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Fekete’s lemma is a well-known combinatorial result on number sequences: we extend it to functions defined on d-
tuples of integers. As an application of the new variant, we show that nonsurjective d-dimensional cellular automata
are characterized by loss of arbitrarily much information on finite supports, at a growth rate greater than that of the
support’s boundary determined by the automaton’s neighbourhood index.
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1 Introduction
Let f : {1, 2, . . .} → [0,+∞). Fekete’s lemma [4, 11] states that, if f(n + k) ≤ f(n) + f(k) for every
n and k, then

lim
n→∞

f(n)
n

= inf
n≥1

f(n)
n

. (1)

The consequences of this simple statement are many and deep, such as the definition of topological en-
tropy for dynamical systems [6] and Arratia’s bound on the number of permutations avoiding a given
pattern [2].

More recently, in a joint work with T. Toffoli and P. Mentrasti [10], we have made use of (1) to prove
a result about cellular automata (CA). These are presentations of global dynamics in local terms: each
global state is a d-dimensional configuration, and the global evolution rule changes the state locally at a
site by considering only the states of neighbouring sites. The task of retrieving global properties from
such local descriptions is in general very difficult, and often leads to undecidability issues. In [10], we
were especially concerned with surjectivity, a subject on which a vast and fascinating literature exists.

The most straightforward characterization of surjective CA (cf. [8, 9]) follows from the compactness
of the space of configurations: the global evolution function of a CA is surjective if and only if every
pattern (i.e., sub-configuration on a finite region of the space) has at least one predecessor according
to the evolution rule. From this “simple” argument, and from the properties of the group Zd, many
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beautiful theorems follow; of these, Moore-Myhill’s theorem [8, 9] and Maruoka-Kimura’s balancement
theorem [7] deserve more than a mere citation, and shall be stated later in this paper.

The presence of “Garden-of-Eden patterns” can be restated by saying that nonsurjective CA lose variety
within finite range, “variety” being the logarithm V (n) of the number of output states on a “patch” (finite
connected region) of size n. This quantity is easily checked to be subadditive; we could thus apply (1)
and deduce that, in nonsurjective CA, the “loss of variety” n − V (n) must, for n large enough, be larger
that δn for some δ > 0, and in particular, larger than the size of the support’s boundary determined by
the neighborhood index. This loss, in turn, allows compressing the state of both the support above and its
boundary, into as much as it can be encoded by the support alone. Relying on this fact, we have devised a
general algorithm [10] to translate from a presentation using an n-inputs, 1-output local map (i.e., CA) to
one employing n-inputs, n-outputs events, characteristic of a different class of presentations, specifically,
that of lattice gases (LG).

In this paper, we state and prove a multivariate version of Fekete’s lemma. The motivation for this, is
to provide a support to the conjecture that the translation algorithm in [10] could be extended to arbitrary
dimension; in particular, we want to prove that the loss of variety of nonsurjective CA grows sufficiently
large to encode the boundary, regardless of the dimension of the space. This is not immediate, because
for d > 1 the boundary grows with the support; but seems feasible, because the boundary grows, in
a certain sense, “less” than the support—which, incidentally, is one of the properties of Zd that make
Moore-Myhill’s theorem true. To prove our generalization, we rearrange a proof of (1) so that it works
on sequences of integer d-tuples, after a suitable ordering on these is defined. As applications for the
newfound formula, we prove two facts. The first one tells that loss of variety for d-dimensional nonsur-
jective CA is sufficient, on supports large enough, to allow encoding the state of the boundary: which is
noteworthy, because for d > 1 the size of the boundary increases with that of the region. Incidentally, we
get a criterion for CA surjectivity—if the loss of variety is bounded, then the CA is surjective—which, as
far as we know, is first stated in this paper. The second fact is that the Weyl pseudodistance, introduced
by [3] in the study of CA dynamics and defined as an upper limit, is in fact a limit: this property is not
shared by its main “competitor”, the Besicovitch pseudodistance.

2 Fekete’s lemma, multivariate
A subadditive, nonnegative, univariate function f(n) can be thought of as the maximum information
achievable with n observations of some given phenomenon. Then Fekete’s lemma says that the average
maximum information per observation converges to its greatest lower bound.

To extend (1) to several variables—which, at the best of our knowledge, has never been done before—
we first need to understand what the meaning of an inequality a ≤ b should be when a and b are vectors;
this should reduce to the standard ordering of integers in the case of unidimensional arrays. Next, we have
to identify a notion of limit which is in accord with that meaning. Finally, we must write down a version
of (1) that keeps into account the number d of components, and reduces to (1) for d = 1.

Let Z+ = Z ∩ (0,+∞). Consider the product ordering on Zd
+ defined by x ≤π y iff xi ≤ yi for

every i ∈ {1, . . . , d}. This is the kind of ordering used, e.g., in linear programming, by writing Ax ≤ b
to indicate a set of constraints a1,1x1 + . . . + a1,nxn ≤ b1, . . . , am,1x1 + . . . + am,nxn ≤ bm; it is also
the finest ordering that makes the projections monotonic. Observe that Zd = (Zd

+,≤π) is a directed set,
i.e., for any two x, y ∈ Zd

+ there exists z ∈ Zd
+ such that both x ≤π z and y ≤π z. If X = (X,≤) is a
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directed set and f : X → R, the lower and upper limit of f in X are defined as usual, i.e.,

lim inf
x∈X

f(x) = sup
x∈X

inf
y≥x

f(y) and lim sup
x∈X

f(x) = inf
x∈X

sup
y≥x

f(y) ;

moreover, f has limit L ∈ R in X , written limx∈X f(x) = L, if for every ε > 0 there exists xε ∈ X such
that |f(x)− L| < ε for every x ≥ xε. For example, if r1, . . . , rd ∈ N = Z+ ∪ {0} are fixed, then

lim
(x1,...,xd)∈Zd

(x1 + r1) · · · (xd + rd)
x1 · · ·xd

= 1 . (2)

It follows from the definitions that lim infx∈X f(x) ≤ lim supx∈X f(x), and that limx∈X f(x) = L iff
lim infx∈X f(x) = lim supx∈X f(x) = L. In this case, the limit L can be recovered on any path going to
infinity. More formally, suppose that a sequence {xn}n∈N ⊆ X satisfies the following property: for every
x ∈ X there exists nx ∈ N such that xn ≥ x for every n > nx. Then the sequence {f(xn)}n∈N ⊆ R
converges to L in the usual sense.

Theorem 1 Let f : Zd
+ → [0,+∞) satisfy

f(x1, . . . , xj + yj , . . . , xd) ≤ f(x1, . . . , xj , . . . , xd) + f(x1, . . . , yj , . . . , xd) (3)

for every x1, . . . , xn, yj ∈ Z+, j ∈ {1, . . . , d}. Then

L = lim
(x1,...,xd)∈Zd

f(x1, . . . , xd)
x1 · · ·xd

(4)

exists, and equals

inf
x1,...,xd∈Z+

f(x1, . . . , xd)
x1 · · ·xd

. (5)

Proof: Because of (3), for every j ∈ {1, . . . , d}, x1, . . . , xd ∈ Z+, if xj = qt + r with q ∈ N and
r ∈ Z+, then

f(x1, . . . , xj , . . . , xd) ≤ q · f(x1, . . . , t, . . . , xd) + f(x1, . . . , r, . . . , xd) . (6)

Fix t1, . . . , td ∈ Z+. For each (x1, . . . , xd) ∈ Zd
+, d pairs (qj , rj) ∈ N× Z+ are uniquely determined by

xj = qjtj + rj and 1 ≤ rj ≤ tj . By repeatedly applying (6) to all of the xj’s, for y
(0)
j = rj and y

(1)
j = tj

we find
f(x1, . . . , xd) ≤

∑
α∈{0,1}d

qα1
1 · · · qαd

d · f
(
y
(α1)
1 , . . . , y

(αd)
d

)
. (7)

Note how, on the right-hand side of (7), each occurrence of f has k arguments chosen from the tj’s and
d− k chosen from the rj’s, is multiplied by the qj’s corresponding to the tj’s, and is bounded from above
by the constant M = t1 · · · td · f(1, . . . , 1). By dividing both sides of (7) by x1 · · ·xd we get

f(x1, . . . , xd)
x1 · · ·xd

≤ q1 · · · qd

x1 · · ·xd
f(t1, . . . , td) + M ·

∑
α∈{0,1}d\{1d}

qα1
1 · · · qαd

d

x1 · · ·xd
. (8)
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Now, by construction, limxj→∞ qj/xj = 1/tj . If all the xj’s are large enough, the first summand in (8)
becomes very close to f(t1, . . . , td)/t1 · · · td, and the other ones become very small; in other words, for
every ε > 0, there exist x

(ε)
1 , . . . , x

(ε)
d ∈ Z+ such that, if xi ≥ x

(ε)
i for each i = 1, . . . , d, then

f(x1, . . . , xd)
x1 · · ·xd

<
f(t1, . . . , td)

t1 · · · td
+ ε .

From this and the definition of ≤π follows

lim sup
(x1,...,xd)∈Zd

f(x1, . . . , xd)
x1 · · ·xd

≤ f(t1, . . . , td)
t1 · · · td

;

this is true whatever the tj’s are, hence

lim sup
(x1,...,xd)∈Zd

f(x1, . . . , xd)
x1 · · ·xd

≤ inf
t1,...,td∈Z+

f(t1, . . . , td)
t1 · · · td

.

Equality between (4) and (5) follows then from

inf
t1,...,td∈Z+

f(t1, . . . , td)
t1 · · · td

≤ lim inf
(x1,...,xd)∈Zd

f(x1, . . . , xd)
x1 · · ·xd

.

2

We propose the following interpretation of Theorem 1. For a function f satisfying (3), the quantity
f(x1, . . . , xj , . . . , xd) can be thought of as the maximum joint information obtainable by the observations
of d independent observers, when the j-th of them has performed xj observation. Theorem 1 then says
that the average maximum joint information per observation per observer converges to its greatest lower
bound.

Note that, for d = 1, Theorem 1 is the same as Fekete’s lemma.

Corollary 2 Let f and L be as in Theorem 1. If limn→∞ xj,n = +∞ for every j ∈ {1, . . . , d}, then

lim
n→∞

f(x1,n, . . . , xd,n)
x1,n · · ·xd,n

= inf
n≥1

f(x1,n, . . . , xd,n)
x1,n · · ·xd,n

= L . (9)

In particular, limn→∞ f(n, . . . , n)/nd = infn≥1 f(n, . . . , n)/nd = L.

Proof: Straightforward from Theorem 1, the observations above, and

inf
x1,...,xd∈Z+

f(x1, . . . , xd)
x1 · · ·xd

≤ inf
n≥1

f(x1,n, . . . , xd,n)
x1,n · · ·xd,n

,

which follows from A ⊇ B implying inf A ≤ inf B. 2
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3 An application to cellular automata
A cellular automaton (briefly, CA) is a quadruple A = 〈d, Q,N , f〉 where the dimension d > 0 is
an integer, the set of states Q is finite and has at least two distinct elements, the neighbourhood index
N = {ν1, . . . , νn} is a finite subset of Zd, and the local evolution function f maps Qn into Q. A global
evolution function F is induced by f of the space QZd

of d-dimensional configurations by

F (c)(x) = f (c(x + ν1), . . . , c(x + νn)) . (10)

A is said to be surjective if F is. For example, if d = 1, Q = {0, 1}, N = {1}, f(x) = x, then
〈d, Q,N , f〉 is the shift cellular automaton and F (c)(x) = c(x + 1) is the shift map, which is surjective;
on the other hand, for same d and Q, N = {0, 1}, and f(a, b) = a · b, we get a nonsurjective CA, because
if c(x) is 0 for x = 0 and 1 otherwise, then F (c) 6= c for any c.

For every finite E ⊆ Zd, calling E +N = {x + ν | x ∈ E, ν ∈ N}, a function FE : QE+N → QE

is induced by f , again by applying (10). Observe that the number |FE(QE+N )| of patterns over E
obtainable by applying (10) does not depend on the displacement of E along Zd, i.e., if x+E = {x+ y |
y ∈ E}, then |Fx+E(Qx+E+N )| = |FE(QE+N )|.

Put E(x1, . . . , xd) = {z ∈ Zd | 0 ≤ zi < xi ∀i}. Call right d-polytope any set of the form H =
y + E(x1, . . . , xd) for some y ∈ Zd. (Here, “right” has the same meaning as in “right triangle”.) If
N is contained in a right d-polytope of sides r1, . . . , rd, then E(x1, . . . , xd) +N is contained in a right
d-polytope of sides x1 + r1, . . . , xd + rd, which is the disjoint union of E(x1, . . . , xd) and a boundary.
It is well-known [8, 9] that A is surjective iff FE is surjective for every right d-polytope E. From this
characterization many more follow, two of which at least deserve some words.

Moore-Myhill’s theorem [8, 9] states that a CA is surjective if and only if for no two different patterns
pi on the same d-hypercube E may happen that ci|E = pi, c1|C\E = c2|C\E , and F (c1) = F (c2). This
has the important consequence that injective CA are surjective. Note that a key part of the proof relies on
the fact that any boundary of fixed “range” has a lower growth rate than the right d-polytope it surrounds.

Maruoka-Kimura’s balancement theorem [7] states that in a surjective CA each pattern on a given
rectangular support has the same number of predecessors. Note that, in the proof of this theorem, the
previous one is used. If N is contained in a right d-polytope of sides r1, . . . , rd (which we may call N ′)
we may identify the original CA with one having neighbourhood index N ′; then the CA is surjective iff
for all x1, . . . , xd ∈ Z+, p ∈ QE(x1,...,xd)∣∣∣F−1

E(x1,...,xd) (p)
∣∣∣ = |Q|(x1+r1)···(xd+rd)−x1···xd .

Let A = 〈d, Q,N , f〉 be a CA. If A is nonsurjective, then there must exist a support of suitable size
where not every possible pattern is reachable, i.e., a part of the state is lost. In the 1D case [10], such
lost state is proved to be ultimately as much as the boundary can transport; which allowed devising a
CA-to-LG conversion algorithm. If the technique employed there is to be extended to higher dimension,
then we must determine whether such large a loss can still be achieved.

Call output size of f on a right d-polytope of sides x1, . . . , xd the quantity

Outf (x1, . . . , xd) =
∣∣∣FE(x1,...,xd)

(
QE(x1,...,xd)+N

)∣∣∣ .

Then A is surjective iff Outf (x1, . . . , xd) = |Q|x1···xd for every x1, . . . , xd ∈ Z+. By switching to a
logarithmic measure unit, we can associate toA a loss of variety on a right d-polytope of sides x1, . . . , xd
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defined as
ΛA(x1, . . . , xd) = x1 · · ·xd − log|Q| Outf (x1, . . . , xd) . (11)

Observe how such loss is measured in qits (with q = |Q|), a qit being the amount of information carried
by a q-states device; n qits correspond to n log2 q bits.

Theorem 3 Let A = 〈d, Q,N , f〉 be a CA. Define ΛA as by (11). Then

1. either A is surjective and ΛA is identically zero,

2. or A is nonsurjective and for every K ≥ 0, r1, . . . , rd ∈ N, there exist t1, . . . , td ∈ Z+ such that,
if xj ≥ tj for every j ∈ {1, . . . , d}, then

ΛA(x1, . . . , xd) ≥ (x1 + r1) · · · (xd + rd)− x1 · · ·xd + K . (12)

Proof: Put q = |Q|. Since a pattern over E(x1, . . . , xj + yj , . . . , xd) can always be seen as the joining of
a pattern over E(x1, . . . , xj , . . . , xd) and another one over E(x1, . . . , yj , . . . , xd), there cannot be more
patterns obtainable over the former than pairs of patterns obtainable over the latter, i.e.,

Outf (x1, . . . , xj + yj , . . . , xd) ≤ Outf (x1, . . . , xj , . . . , xd) ·Outf (x1, . . . , yj , . . . , xd)

whatever x1, . . . , xn, yj ∈ Z+, j ∈ {1, . . . , d} are; consequently, logq Outf is subadditive in each of its
arguments (and nonnegative). Let

λf = lim
(x1,...,xd)∈Zd

logq Outf (x1, . . . , xd)
x1 · · ·xd

, (13)

whose existence and value are given by Theorem 1; observe that λf ≤ 1, and A is surjective iff λf = 1.
SupposeA is nonsurjective. Let δ ∈ (λf , 1). Choose t1, . . . , td ∈ Z+ so that, for every x1 ≥ t1, . . . , xd ≥
td, both

logq Outf (x1, . . . , xd)
x1 · · ·xd

≤ δ (14)

and
(x1 + r1) · · · (xd + rd)− x1 · · ·xd + K

x1 · · ·xd
≤ 1− δ (15)

are satisfied, the latter following from (2). Then, for such x1, . . . , xd,

x1 · · ·xd − logq Outf (x1, . . . , xd) ≥ (x1 · · ·xd)(1− δ)
≥ (x1 + r1) · · · (xd + rd)− x1 · · ·xd + K .

2

Corollary 4 Let A be as in Theorem 3.

1. If ΛA is bounded, then A is surjective.

2. IfA is nonsurjective, then there exist k1, . . . , kd such that, if xi ≥ ki for all i, then ΛA(x1, . . . , xd) ≥
|E(x1, . . . , xd) +N| − |E(x1, . . . , xd)|.
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Proof: Point 1 follows from point 2 of Theorem 3. For point 2, put K = 0 and choose r1, . . . , rd so that
N ⊆ z + E(r1, . . . , rd) for some z ∈ Zd. 2

The unbounded growth of ΛA for nonsurjectiveA could also be proved via the following argument, akin to
the one used in the proof of Moore-Myhill’s theorem. Let π be a GoE pattern with support E(k1, . . . , kd):
then Outf (k1, . . . , kd) ≤ qk − 1, where k = k1 · · · kd. For every n ≥ 1, none of the nd portions of the
image via (10) of a pattern over E(nk1, . . . , nkd) +N can equal π, so in fact

Outf (nk1, . . . , nkd) ≤ (qk − 1)nd

∀n ≥ 1 ; (16)

this implies
ΛA(nk1, . . . , nkd) ≥ nd(k − logq(q

k − 1)) ∀n ≥ 1 ,

and the factor in parentheses is a positive constant. However, the proof based on Fekete’s lemma gives us
more comprehensive information about the behaviour of A. In fact, if we only rely on the existence of a
GoE pattern, we only get a family of values on which ΛA grows arbitrarily large; instead, Fekete’s lemma
immediately tells us that ΛA grows ultimately larger than any given value. To get such thing from (16),
we must first rewrite each xi as nki + ri, then employ

Outf (x1, . . . , xd) ≤ (qk − 1)nd

· qx1···xd−nd·k .

Point 2 of Corollary 4 says that, for (x1, . . . , xd) satisfying both (14) and (15), the loss of variety is at
least the size of the boundary: this is precisely the fact used in [10], and supports the conjecture that a
similar construction can be carried out in dimension d > 1. On the other hand, since surjectivity of d-
dimensional CA is only decidable when d = 1 [1, 5], no algorithm exists to determine, given an arbitrary
multidimensional CA, whether its loss of variety (11) is bounded.

4 A consideration on the Weyl pseudodistance
The Weyl pseudodistance on d-dimensional configurations is defined as

dW (c1, c2) = lim sup
(x1,...,xd)∈Zd

(
max
y∈Zd

|{z ∈ y + E(x1, . . . , xd) | c1(z) 6= c2(z)}|
x1 · · ·xd

)
. (17)

This is an extension of the definition given in [3] for one-dimensional configurations. Essentially, dW (c1, c2)
is the upper limit of the maximum probability of getting different values for the ci’s when choosing at ran-
dom a point in a given (x1, . . . , xd)-hypercube. Note that dW is translation invariant, i.e., dW (cx

1 , cx
2) =

dW (c1, c2) for every x ∈ Zd, c1, c2 ∈ QZd

, where cx(z) = c(x + z) for all z ∈ Zd: this is impossible for
any distance inducing the product topology (cf. [3]). Moreover, CA induce continuous transformations
of the quotient space obtained by identifying configurations having Weyl distance zero, and information
about the behaviour of the CA can be inferred from that of the induced function.

The Weyl pseudodistance has been neglected in favor of the Besicovitch pseudodistance defined, for
d = 1 (cf. [3]), as

dB(c1, c2) = lim sup
n≥1

|{x ∈ [−n, . . . , n] | c1(x) 6= c2(x)}|
2n + 1

,
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which is also translation invariant and induces a quotient space with better topological properties, on
which CA also induce continuous transformations whose properties may reflect those of the original.
However, there is a feature distinctive of dW which is not shared by dB .

Theorem 5 For any c1, c2 ∈ QZd

,

dW (c1, c2) = lim
(x1,...,xd)∈Zd

(
max
y∈Zd

|{z ∈ y + E(x1, . . . , xd) | c1(z) 6= c2(z)}|
x1 · · ·xd

)
. (18)

Moreover,

dW (c1, c2) = inf
x1,...,xd∈Z+

(
max
y∈Zd

|{z ∈ y + E(x1, . . . , xd) | c1(z) 6= c2(z)}|
x1 · · ·xd

)
. (19)

Proof: For y ∈ Zd, x1, . . . , xd ∈ Z+, put

Φy(x1, . . . , xd) = |{z ∈ y + E(x1, . . . , xd) | c1(z) 6= c2(z)}|

and
f(x1, . . . , xd) = max

y∈Z
Φy(x1, . . . , xd) .

Then

dW (c1, c2) = lim sup
(x1,...,x)d∈Zd

f(x1, . . . , xd)
x1 · · ·xd

.

Moreover, if (z(j))i = xj · δj
i (δj

i being the Kronecker symbol) then

Φy(x1, . . . , xj + x′j , . . . , xd) = Φy(x1, . . . , xj , . . . , xd) + Φy+z(j)(x1, . . . , x
′
j , . . . , xd) ,

so that
f(x1, . . . , xj + x′j , . . . , xd) ≤ f(x1, . . . , xj , . . . , xd) + f(x1, . . . , x

′
j , . . . , xd) ,

because the maximum over y is a subadditive function and is invariant by translations of y by a fixed
value. By Theorem 1,

inf
x1,...,xd∈Z+

f(x1, . . . , xd)
x1 · · ·xd

= lim
(x1,...,xd)∈Zd

f(x1, . . . , xd)
x1 · · ·xd

= lim sup
(x1,...,xd)∈Zd

f(x1, . . . , xd)
x1 · · ·xd

,

which yields (18) and (19). 2

We are now going to check that dB is not, in general, a limit. Let xn =
∑n

k=1 2k; let c1(x) = 0 for every
x ∈ Z and let

c2(x) =


0 if x2k < x ≤ x2k+1 ,
1 if x2k−1 < x ≤ x2k ,
1 if x = 0 ,
c2(−x) if x < 0 .

For n odd, the interval [0, xn] contains twice as many points where c2(x) = 0 than points where c2(x) =
1; for n even, the interval [1, xn] contains twice as many points where c2(x) = 1 than points where
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c2(x) = 0. From this follows that dB(c1, c2) ≥ 2/3 but lim infn∈N |{|x| ≤ n, c1(x) 6= c2(x)}|/(2n +
1) ≤ 1/3. (With a bit more patience one can see that equalities actually hold.)

As a consequence of Theorem 5 and Corollary 2, the Weyl pseudodistance can be obtained as a limit
on any sequence of right d-polytopes which “grow infinitely large in all directions”.

Corollary 6 Let limn→∞ xi,n = +∞ for each i ∈ {1, . . . , d}. Then

lim
n→∞

max
y∈Zd

|{z ∈ y + E(x1,n, . . . , xd,n) | c1(z) 6= c2(z)}|
x1,n · · ·xd,n

= dW (c1, c2) .

In particular,

lim
n→∞

max
y∈Zd

|{z ∈ y + E(n, . . . , n) | c1(z) 6= c2(z)}|
nd

= dW (c1, c2) .
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