],
our results will be expressed in terms of the Schur functions sλ, which form one of the most important
bases of symmetric functions in n variables x1, . . . , xn: for any integer partition λ with at most n parts,
λ = (λ1, . . . , λn) with λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0,

sλ(X ) =
aδ+λ
aδ

, (4)

with X = (x1, . . . , xn), δ = (n− 1, n− 2, . . . , 1, 0) and aµ = det
(
x
µj

i

)
1≤i,j≤n . We refer to [37, Ch. 7]

for generalities on symmetric functions.

Proposition 3.3 Let k > a. With the above notation, the length generating function of (a, b)-culminating
paths of height k admits the following expressions:

Ck(t) = t2
(
(1− tAk)−1

)
a,k−a = t2

Nk
Dk

= t
sµ(U)
sλ(U)

,

whereAk is given by (3), the (a+b)-tuple U = (U1, . . . , Ua+b) is the collection of roots of the polynomial
ub − t(1 + ua+b), and the partitions λ and µ are given by λ = (k − 1)a and µ = ((k − 1)a−1, a− 1).
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The determinant Dk of (1− tAk) and the relevant cofactor Nk are respectively given by

Dk = (−1)(a−1)(k−1)tk−1sλ(U) and Nk = (−1)(a−1)(k−1)tk−2sµ(U). (5)

Both sequences Nk and Dk satisfy a linear recurrence relation with coefficients in Q[t], respectively of
order

(
a+b
a

)
and

(
a+b
a−1

)
. These orders are optimal.

Note that the expression of Ck in terms of Schur functions still holds for k = a. Examples will be given
below. For the moment, let us underline that the case a = 1 of this proposition takes a remarkably simple
form, which will be given a combinatorial explanation in Section 3.2.3.

Corollary 3.4 When a = 1, the generating function of culminating walks of height k ≥ 1 reads

Ck(t) =
tk

Dk
=

t

hk−1(U)
,

where hi is the complete homogeneous symmetric function of degree i, Dk = 1 for 1 ≤ k ≤ b + 1 and
Dk = Dk−1 − tb+1Dk−b−1 for k > b+ 1.

Examples. Let us illustrate Proposition 3.3 by writing down explicitly the expression of Ck for a few
values of a and b. We use the determinantal form (4) of Schur functions.

Case a = b = 1. Here U1 and U2 are the two roots of the polynomial u− t(1 + u2). The partition µ is
empty, so that sµ = 1, while λ = (k − 1). This gives

Ck = t

∣∣∣∣ U1 1
U2 1

∣∣∣∣∣∣∣∣ Uk1 1
Uk2 1

∣∣∣∣ = t
U1 − U2

Uk1 − Uk2
,

as in Proposition 3.1. The recurrence relations satisfied by the polynomials Nk and Dk can always be
worked out from their expressions (5), as will be explained in Section 3.2.2. In the case a = b = 1, one
finds

Ck = t2Nk/Dk with Nk = tk−2 and Dk = Dk−1 − t2Dk−2,

with initial conditions D1 = D2 = 1.

Case a = 1, b = 2. Here U1, U2, U3 are the three roots of the polynomial u2 − t(1 + u3). Again, µ is
empty and λ = (k − 1) (this holds as soon as a = 1). One obtains

Ck = t

∣∣∣∣∣∣
U2

1 U1 1
U2

2 U2 1
U2

3 U3 1

∣∣∣∣∣∣∣∣∣∣∣∣
Uk+1

1 U1 1
Uk+1

2 U2 1
Uk+1

3 U3 1

∣∣∣∣∣∣
.

The rational expression of Ck reads

Ck = t2Nk/Dk with Nk = tk−2 and Dk = Dk−1 − t3Dk−3,
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with initial conditions D1 = D2 = D3 = 1. Note that this expression allows us to compute in a few
seconds the number cn of culminating walks for n up to 500.

Case a = 2, b = 1. Here U1, U2, U3 are the three roots of the polynomial u − t(1 + u3). One has
µ = (k − 1, 1) and λ = (k − 1)2, which gives:

Ck = t

∣∣∣∣∣∣
Uk+1

1 U2
1 1

Uk+1
2 U2

2 1
Uk+1

3 U2
3 1

∣∣∣∣∣∣∣∣∣∣∣∣
Uk+1

1 Uk1 1
Uk+1

2 Uk2 1
Uk+1

3 Uk3 1

∣∣∣∣∣∣
= t

∣∣∣∣∣∣
Ūk+1

1 Ūk−1
1 1

Ūk+1
2 Ūk−1

2 1
Ūk+1

3 Ūk−1
3 1

∣∣∣∣∣∣∣∣∣∣∣∣
Ūk+1

1 Ū1 1
Ūk+1

2 Ū2 1
Ūk+1

3 Ū3 1

∣∣∣∣∣∣
,

where Ūi := 1/Ui. Note that the series Ūi are the roots of the polynomial u2 − t(1 + u3), which occurs
in the (symmetric) case a = 1, b = 2. It is actually clear from (2) that the denominator Dk is unchanged
when exchanging a and b.

The rational expression of Ck reads

Ck = t2Nk/Dk with Nk = tNk−2 + t3Nk−3 and Dk = Dk−1 − t3Dk−3,

with initial conditions N1 = 0, N2 = 1/t,N3 = t and D1 = D2 = D3 = 1.

3.2 Proofs

3.2.1 Proof of Property 3.2
Let us say that a path is positive if every step ends at a positive level. For instance, culminating walks are
positive. For n ≥ 0 there exists a unique positive walk of length n and height at most a+ b, denoted wn.
Indeed, given h ∈ J0, a + bK, exactly one of the values h + a, h − b lies in the interval J1, a + bK. For
the same reason, wi is a prefix of wj for i ≤ j. Let k ≤ a + b, and assume that there exist two distinct
culminating walks of height k. These walks must be wi and wj , for some i and j, with, say, i < j. But
then wi is a prefix of wj , and ends at height k, which prevents wj from being culminating. 2

3.2.2 Proof of Proposition 3.3
The expression of Ck in terms of the adjacency matrix Ak has been justified in Section 3.1. Let us now
derive the Schur function expression of this series. We will give actually two proofs of this expression:
the first one is based on the kernel method [8, 4, 3], and the second one on the Jacobi-Trudi identity. The
first proof is completely elementary. The second one allows us to relate the polynomialsNk andDk to the
Schur functions sλ and sµ. This derivation is very close to what was done in [10] for excursions confined
in a strip. Some of the results of [10] will actually be used to shorten some arguments.

First proof via the kernel method: Consider a culminating walk of height k > a. Such a walk has
length at least 2. Delete its first and last steps: this gives a walk starting from level a, ending at level k−a,
and confined between levels 1 and k−1. Shifting this walk one step down, we obtain a non-negative walk
starting from level a − 1 and ending at level k − 1 − a, of height at most k − 2. Let G(t, u) ≡ G(u)
denote the generating function of non-negative walks starting from a − 1, of height at most k − 2. In
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this series, the variable t keeps track of the length while the variable u records the final height. Write
G(u) =

∑k−2
h=0 u

hGh, where Gh counts walks ending at height h. The above argument implies that the
generating function of culminating walks of height k is

Ck = t2Gk−a−1. (6)

We can construct the walks counted by G(u) step by step, starting from height a− 1, and adding at each
time a step +a (unless the current height is k − a − 1 or more) or −b (unless the current height is b − 1
or less). In terms of generating functions, this gives:

G(u) = ua−1 + t(ua + u−b)G(u)− tu−b
b−1∑
h=0

uhGh − tua
k−2∑

h=k−a−1

uhGh,

that is, (
ub − t(1 + ua+b)

)
G(u) = ua+b−1 − t

b−1∑
h=0

uhGh − tua+b
k−2∑

h=k−a−1

uhGh.

The kernel of this equation, that is, the polynomial ub − t(1 + ua+b), has a + b distinct roots, which
are Puiseux series in t. We denote them U1, . . . , Ua+b. Recall that G(u) is a polynomial in u (of degree
k− 2). Replacing u by each of the Ui gives a system of a+ b linear equations relating the unknown series
G0, . . . , Gb−1 and Gk−a−1, . . . , Gk−2. For U = Ui, with 1 ≤ i ≤ a+ b,

b−1∑
h=0

UhGh + Ua+b
k−2∑

h=k−a−1

UhGh = Ua+b−1/t.

In matrix form, we haveMG = C/t, whereM is the square matrix of size a+ b given by

M =


Ua+b+k−2

1 Ua+b+k−3
1 · · · U b+k−1

1 U b−1
1 U b−2

1 · · · 1
Ua+b+k−2

2 · · · · · · 1
...

...
Ua+b+k−2
a+b Ua+b+k−3

a+b · · · U b+k−1
a+b U b−1

a+b U b−2
a+b · · · 1

 , (7)

G is the column vector (Gk−2, . . . , Gk−a−1, Gb−1, . . . , G0), and C is the column vector (Ua+b−1
1 , . . . , Ua+b−1

a+b ).
In view of the definition (4) of Schur functions,

det(M) = sλ(U),

with λ = (k − 1)a. It has been shown in [10] that the generating function of excursions (walks starting
and ending at 0) confined in the strip of height k − 2 is

(−1)a+1

t

s(k−2)a(U)
s(k−1)a(U)

,

and that, in particular, sλ(U) 6= 0. HenceM is invertible, and applying Cramer’s rule to the above system
gives

Gk−a−1 =
1
t

sµ(U)
sλ(U)

,
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with λ and µ defined as in the statement of the proposition. Combining this with (6) gives the desired
Schur function form of Ck. 2

A second proof via symmetric functions: Let us now give an alternative proof of the Schur function
expression of Ck. It will be based on the dual Jacobi-Trudi identity, which expresses Schur functions as a
determinant in the elementary symmetric functions ei [37, Cor. 7.16.2]: for any partition ν,

sν = det
(
eν′j+i−j

)
1≤i,j≤ν1

, (8)

where ν′ is the conjugate partition of ν.
Let us consider the identity (2), with Dk = det(1 − tAk). It turns out that this determinant is of the

form (8). Indeed, let us define Vi = −Ui, for 1 ≤ i ≤ a+b. Then the only elementary symmetric functions
of the Vi that do not vanish are e0(V) = 1, ea(V) = −1/t and ea+b(V) = 1 (with V = (V1, . . . , Va+b)).
Let us apply (8) to ν = λ = (k − 1)a, with variables V1, . . . , Va+b. Then ν′ = ak−1 and one obtains

sλ(V) = (−t)−(k−1)Dk = (−1)a(k−1)sλ(U),

since sλ is homogeneous of degree a(k − 1). This gives the Schur function expression of Dk.
Now, by the general inversion formula for matrices, Nk = (−1)k det((1 − tAk)k−a,a), where (1 −

tAk)k−a,a is obtained by deleting row k − a and column a from (1− tAk). Let us apply (8) to ν = µ =
((k−1)a−1, a−1). Then ν′ = aa−1(a−1)k−a. The matrix

(
eν′j+i−j

)
has size k−1, and its last column

contains only one non-zero entry (equal to e0(V) = 1), in row k − a. After deleting this row and the last
column, one obtains:

sµ(V) = (−1)a−1(−t)−(k−2) det((1− tAk)k−a,a) = (−1)a−1t−(k−2)Nk = (−1)k(a−1)sµ(U),

as sµ is homogeneous of degree k(a− 1). This gives the desired expression of Nk. 2

Linear recursions. Finally, let us prove that the sequences of polynomials Nk and Dk satisfy a linear
recurrence relation with coefficients in Q[t], the ring of polynomials in t. Equivalently, we prove that each
of the generating functions

N(z, t) :=
∑
k≥a

Nkz
k and D(z, t) :=

∑
k≥a

Dkz
k

is actually a rational function in z and t. The existence of a linear recursion then easily follows by the
general theory of rational series [36, Ch. 4].

Given the expression (5) of Nk, what we have to do is to evaluate

N ′(z;u1, . . . , ua+b) :=
∑
k≥a

s(k−1)a−1,a−1z
k

where the symmetric functions involve the a + b indeterminates u1, . . . , un, with n = a + b. We use
the definition (4) of Schur functions to write s(k−1)a−1,a−1 as a ratio of determinants of size n. The
determinant occurring at the denominator is the Vandermonde Vn in the ui’s, and is independent of k.
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The determinant at the numerator is obtained from (7) by replacing the column containing U b+k−1
i by a

column of Ua+b−1
i (and then each Ui by the indeterminate ui). We expand it as a sum over permutations

of length n, and obtain:

N ′(z;u) =
1
Vn

∑
k≥a

zk
∑
σ∈Sn

ε(σ) σ
(
un+k−2

1 · · ·ub+ka−1u
a+b−1
a ub−1

a+1 · · ·u1
n−1u

0
n

)
=

1
Vn

∑
σ∈Sn

ε(σ) σ

(
un+a−2

1 · · ·ua+ba−1u
a+b−1
a ub−1

a+1 · · ·u1
n−1u

0
n

1− zu1 · · ·ua−1

)
,

where σ acts on functions of u1, . . . , un by permuting the variables:

σF (u1, . . . , un) = F (uσ(1), . . . , uσ(n)).

Equivalently,

N ′(z;u) =
P (z;u)
Q(z;u)

where

Q(z;u) =
∑

I⊂JnK, |I|=a−1

(
1− z

∏
i∈I

ui

)

and P (z;u) is another polynomial in z and the ui, symmetric in the ui’s. This symmetry property shows
that replacing ui by Ui transforms N ′(z;u) into a rational series in z and t. The link between Nk and
s(k−1)a−1,a−1 then gives

N(z, t) =
(−1)a−1P ((−1)a−1tz; U)
t2Q((−1)a−1tz; U)

,

another rational function of z and t. A similar argument, given explicitly in [10], yields

D(z, t) =
(−1)a−1P̃ ((−1)a−1tz; U)

t Q̃((−1)a−1tz; U)
,

for two polynomials P̃ and Q̃ in z and u1, . . . , un. More precisely,

Q̃(z;u) =
∑

I⊂JnK, |I|=a

(
1− z

∏
i∈I

ui

)
.

By looking at the degree of Q̃ and Q, this establishes the existence of recurrence relations of order
(
a+b
a−1

)
forNk, and

(
a+b
a

)
forDk. If there were recursions of a smaller order, the polynomialsQ(z; U) or Q̃(z; U)

would factor. It has been shown in [10, Section 6] that Q̃(z; U) is irreducible, and the same argument
implies that Q(z; U) is irreducible as well. 2



138 Mireille Bousquet-Mélou and Yann Ponty

3.2.3 Two proofs of Corollary 3.4
Let us specialize Proposition 3.3 to the case a = 1. We observe that µ is the empty partition, so that
sµ = 1, while λ = (k − 1), so that sλ = hk−1. The expressions (5) of Nk and Dk in terms of Schur
functions give Nk = tk−2 and Dk = tk−1hk−1(U). Observe that e1(U) = 1/t and eb+1(U) = (−1)b+1.
The classical relation between elementary and complete symmetric functions [37, Eq. (7.13)] gives, for
k ≥ 1,

hk(U) =
1
t
hk−1(U)− hk−b−1(U),

with initial conditions h0 = 1 and hi = 0 for i < 0. This gives the desired recursion for Dk.

Let us now justify combinatorially the simplicity of Nk and Dk. Recall that, for k ≥ 2, one has
Ck = t2Wk, where Wk counts walks (with steps +1, −b) going from 1 to k − 1 on the segment graph
J1, k−1K. The adjacency matrix of this graph is Ak. The combinatorial description(i) of the inverse of the
matrix (1− tAk) tells us that Dk counts non-intersecting collections of elementary cycles on the segment
J1, k−1K, whileNk counts configurations formed of a self-avoiding path w going from 1 to k−1 together
with a non-intersecting collection of elementary cycles that do not meet w. In the polynomials Nk and
Dk, each cycle of length ` is given a weight (−t`) while the path w is simply weighted t` if it has length
`. This gives directly Nk = tk−2, as the only possible path w is formed of k − 2 up steps, and leaves no
place to co-existing cycles. Now the only elementary cycles are formed of b up steps and one down step
−b. The recursion satisfied by Dk is then obtained by discussing whether the point k − 1 is contained in
one such cycle.

Note that this proof can be rephrased in terms of heaps of cycles using Viennot’s correspondence be-
tween walks on a graph and certain heaps [38]. The expression Nk/Dk then appears as a specialization
of the inversion lemma (also found in [38]). In particular, Dk is the (alternating) generating function of
trivial heaps of cycles. 2

Remark. For general values of a and b, the description of Dk and Nk in terms of cycles and paths on
the graph J1, k−1K remains perfectly valid. But the structure of elementary cycles and self-avoiding paths
becomes more complicated. See an example in Figure 5.

Fig. 5: Two non-intersecting elementary cycles (for a = 4 and b = 3).

3.2.4 Proof of Proposition 3.1
The expression of Ck is just a specialization of Corollary 3.4 to the case b = 1. It remains to prove that
the series C(t) is not D-finite.

Let us first observe that C(t) is D-finite if and only if the power series (in u)B(u) :=
∑
k u

k/(1−u2k)
is D-finite. Indeed, one goes from C(t) to B(u), and vice-versa, by an algebraic substitution of the

(i) This description seems to have been around since, at least, the 80’s [25, 38]. See [9, Thm. 2.1] for a modern formulation.
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variable, as U is an algebraic function of t and t = U/(1 + U2). It is known that D-finite series are
preserved by algebraic substitutions [37, Thm. 6.4.10], so that we can now focus on the series B(u).

This series has integer coefficients, and radius of convergence 1. Hence it is either rational, or admits
the unit circle as a natural boundary [12]. As will be recalled later (10), the singular behaviour of B(u) as
u approaches 1 involves a logarithm, which rules out the possibility of B(u) being rational. Thus B(u)
has a natural boundary, and, in particular, infinitely many singularities. But D-finite series have only
finitely many singularities, so that B(u) is not D-finite. 2

4 Asymptotic enumerative results
In this section we present some results on the asymptotic enumeration of culminating walks. Intuitively,
three cases arise, depending on the drift of the walks, defined as the difference a − b. Indeed, an n-
step random walk of positive drift is known to end at level O(n) and is, intuitively, quite likely to be
culminating. On the contrary, walks with a negative drift have a very small probability of staying positive.
We first work out the intermediate case of a zero drift.

4.1 Walks with a null drift (a = b = 1)
When the drift is zero, the number of positive walks (walks in which every step ends at a positive level)
of length n is known to be asymptotically equivalent to 2n/

√
2πn. The average height, and the average

final level of these walks both scale like
√
n. Hence we can expect the number of culminating walks to be

of the order of 2n/n. This is confirmed by the following result.

Proposition 4.1 As n → ∞, the number of (1, 1)-culminating paths of length n is asymptotically equiv-
alent to 2n/(4n).

Proof: We start from the expression (1) of C(t), with U = U1 = O(t), and apply the singularity analysis
of [23]. Note that U(t) is an odd function of t. Let us first study the even part of C(t), which counts
culminating paths of even length:

Ce(t) =
1− U2

1 + U2

∑
k≥1

U2k

1− U4k
.

Let Z ≡ Z(x) be such that U(t)2 = Z(t2). That is,

Z ≡ Z(x) =
1− 2x−

√
1− 4x

2x
.

The equation U = t(1 + U2) gives Z = x(1 + Z)2. Moreover, we have Ce(t) = D(t2) where

D(x) =
1− Z
1 + Z

∑
k≥1

Zk

1− Z2k
.

We thus need to study the asymptotic behaviour of the coefficients of D(x). We write

D(x) = S(Z(x)), with S(z) =
1− z
1 + z

∑
k≥1

zk

1− z2k
.



140 Mireille Bousquet-Mélou and Yann Ponty

The series Z(x) has radius of convergence 1/4. It is analytic in the domain D = C \ [1/4,+∞),
with exactly one singularity, at x = 1/4. One has Z(0) = 0, and |Z(x)| < 1 for all x in D. Indeed,
assume |Z(x)| ≥ 1 for some x in D. By continuity, Z(x) = eiθ for some x in D. From the equation
x(1 + Z)2 = Z, we conclude that θ ∈ (−π, π) (for θ = ±π, we would have Z = −1 = 0), and that
x = 1/(4 cos2(θ/2)). But this contradicts the fact that x ∈ D.

The series S(z) has radius of convergence 1. Given that |Z(x)| < 1 in D, this implies that D(x) =
S(Z(x)) is analytic in the domain D. It remains to understand how D(x) behaves as x approaches 1/4 in
D.

Take x = (1− reiθ)/4, with 0 < r < 1 and |θ| < π. Then

Z(x) = 1− 2
√

1− 4x+O(1− 4x) = 1− 2
√
reiθ/2 +O(r).

In particular,

arg(1− Z(x)) = θ/2 +O(
√
r).

Choose α ∈ (π/4, π/2). The above identity shows that there exists η > 0 and π/2 < φ < π such that, in
the indented disk

I = {x : |1− 4x| < η and | arg(1− 4x)| < φ},

one has

| arg(1− Z(x))| < α. (9)

Now when z → 1 in such a way that | arg(1− z)| < α,

∑
k≥1

zk

1− z2k
∼ 1

2(1− z)
log

1
1− z

, so that S(z) ∼ 1
4

log
1

1− z
. (10)

This can be obtained using a Mellin transform or some already known results on the generating function
of divisor sums [22].

Combining (9) and (10) shows that, as x tends to 1/4 in the indented disk I,

D(x) = S(Z(x)) ∼ 1
8

log
1

1− 4x
. (11)

This allows us to apply the transfer theorems of [23]. Indeed, the series D(x) is analytic in the following
domain:

∆ = {x 6= 1/4 : |4x| < 1 + η and | arg(1− 4x)| < φ},

with singular behaviour near x = 1/4 given by (11). From this we conclude that the coefficient of xn in
D(x) is asymptotically equivalent to 4n/(8n). Going back to the series Ce(t), this means that the number
of culminating paths of (even) length N = 2n is asymptotically equivalent to 2N/(4N).

The study of the odd part of C(t) is similar. 2
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4.2 Walks with positive drift (a > b)
When the drift is positive, it is known that, asymptotically, a positive fraction of walks with steps +a, −b
is actually positive (every step ends at a positive level). More precisely, as n → ∞, the number pa,bn of
positive walks of length n satisfies

pa,bn ∼ κa,b.2n (12)

for some positive constant κa,b. We will show that the culmination and final record conditions play similar
filtering roles in the paths of {m,m}∗, and prove the following result.

Proposition 4.2 For a > b, the number ca,bn of culminating walks of length n satisfies

ca,bn = κ2
a,b.2

n +O(ρn),

where ρ < 2 and κa,b is the constant involved in the asymptotics of positive walks.

Proof: In what follows, we consider two families of paths that are close to the meanders and excursions
defined in the introduction: the (already defined) positive walks, and certain quasi-excursions. The exact
and asymptotic enumeration of meanders and excursions has been completely worked out in [5], and we
will rely heavily on this paper. For instance, the estimate (12) follows from the results of [5] by noticing
that a meander factors into an excursion followed by a positive walk. Let us call quasi-excursion a walk in
which every step, except the final one, ends at a positive level. For instance, if a = 3 and b = 2, the word
mmm is a quasi-excursion. By removing the last step of such a walk, we see that quasi-excursions are in
bijection with positive walks of final height 1, 2, . . . , or b. We denote the number of quasi-excursions of
length n by ea,bn . Using the results of [5], it is easy to see that, when the drift is positive, quasi-excursions
are exponentially rare among general walks. That is, there exists µ < 2 such that for n large enough,

ea,bn < µn. (13)

From now on, we drop the superscripts a and b, writing for instance cn rather than ca,bn . For any word
w = w1 · · ·wk, denote by

←
w the mirror image of w, that is,

←
w = wk · · ·w1. Let u be a culminating word

of length n, and write u = vw, where the word v (resp. w) has length bn/2c (resp. dn/2e). Then both v
and

←
w are positive walks, and this proves that

cn ≤ pbn/2cpdn/2e. (14)

Conversely, let us bound the number of pairs (v, w), where v and w are positive walks of respective
lengths bn/2c and dn/2e, such that the word u = v

←
w is not culminating. This means that

• either u factors as v1w1, where v1 is a quasi-excursion of length i > bn/2c,

• or, symmetrically, u factors as v2
←
w2 where w2 is a quasi-excursion of length j > dn/2e.

This implies that

pbn/2cpdn/2e − cn ≤ 2
n∑

i=bn/2c

ei2n−i.
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In view of (13), we have, for n large enough:

pbn/2cpdn/2e − cn ≤ 2
n∑

i=bn/2c

µi2n−i ≤ 2
1− µ/2

2n(µ/2)bn/2c ≤ 4
1− µ/2

(2µ)bn/2c.

Combining this with (14) and the known asymptotics for the numbers pn gives the expected result. 2

4.3 Walks with negative drift (a < b): exponential decay
When the drift is negative, it is known that positive walks are exponentially rare among general walks.
Indeed, there exist constants κa,b > 0 and αa,b ∈ (1, 2), such that

pa,bn ∼ κa,b
αna,b
n3/2

.

More precisely,

αa,b =
a+ b

a+b
√
aabb

=
1 + q
1+q
√
qq
≡ α(q), (15)

where q = a/b < 1. We show below that the constant αa,b also governs the number of culminating walks
of size n.

Proposition 4.3 For a < b, the number ca,bn of culminating walks of length n satisfies

ca,bn = O

(
αna,b
n3

)
, (16)

where αa,b is given above. Moreover,

lim
n→∞

(
ca,bn
)1/n

= αa,b.

Proof: The inequality (14) still holds, and gives the upper bound (16) on the number of culminating paths.
Let us now prove that the growth constant of culminating walks is still αa,b by constructing a large

class of such walks. Let En be the set of excursions of length n (from now on, we drop the superscripts a
and b). Such excursions only exist when n is a multiple of a + b, and the number en of such walks then
satisfies

en ∼ καna,bn−3/2

for some positive constant κ. It is known that random (a, b)-excursions of length n converge in law to
the Brownian excursion, after normalising the length by n and the height by κ′

√
n, for some constant κ′

depending on a and b [29]. This implies that the (normalized) height of a discrete excursion converges
in law to the height of the Brownian excursion (described by a theta distribution). In particular, the
probability pn that an excursion of En has height larger than

√
n tends to a limit p < 1 as n goes to

infinity. Take an excursion of Ek of height less than
√
n, with

k = (a+ b)
⌊
n− 1−

√
n

a+ b

⌋
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and append one up step at its left, and n − k − 1 up steps at its right: this gives a culminating walk of
length n, which proves that

cn ≥ ek(1− pk).

Taking nth roots gives the required lower bound on the growth of cn. 2

Hence there are exponentially few walks of size n with steps +a,−b that are culminating. It is likely
that cn behaves like αna,bn

−3−γ , for some γ ≥ 0 that remains to be determined. Note that the final height
of an n-step meander is known to have a discrete limit law as n→∞ [5].

5 Random generation of positive walks
The random generation of positive walks will be a preliminary step in some of the algorithms we present
in the next section for the generation of culminating walks. The main ideas underlying the generation
are the same for both classes of walks, but the class of positive walks is simpler. We apply three differ-
ent approaches to their random generation: recursive methods (two versions), anticipated rejection, and
Boltzmann sampling. The choice of the best algorithm depends on the drift, as summarized in the top
part of Table 2. We denote by Pa,b the language of positive walks, but the superscript a, b will often be
dropped.

5.1 Recursive step-by-step approach
The first approach we present is elementary: we construct positive walks step-by-step, choosing at each
time an up or down step with the right probability. This is the basis of the recursive approach introduced
in [39]. Here are the three ideas underlying the algorithm:

• Let W be a language, and let Wp denote the language of the prefixes of words of W . Assume
that for all w ∈ Wp such that |w| ≤ n, we know the number Nw(n) of words of W of length n
beginning with w (we call these word extensions of w). Then it is possible to draw uniformly words
of length n inW as follows. One starts from the empty word, and adds steps incrementally. If at
some point the prefix that is built is w, one adds the letter x to w with probability Nwx(n)/Nw(n).

• WhenW = Pa,b, the number of extensions of length n of a prefix w ∈ Wp depends only on two
parameters:

– the length difference i = n− |w|,
– the final height of w, j = φa,b(w),

• Let pi,j be the number of extensions of length n of such a prefix w. The numbers pi,j obey the
following recurrence:

pi,j = pi−1,j+a + 1j>b pi−1,j−b for i ≥ 1,
p0,j = 1.

As the two parameters i and j are bounded by n and an respectively, the precomputation of the numbers
pi,j takes O(n2) arithmetic operations and requires to store O(n2) numbers. Then, the generation of a
random word of length n can be performed in linear time. However, one should take into account the cost
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due to the size of the numbers in the precomputation stage. Indeed, the numbers pi,j are exponential in
n, so that the actual time-space complexity for this stage may grow to O(n3). However, using a floating-
point technique adapted from [16], it should be possible to take advantage of the numerical stability of the
algorithm to reduce the space needed to O(n2+ε).

This naive recursive approach is less efficient than the one presented below, which is based on context-
free grammars. But it will be easily adapted to the generation of culminating walks, which cannot be
generated via a grammar, as was proved in Section 2.

5.2 Recursive approach via context-free grammars
It is easy to see that the language Pa,b ≡ P is recognized by a non-deterministic push-down automaton.
This implies that P is context-free. The same holds for the language Da,b ≡ D of excursions. A non-
ambiguous context-free grammar generating excursions is given explicitly in [19]. It suffices to add one
equation to obtain a non-ambiguous grammar generating positive walks:

D = ε+
∑a
k=1 LkRk, Li = 1i=am D +

∑a
k=i+1 LkRk−i,

P = ε+
∑a
i=1 LiP, Rj = 1j=bm D +

∑b
k=j+1 Lk−jRk.

(17)

In this system, ε is the empty word, D (resp. P) is the language of excursions (resp. positive walks) while
Li, 1 ≤ i ≤ a and Rj , 1 ≤ j ≤ b, are a+ b auxiliary languages defined in [19]. As above, m and m are
the up and down letters in our alphabet.

From this grammar, we can apply the recursive approach of [24] for the uniform generation of de-
composable objects, implemented in the combstruct package of Maple or in the stand-alone software
GenRGenS [35]. The generation of positive walks of size n begins with the precomputation of O(n)
large numbers. These numbers count words of length r, for all r ≤ n, in each of the languages involved
in the grammar. The fastest way to get them is to convert the algebraic system (17) into a system of lin-
ear differential equations, which, in turn, yields a system of linear recurrence relations (with polynomial
coefficients) defining the requested numbers. This step requires a linear number of arithmetic operations.
But one has to multiply numbers whose size (number of digits) is O(n), which may result, in practice,
in a quadratic time-complexity for the precomputation stage. Then, the generation of a random positive
walk can be performed in time O(n log n).

Note that a careful implementation [15] of the floating point approach of [16] using an arbitrary-
precision floating-point computation library yields a O(n1+ε) complexity after a O(n1+ε) precompu-
tation.

5.3 Anticipated rejection
The principle of this approach is to start with an empty walk, and then add successive up and down steps
by flipping an unbiased coin until the walk reaches the desired length n, or a non-positive ordinate. In
this case, the walk is rejected and the procedure starts from the beginning. Of course, no precomputation
nor non-linear storage is required. This principle was applied to meanders, in the case a = b = 1, in [6],
as a first step towards the uniform random generation of directed animals. The analysis of this algorithm
yielded a linear time-complexity, later generalized in [7] to the case of coloured walks, in which up,
down, and level steps come respectively in p, q and r different colours. There, it was shown that the
time-complexity is linear when p ≥ q, but exponential when p < q.

Unsurprisingly, we obtain similar results for the general (a, b)-case.
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Proposition 5.1 The anticipated rejection scheme applied to the uniform random generation of (a, b)-
positive walks has a linear time-complexity when a ≥ b and an exponential complexity in Θ((2/αa,b)nn

√
n)

when a < b, with αa,b = a+b
a+b√

aabb
< 2.

Proof: We first note that the language P of positive walks is a left-factor language. That is, it is stable by
taking prefixes, and every word of P is the proper prefix of another word of P . It has been proved in [14]
that the average complexity fL(n) of the anticipated rejection scheme for a left-factor language L on a
k-letter alphabet is

fL(n) =
[zn] z

1−zL(z/k)
[zn]L(z/k)

where L(z) is the length generating function of the words of L.
We now exploit the results of [5], giving the singular behaviour of the series M(z) and E(z) that count

respectively meanders and excursions. As a meander factors uniquely as an excursion followed by a
positive walk, we can derive from [5] the singular behaviour of the series P (z) =

∑
pnz

n that counts
positive walks. This series is always algebraic, so that singularity analysis applies.

– For a ≥ b, the series P (z/2) has an algebraic singularity at z = 1 in (1 − z)−ν (with ν = 1 if
a > b, and ν = 1/2 if a = b). Thus P (z/2)/(1 − z) has a singular behaviour in (1 − z)−ν−1. A
singularity analysis gives fP(n) ∼ n/ν.

– For a < b, the series P (z/2) has a square-root singularity at 2/αa,b > 1, but P (z/2)/(1 − z) has
a smaller radius of convergence zc = 1, with a simple pole at this point. This gives

fP(n) ∼ 2n P (1/2)
pn

∼ κ
(

2
αa,b

)n
n
√
n

for some constant κ.

2

5.4 Boltzmann sampling
A Boltzmann generator [20] generates every object in the class C with a probability proportional to xn,
where n is the size of the object. More precisely, for every object w (a walk, in our context):

P(w) =
x|w|

C(x)

where C(x) is the generating function of the objects of C. Of course, this results in a relaxation of the size
constraint, since objects of all sizes can be generated. But, by tuning carefully the parameter x (which
has to be smaller than or equal to the radius of convergence of C(x)), and rejecting the too large and too
small objects, one can often achieve an approximate-size random sampling, with a tolerance ε, in linear
time. This means that after a linear number of real-arithmetic operations, and a number of attempts that
is constant on average, the algorithm will produce an object of size |w| ∈ [(1 − ε)n, (1 + ε)n], which is
uniform among the objects of the same size.
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In particular, the grammar (17) shows that the class of positive walks is specifiable in the sense of [20].
The analysis of the generating functions of meanders and excursions performed in [5] shows that the series
P (z) counting positive walks is always analytic in a ∆-domain, with a dominant singularity in (1−µt)−ν ,
where ν = 1 if a > b, ν = 1/2 if a = b and ν = −1/2 if a < b. In the first two cases, Theorem 6.3
of [20] gives an approximate sampling in linear time (and an exact sampling in quadratic time). In the
third case, the standard deviation of the objects produced by a standard Boltzmann sampler is much larger
than their mean, which makes rejection costly. However, we can generate instead pointed positive walks,
that is, positive walks with a distinguished step, and forget the pointing: as guaranteed by Theorem 6.5
of [20], this gives again an approximate sampling in linear time.

To conclude, the uniform random generation of (a, b)-positive walks of size n can be performed in
linear time when a ≥ b by an anticipated rejection, and this strategy does not require any precomputations
nor storage. When a < b, our best algorithm for exact sampling remains the recursive approach based
on the grammar (17). It runs in O(n1+ε) after a O(n1+ε) precomputation. However, one can achieve, in
linear time and space, an approximate-size sampling using a Boltzmann generator.

6 Random generation of culminating walks
6.1 Recursive step-by-step approach
This elementary procedure, introduced in [30], generates culminating walks step by step, choosing every
new step with the right probability. This is again an instance of Wilf’s recursive method. The arguments
given in Section 5.1 for positive walks should now be replaced by the following ones:

• For W = Ca,b, the number of extensions of length n of a prefix w ∈ Wp depends only on three
parameters:

– the length difference i = n− |w|,
– the final height j = φa,b(w),

– the maximal height h reached by w.

• Let ci,j,h be the number of extensions of length n of such a prefix w. The numbers ci,j,h obey the
following recurrence:

ci,j,h = ci−1,j+a,max(h,j+a) + 1j>b ci−1,j−b,h for i > 1,
c1,j,h = 1j+a>h.

As the parameters i, j and h are bounded by n, an and an respectively, the precomputation of the numbers
c(i, j, h) takes O(n3) arithmetic operations and requires to store O(n3) numbers. Then, the generation of
a random word of length n can be performed in linear time. But again, the numbers ci,j,h are exponential
in n, so that the actual time-space complexity of the precomputation stage may grow to O(n4).

The above procedure is easily adapted to generate culminating walks ending at a prescribed height k.
The number c(k)i,j of i-step extensions of a prefix ending at height j is given by

c
(k)
i,j = 1j+a<k c

(k)
i−1,j+a + 1j>b c

(k)
i−1,j−b for i > 1,

c
(k)
1,j = 1j+a=k.
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Now j is bounded by k, so that we only have to compute a table of O(kn) numbers, in O(kn) arithmetic
operations. The actual time-space complexity is likely to grow to O(kn2) due to the handling of large
numbers.

However, whether the height of the walk is fixed or not, one should be able to limit the computational
overhead due to the size of these numbers to O(nε), using a floating-point technique adapted from [16].

6.2 Rejection methods
We presented in Section 5.3 an example of the anticipated rejection approach. The more general rejection
principle has been applied successfully to various problems [17, 6, 20]. The principle of a rejection
algorithm for words inW is to draw objects uniformly in a superset V ⊃ W until an object ofW is found.
The average-case complexity of a such a technique is then ζ(n)vn/wn, where ζ(n) is the cost for the
generation of a word of size n in V , and wn and vn respectively denote the number of words of length n
inW and V .

The aim is to find a superset V satisfying the following (sometimes conflicting) requirements:

– the words of V can be generated quickly, so that ζ(n) is small,

– the set V is not too large, so that the ratio vn/wn is small.

Moreover, testing whether a word of V actually belongs to W should be doable in linear time. This is
obviously the case whenW = Ca,b.

We investigate below two possibilities for the superset V , while fixingW = Ca,b.

6.2.1 Drawing from positive walks
Here, we take for V the set of positive walks. Their random generation has been discussed in Section 5,
and we refer to the last lines of this section for our conclusions on this question.

– When a < b, the number vn of positive walks of length n grows like αna,bn
−3/2 (up to a multi-

plicative constant). If ca,bn grows like αna,bn
−3−γ for γ ≥ 0 (see Proposition 4.3), the cost will be

O(nγ+5/2+ε), with a preprocessing stage of O(n1+ε). However, approximate-size sampling can
be performed in time O(nγ+5/2), with no preprocessing stage. It suffices to reject among the set of
positive walks generated by a Boltzmann algorithm.

– If a = b, then vn grows like 2nn−1/2, while cn ∼ 2n/n (Proposition 4.1). Hence the cost here is
O(n3/2).

– Finally, for a > b, the number of culminating walks grows like 2n (Proposition 4.2). This shows
that the algorithm is linear.

Remark. For a > b, culminating walks are so numerous that we can even perform the rejection in the set
of general (a, b)-walks, and still obtain a linear complexity, as discussed in the introduction. However, it
seems natural to perform an anticipated rejection, rejecting walks as soon as they stop being positive: but
this amounts to performing rejection in the set of positive walks, obtained themselves via an anticipated
rejection from general walks.
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6.2.2 Drawing from hybrid walks
We begin with a simple, yet crucial, observation:

Let
←
w denote the mirror image of the word w. Then if w ∈ Ca,b, so is

←
w.

Graphically, taking the mirror image amounts to a central symmetry on walks. This remark implies that,
on average, the mid-point of a culminating walk lies at a height which is half the final height. This suggests
another possible superset of Ca,b from which we may draw, namely the language Ha,b of hybrid walks,
defined by

H ≡ Ha,b :=
⋃
n≥0

Pbn/2c
←−−−−
Pdn/2e,

where P is the language of positive walks, and
←−
P the language of mirror images of positive walks. As

already observed in Section 4, Ca,b ⊂ Ha,b.
The intuition behind the choice of the superset Ha,b is that a path that violates the positivity (resp.

final record) condition is likely to do so at its beginning (resp. ending). Thus, ensuring positivity on the
first half of the walk, and the final record condition on the second half, should yield a lower rejection
probability than ensuring positivity everywhere, as we did when drawing from positive walks.

How can one generate hybrid walks uniformly at random? As a hybrid walk of length n is the (non-
ambiguous) concatenation of a positive walk of size bn/2c and of the mirror image of another positive
walk, of size dn/2e, it is sufficient to draw positive walks uniformly at random. The cost of the generation
of a hybrid walk of length n will be twice the cost of the generation of a positive walk of length (approxi-
mately) n/2. We refer again to the end of Section 5 for our conclusions on this cost. We do not use below
the Boltzmann sampling for positive walks, since gluing two positive walks of approximate size n/2 does
not give the same probability to all hybrid walks of a given size.
Let us now discuss the efficiency of the rejection approach based on the languageH.

– When a < b, we have |Hn| = Θ(αna,b/n
3), while mn = Θ(αna,b/n

3/2), so that we gain an
order O(n3/2) in complexity (comparing with the rejection of positive walks). This leads to a cost
O(nγ+1+ε) if cn scales like αna,bn

−3−γ , with a O(n1+ε) precomputation.

– When a = b = 1, |Hn| = Θ(2n/n), while mn = Θ(2n/
√
n), so that the gain is of order

√
n.

Consequently, the complexity of the rejection algorithm based on H is linear. No precomputation
nor storage is required.

– For a > b, we have |Hn| = Θ(2n), and similarly mn = Θ(2n). So the complexity gain (compared
with the approach that generates positive walks) can only be Θ(1). The algorithm is still linear.

7 Conclusion and perspectives
We have studied culminating paths, from the point of view of formal languages, enumerative combina-
torics and random generation. Our best results in terms of random generation are summarized in Table 2.

An important question that is left open is to determine the asymptotic growth of the number of cul-
minating walks when the drift is negative (a < b). One possible approach would be to exploit the
closed form expression of Proposition 3.3, in the spirit of Proposition 4.1 and [5]. The result might
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Paths Method ] Attempts Precomp. Cost
Pa,b

Recursive method, Section 5.2:
standard implementation O(n2) O(n log n)

or floating-point implementation. O(n1+ε) O(n1+ε)
a < b Approximate-size Boltzmann,

Section 5.4 O(1) ∅ O(n)
a ≥ b Anticipated rejection, O(

√
n) (a = b) ∅ O(n)

Section 5.3 O(1) (a > b)
Ca,b⇒k Recursive method, O(kn1+ε) O(n)

Section 6.1
Ca,b

Recursive method, [30] and Section 6.1 O(n3+ε) O(n)
a < b or rejection from hybrid walks,

Section 6.2.2 O(nγ) O(n1+ε) O(n1+γ+ε)
a = b Rejection from O(1) ∅ O(n)

hybrid walks, Section 6.2.2
a > b Rejection from positive walks or O(1) ∅ O(n)

hybrid walks, Sections 6.2.1 and 6.2.2

Tab. 2: The complexity of random generation of positive and culminating paths. The cost is that of one random
drawing, once the precomputations have been performed. It is assumed that cn ∼ αna,bn−3−γ if a < b.

have interesting consequences regarding the random generation of culminating walks. In particular, if
ca,bn = Θ((ma,b

n/2)2 n−γ) = Θ(αna,bn
−3−γ), with γ < 2, the generation algorithm based on hybrid walks

would be faster than the recursive algorithm, at least for generating few paths. However, our numerical
data suggest that the ratio ca,bn /(ma,b

n/2)2 decreases at least as fast as n−2.
It would also be interesting to study how the height is distributed on random culminating walks of

length n. Such a study may provide better algorithms for random generation, especially in the a < b
case, where the height is expected to be small. How does the average height scale with n? Is there a
limiting distribution for some normalized height? This is related to a more ambitious question: is there
a limiting process for culminating walks, in the same way discrete excursions converge to the Brownian
excursion [29], or discrete meanders to the Brownian meander [28]? In the case a = b = 1, a candidate
for the limit process could be the meander conditioned (with care) to reach its maximum at time 1. Note
that the joint law of the maximum and final position of a meander is known [21], and related to the law
of the maximum and minimum of a Brownian bridge, both in the continuous and discrete cases [13]. The
case where the maximum coincides with the final position (an event of zero probability in the continuous
case) is closely related to our culminating walks.

Future extensions of the present work may also include the study of culminating walks with more than
two types of steps, in order to model different kinds of matches and mismatches, and thus capture the
whole scoring scheme of the FLASH algorithm. For instance, it is usually considered less drastic to
replace a purine base by another purine base (A↔G) rather than a pyrimidine one in DNA. It is thus
natural to penalize differently different mismatches. This could be modelled by introducing down steps
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of different heights.
Lastly, a natural, biologically relevant perspective would be to address the non-uniform generation of

culminating paths. Indeed, the matches and mismatches may not be uniform over a biological sequence,
and be subject to local correlations. This is classically modelled by a Markov chain (further conditioned
to yield culminating paths). Our algorithms could in principle be adapted to this more general context,
but their analysis would need to be carefully worked out. In particular, the drift of random walks would
depend on the chain and differ in general from a− b. We naturally expect the efficiency of our algorithms
to depend of the model, culminating walks with positive drift being much easier to generate than those
with a negative drift.
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