
Discrete Mathematics and Theoretical Computer Science DMTCS vol. 10:3, 2008, 149–160

Waiting Time Distribution for Pattern
Occurrence in a Constrained Sequence: an
Embedding Markov Chain Approach

Grégory Nuel
MAP5, CNRS, UMR 8145, University Paris Descartes, 45 rue des Saint-Pères, 75270 Paris Cedex 06, France

received Dec 6, 2007, revised May 13, 2008, accepted Nov 25, 2008.

In this paper we consider the distribution of a pattern of interest in a binary random (d, k)-sequence generated by a
Markov source. Such constrained sequences are frequently encountered in communication systems. Unlike the previous
approach based on generating function we have chosen here to use Markov chain embedding techniques. By doing
so, we get both previous results (sequence constrained up to the rth occurrence), and new ones (sequence constrained
up to its end). We also provide in both cases efficient algorithms using basic linear algebra only. We then compare
our numerical results to previous ones and finally propose several interesting extensions of our method which further
illustrate the usefulness of our approach. That is to say higher order Markov chains, renewal occurrences rather than
overlapping ones, heterogeneous models, more complex patterns of interest, and multistate trial sequences.

Keywords: pattern, waiting time, conditional distribution, (d, k)-sequences

1 Introduction
The binary sequences used in communications systems (like magnetic or optical recording systems) are often
subject to technical constraints. The simplest of these constraints allows runs of zeros of specific lengths.
Several authors (Zehavi and Wolf, 1988; Marcus et al., 1998; Lothaire, 2005) have considered such particular
constraint sequences called (d, k)-sequence containing no run of zeros of length smaller than d or greater
than k. It is clear that this constraint is equivalent to the case when forbidden patterns are introduced. For
instance, these forbidden patterns are ‘11’ and ‘00000’ in a (1, 4)-sequence, they are ‘11’, ‘101’ and ‘0000’
in a (2, 3)-sequence. In this paper, we consider the distribution of a given pattern of interest (for example
‘100100100’) in a random (d, k)-sequence generated by a Markov source.

Recently, this problem has been considered by Stefanov and Szpankowski (2007) where the authors use a
sophisticated approach based on generating functions. In this paper, we introduce an alternative approach to
the same problem using the well known technique of Markov chain embedding (Fu, 1996; Chadjiconstan-
tinidis et al., 2000; Antzoulakos, 2001; Fu and Chang, 2002) which will allow us both to get the same results
as in a previous paper, but also several interesting extensions. One should note that we use the same notation
as that in Stefanov and Szpankowski (2007) to facilitate the comparison.

Formally, let X = X1X2 . . . be an homogeneous Markov chain over {0, 1} with transition matrix π and
starting distribution µ1. We denote by Ni (resp. N̄ (d,k)

i) the number of occurrences of the pattern of interest

1365–8050 c© 2008 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/volumes/
http://www.dmtcs.org/volumes/dm10:3ind.html

150 Grégory Nuel

w = w1w2 . . . wm (resp. the forbidden patterns w̄ ∈ W̄) in X1X2 . . . Xi and by Yr the waiting time of the
rth occurrence of w. Then, we consider the following two probabilities of interest:

P(Yr 6 n|N̄ (d,k)
n = 0) = P(Nn > r|N̄ (d,k)

n = 0); (1)

the distribution of Yr given the sequence is constrained up to n, and

P(Yr 6 n|N̄ (d,k)
Yr

= 0) =
∑n

i=1 P(Yr = i, N̄
(d,k)
i = 0)∑∞

i=1 P(Yr = i, N̄
(d,k)
i = 0)

(2)

= P(Nn > r|N̄ (d,k)
Yr

= 0)

the distribution of Yr given the sequence is constrained up to Yr.
This paper is organized as follows: Section 2 presents our main results starting with the embedding

Markov chain allowing to keep track of both occurrences of the pattern of interest and of the forbidden
patterns (2.1) followed by its applications to probability computations given the constrained sequence up to
Yr (2.2) like it is done in Stefanov and Szpankowski (2007) or up to n (2.3) which is a new result. In both
cases, we derive efficient algorithms to compute these probabilities by using basic linear algebra only. Then
we give a numerical example, we compare our results to the ones from previous paper (2.4), and we study the
practical limits of our algorithm through intense testing (2.5). In Section 3, we propose several extensions
of the method: higher order Markov chains (3.1), renewal occurrences rather than overlapping ones (3.2),
heterogeneous models (3.3), more complex patterns of interest (3.4) and multistate trial sequences (3.5).

2 Main results
2.1 Embedding Markov Chain
In order to avoid degenerated cases, let us assume that w does not contain any of the forbidden patterns
and that neither w nor any w̄ ∈ W̄ belongs to {0, 1}. Let us define P the union of {0, 1} and of the set of
all (non empty) prefixes of both w and the forbidden patterns. For example, studying w = 100100100 in
(1, 4)-sequences, we get:

P = {0, 1, 11, 00, 000, 0000, 00000, 10, 100, 1001, 10010, 100100, 1001001, 10010010, 100100100}.

Let us consider the transition function δ : P×{0, 1} → P defined for all p ∈ P and a ∈ {0, 1} by δ(p, a)
is the longest suffix of pa in P . In our example we get: δ(00, 0) = 000, δ(00, 1) = 1, δ(1001, 0) = 10010,
δ(1001, 1) = 11, and so on.

Theorem 1 Let X̃ = X̃1X̃2 . . . a random sequence over P be defined by:

X̃1 = X1 and X̃i = δ(X̃i−1, Xi) for all i > 2.

Then X̃ is an homogeneous Markov chain whose transition matrix Π is given for all (possibly empty) words
p and q and for any a, b ∈ {0, 1} such as pa, qb ∈ P by:

Π(pa, qb) =
{
π(a, b) if qb = δ(pa, b)
0 else

and we obtain the following properties:

151

i) w ends in position i in X ⇐⇒ X̃i = w;

ii) for all w̄ ∈ W̄ , w̄ ends in position i in X ⇐⇒ X̃i = w̄.

Proof: X̃ is obviously a Markov chain and the expression of its transition matrix is straightforward to
establish. We then remark that the Deterministic Finite Automaton (DFA) defined on the state space P∪{ε}
(ε denotes the empty word), the finite alphabet {0, 1}, with ε as starting state, {w} ∪ W̄ as set of final states
and δ̃ defined for all p ∈ P ∪ {ε} and a ∈ {0, 1} by

δ̃(p, a) =
{
a if p = ε
δ(p, a) else

as transition function is exactly the Aho-Corasick DFA (Aho and Corasick, 1975) that allows us to count
simultaneously w and all w̄ ∈ W̄ . The properties i) and ii) directly come from those of this DFA. 2

It should be noted that we have chosen here to explicitly use the Aho-Corasick DFA in the construction
of our Markov chain embedding while most authors working on the subject usually use it implicitely (for
instance, see Chang, 2005).

Corollary 2 For all r > 0 the sequence (Z̃r
i)i>1 defined for all i > 1 by:

Z̃r
i =


(X̃i, Ni, 0) if N̄ (d,k)

i = 0
(X̃i, r+, 0) if Ni > r and N̄ (d,k)

i = 0
(X̃i, ·, 1+) if N̄ (d,k)

i > 1

is a Markovian sequence whose starting distribution ar and transition matrix Ar are defined for all 0 6
i, j 6 r + 1 by size |P| blocks with:

ar(i) =
{
µ1 if i = 0
0 else and Ar(i, j) =



P if 0 6 i < r and j = i
Q if 0 6 i < r and j = i+ 1
P +Q if i = j = r
Q̄ if 0 6 i 6 r and j = r + 1
Π if i = j = r + 1
0 else

where the blocks are ordered as follows: block 0 (P, 0, 0), block 1 (P, 1, 0), . . . , block r − 1 (P, r − 1, 0),
block r (P, r+, 0) and block r + 1 (P, ·, 1+); and where we decompose the transition matrix Π into:

Π = P +Q+ Q̄

where Q (resp. Q̄) contains all transitions ending in {w} (resp. W̄) and P the remaining ones.

Proof: For all 0 6 i < r, a transition from the block (P, i, 0) to the same block does not allow any
occurrence of w nor any w̄ ∈ W̄ to appear which means that the transition P must be used. If the transition
is now from (P, i, 0) to (P, i + 1, 0), hence one occurrence of w just occurred, and we have to use the
transition matrix Q̄. If a forbidden pattern occurs, then the transition from block (P, i, 0) to (P, ·, 1+)
obviously uses Q̄. The expression of the remaining transitions simply relies on the same mechanism. 2

152 Grégory Nuel

Require: Two arrays of dimension r × |P|: u and v; two real numbers: sum1 and sum2
1: INITIALIZATION:
2: sum1 = sum2 = 0
3: u[0] = µ1 and u[j] = 0 for all 1 6 j 6 r − 1
4: v[j] = 0 for all 0 6 j < r − 1 and v[r − 1] = QeT

w

5: FINITE SUM:
6: for i = 2 . . . n do
7: sum1+ = u · v
8: for j = r − 1 . . . 1 do u[j] = u[j]P + u[j − 1]Q end for and u[0] = u[0]P
9: end for

10: INFINITE SUM:
11: while sum2 has not (numerically) converged do
12: sum2+ = u · v
13: for j = r − 1 . . . 1 do u[j] = u[j]P + u[j − 1]Q end for and u[0] = u[0]P
14: end while
Output: P(Yr 6 n|N̄ (d,k)

Yr
= 0) = sum1/(sum1 + sum2)

Algorithm 1: Algorithm computing P(Yr 6 n|N̄ (d,k)
Yr

= 0) for any r > 1 and n > 2. All vector × matrix
products (lines 8 and 13) use the sparse structure of matrices P and Q; the expression u · v (lines 7 and
12) denotes the scalar product of the two vectors. One can efficiently compute P(Yr > n|N̄ (d,k)

Yr
= 0) with

the same algorithm by simply returning sum2/(sum1 + sum2). Space complexity is O(r × |P|) and time
complexity is O(r × |P| × n).

2.2 The sequence is constrained up to Yr

Proposition 3 For all r > 1 and for all i > 2 we have:

P(Yr = i, N̄
(d,k)
i = 0) = urR

i−2
r Srv

T
r (3)

where T denote the transpose operator and the two row-vectors ur and vr are defined for size |P| block
0 6 i 6 r − 1 by:

ur(i) =
{
µ1 if i = 0
0 else and vr(i) =

{
ew if i = r − 1
0 else ,

(For all p ∈ P , ep denotes the indicatrix row-vector of state p) and two matrices Rr and Sr and are defined
for the block (i, j) with 0 6 i, j 6 r − 1 by:

Rr(i, j) =

 P if i = j
Q if j = i+ 1
0 else

and Sr(i, j) =
{
Q if i = j = r − 1
0 else .

Proof: If Yr = i and N̄ (d,k)
i = 0 that means that Z̃r

i−1 belongs to the block (P, r− 1, 0) and that w appears
in position i which means that the transition Q is used. Rr is hence the submatrix of Ar corresponding to
the blocks (P, j, 0) with 0 6 j 6 r−1, and Sr is a same dimension matrix allowing the product of the most
right-handed block by Q. 2

153

Require: two arrays of dimension r × |P|: u and v; two arrays of dimension |P|: x and y; three real
numbers: sum1, sum2 and den

1: INITIALIZATION:
2: sum1 = 0
3: u[0] = µ1 and u[j] = 0 for all 1 6 j 6 r − 1
4: v[j] = 0 for all 0 6 j < r − 1 and v[r − 1] = QeT

w

5: FINITE SUM:
6: for i = 2 . . . n do
7: sum1+ = u · v
8: for j = r − 1 . . . 1 do u[j] = u[j]P + u[j − 1]Q end for and u[0] = u[0]P
9: end for

10: INFINITE SUM:
11: for j = r − 2 . . . 0 do
12: u[r − 1] = u[r − 1] + lupower(u[j], r − 1− j)
13: end for
14: sum2 = lupower(u[r − 1], 1)× eT

w

15: den = lupower(µ1, r)× eT
w

Output: P(Yr 6 n|N̄ (d,k)
Yr

= 0) = sum1/den

Algorithm 2: Algorithm computing P(Yr 6 n|N̄ (d,k)
Yr

= 0) for any r > 1 and n > 2. All vector × matrix
products (lines 8 and 13) use the sparse structure of matrices P and Q; the expression u · v (lines 7 and 12)
denotes the scalar product of the two vectors. One can efficiently compute P(Yr > n|N̄ (d,k)

Yr
= 0) with the

same algorithm by simply returning sum2/den. Lines 11-14 may be omitted if one is not interested in the
computation of sum2. Space complexity is O(r × |P|) and time complexity is O(r × |P| × n+ r2 × |P|)
(remove the r2 × |P| term if lines 11-14 are omitted).

Corollary 4 For all r > 1 and n > 2 we have:

P(Yr 6 n|N̄ (d,k)
Yr

= 0) =
∑n

i=2 urR
i−2
r Srv

T
r∑∞

i=2 urR
i−2
r SrvT

r

. (4)

Proof: This simply results from a combination of Equation (2) and Equation (3). 2

Algorithm 1 is a straightforward implementation of (4) using the special structure of Rr to get an efficient
iterative computation of vector × matrix products. The tail sum is here computed numerically which can
be a source of error due to the finite level of precision. An alternative could consist in using the inverse of
I −Rr to immediately get this tail sum as suggested by the following corollary.

Corollary 5 If I − P is invertible then for all r > 1 and n > 2 we have:

P(Yr 6 n|N̄ (d,k)
Yr

= 0) =
∑n

i=2 urR
i−2
r Srv

T
r

urTrSrvT
r

and P(Yr > n|N̄ (d,k)
Yr

= 0) =
urR

n−1
r TrSrv

T
r

urTrSrvT
r

(5)

where Tr = (I −Rr)−1 is defined on the block (i, j) with 0 6 i, j 6 r − 1 by:

Tr(i, j) =
{

[(I − P)−1Q]j−i(I − P)−1 if j > i
0 else

.

154 Grégory Nuel

Require: Two array of size |P|: x and b
1: b = u
2: for i = 1 . . . k do
3: find x such as x(I − P) = b // sparse LU solving
4: b = xQ // sparse product
5: end for

Output: u[(I − P)−1Q]k = b

Algorithm 3: Procedure lupower(u, k) computing u[(I − P)−1Q]k through sequential LU solving of
linear equations. The necessary sparse LU factorization has to be performed only once for all lupower
calls. Complexities are O(|P|) in space and O(|P| × k) in time.

Proof: Thanks to the definition ofRr it is clear that [(I−Rr)×Tr](i, j)(I−P)×Tr(i, j)−Q×Tr(i+1, j). It
is then easy to verify that such a block is either I if i = j or 0 otherwise thus proving that (I−Rr)×Tr = I .
A similar approach shows that Tr×(I−Rr) = I . We then just have to replace

∑∞
i=0R

i
r by Tr = (I−Rr)−1

in equation (4). 2

This result allows us to get Algorithm 2 which is more robust numerically than the previous one, and also
faster. However, and unlike Algorithm 1, this algorithm cannot be extended to a heterogeneous model.

2.3 The sequence is constrained up to n

Proposition 6 For all r > 0 and n > 1 we have:

P(Yr 6 n, N̄ (d,k)
n = 0) = yrT

n−1
r zT

r (6)

where the two vectors yr and zr are defined for the size |P| block 0 6 i 6 r by:

yr(i) =
{
µ1 if i = 0
0 else and zr(i) =

{
1 if i = r
0 else ,

and the matrix Tr is defined for the block (i, j) with 1 6 i, j 6 r by:

Tr(i, j) =


P if 0 6 i = j < r
Q if j = i+ 1
P +Q if i = j = r
0 else

.

Proof: As P(Yr 6 n, N̄
(d,k)
n = 0) = P(Nn > r, N̄

(d,k)
n = 0) we need to compute the probability that Z̃r

n

belongs to blocks (P, r+, 0). The transition matrix Tr is hence simply a submatrix of Ar. 2

Corollary 7 For all r > 1 and n > 1 we have:

P(Yr 6 n|N̄ (d,k)
n = 0) =

yrT
n−1
r zT

r

yrT
n−1
r 1T

(7)

where 1 is a row-vector of ones (of the appropriate dimension).

Proof: This simply results from a combination of Equation (1) and Equation (6). 2

A straightforward implementation of (7) gives Algorithm 4. Like in Algorithm 1, we take advantage of
the sparse structure of matrices P and Q through a very natural recurrence expression of vector × matrix
products with Tr.

155

Require: One array of dimension (r + 1)× |P|: y; two real numbers: sum1 and sum2
1: INITIALIZATION:
2: sum1 = 0 and sum2 = 0
3: y[0] = µ1 and y[j] = 0 for all 1 6 j 6 r
4: MAIN LOOP:
5: for i = 2 . . . n do
6: y[r] = y[r](P +Q) + y[r − 1]Q
7: for j = r − 1 . . . 1 do y[j] = y[j]P + y[j − 1]Q end for and y[0] = y[0]P
8: end for
9: sum1+ = y[r] · 1 and for j = 0 . . . r − 1 do sum2+ = y[j] · 1 end for

Output: P(Yr 6 n|N̄ (d,k)
n = 0) = sum1/(sum1 + sum2)

Algorithm 4: Algorithm computing P(Yr 6 n|N̄ (d,k)
n = 0) for any r > 1 and n > 1. All vector ×

matrix products (lines 7 and 8) use the sparse structure of matrices P and Q. One can efficiently compute
P(Yr > n|N̄ (d,k)

n = 0) with the same algorithm by simply returning sum2/(sum1 + sum2). Space
complexity is O(r × |P|) and time complexity is O(r × |P| × n).

2.4 Numerical application
We consider the occurrence of w = 100100100 in (1, 4)-sequences where the unconstrained sequence
X = X1X2 . . . is a Markov chain whose transition matrix π may be defined by π0,0 = 0.4, π0,1 = 0.6,
π1,0 = 1.0 and π1,1 = 0.0. The set of forbidden patterns is hence W̄ = {11, 00000}, but can be reduced to
W̄ = {00000} since 11 cannot appear in the sequence (transition π1,1 is null).

According to Theorem 1, we consider the Markov chain X̃ = X̃1X̃2 . . . whose states are in

P = {0, 1, 00, 10, 000, 100, 0000, 1001, 00000, 10010, 100100, 1001001, 10010010, 100100100},

and relies on the following transition matrix

Π =



0. 0.6 0.4 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0.6 0. 0. 0.4 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0.6 0. 0. 0. 0.4 0. 0. 0. 0. 0. 0. 0. 0.
0. 0.6 0. 0. 0. 0. 0.4 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0.4 0. 0. 0.6 0. 0. 0. 0. 0. 0.
0. 0.6 0. 0. 0. 0. 0. 0. 0.4 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0.
0. 0.6 0. 0. 0. 0. 0. 0. 0.4 0. 0. 0. 0. 0.
0. 0.6 0. 0. 0. 0. 0. 0. 0. 0. 0.4 0. 0. 0.
0. 0. 0. 0. 0.4 0. 0. 0. 0. 0. 0. 0.6 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0.
0. 0.6 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.4
0. 0. 0. 0. 0.4 0. 0. 0. 0. 0. 0. 0.6 0. 0.


If we number the states of P from 1 to 14 we get that 1 (resp. 2) is the starting state corresponding to

X1 = 0 (resp. X1 = 1), 9 correspond to the forbidden pattern ‘00000’ and 14 to w = 100100100 our
pattern of interest.

156 Grégory Nuel

r P(Nn > r|N̄ (1,4)
Yr

= 0) running time P(Nn > r|N̄ (1,4)
n = 0) running time

1 0.9998229893 0.023s 0.9744091233 0.024s
2 0.9988429172 0.039s 0.8990552029 0.033s
3 0.9957604487 0.055s 0.7729881352 0.042s
4 0.9885806721 0.070s 0.6167698770 0.052s
5 0.9748567886 0.086s 0.4578925276 0.061s
6 0.9521461776 0.102s 0.3179937858 0.070s
7 0.9185406129 0.117s 0.2078334759 0.079s
8 0.8731122847 0.133s 0.1285845121 0.089s
9 0.8161570287 0.150s 0.0757066715 0.099s

10 0.7491883799 0.166s 0.0426162883 0.109s

Tab. 1: Results of Algorithm 2 and Algorithm 4 for several values of r with n = 500, w = 100100100, π0,0 = 0.4,
π0,1 = 0.6, π1,0 = 1.0, π1,1 = 0.0 and assuming that the Markov chain starts with X1 = 0. The computational time
using a (slow) Scilab implementation and running on a Xeon 1.86 Gz processor are also given.

The results we get in Table 1 for P(Yr 6 n|N̄ (d,k)
Yr

= 0, X1 = 0) are exactly the same as the ones from
Stefanov and Szpankowski (2007). This is something rather positive since the two approaches use com-
pletely different techniques (Markov chain embedding here and generating functions in the previous paper).
It is also interesting to note that even with our slow Scilab implementation (from our personal experience
one can expect at least to decrease by a factor 20 the computational time with a pure C implementation of
the same algorithms), the computation time remains relatively small. Since working conditionally to the
constraint up to Yr involves an infinite sum while the constraint up to n only requires a finite one, the com-
putational times for the first probability are longer than the second ones, but grows linearly with r in both
cases.

2.5 Numerical limits of the presented algorithms
The space and time complexities of all algorithms we have presented in this paper are strongly connected to
three parameters: the number r of occurrences for the pattern of interest, the sequence length n, and the size
|P| depending both on the pattern of interest and on the set of forbidden patterns. These complexities are
linear in all theses parameters, except for Algorithm 2 where there also is a small quadratic contribution of
r when the tail distribution is requested.

In Table 2 we study the practical limits of our algorithms by considering patterns whose size ranges from
9 to 180, and various values of r and n. In this table, we can see that the numerical convergence used in
Algorithm 1 provides reliable results (with only two degenerated cases where Algorithm 1 fails to give the
correct answer). However, Algorithm 2 proves itself to be faster in all but one case (j = 2, r = 15, n = 500).

3 Extensions of the method
3.1 Markov chain of higher order
It is easy to adapt our method to the case where X is an order m Markov chain. To do so, we just have
to replace P by the union of {0, 1}m with all the prefixes of w and all w̄ ∈ W̄ whose length is at least m.
The algorithms then remain the same except that the starting distribution µ1 over {0, 1}must be replaced by
a starting distribution µm over {0, 1}m and hence, the first transition to consider is to position i = m + 1
rather than i = 1 + 1 = 2 (line 6 in Algorithm 1 and Algorithm 4).

157

j |P| r n n∞ P(Nn > r|N̄ (1,4)
Yr

= 0) P(Nn < r|N̄ (1,4)
Yr

= 0) running time

1 15 15 500 ∞ 3.6458298048× 10−01 6.3541701952× 10−01 0.251s
3494 3.6458298048× 10−01 6.3541701952× 10−01 0.783s

150 500 ∞ 1.1642613103× 10−48 1.0 2.591s
11774 1.1642613103× 10−48 1.0 57.036s

10 5000 ∞ 1.0 2.3644758572× 10−28 1.669s
7056 1.0 2.3644758572× 10−28 2.397s

100 5000 ∞ 9.8617817984× 10−01 1.3821820160× 10−02 16.144s
9512 9.8617817984× 10−01 1.3821820160× 10−02 30.623s

2 24 15 500 ∞ 9.6256991047× 10−01 3.7430089526× 10−02 0.262s
4095 9.6256991047× 10−01 3.7430089526× 10−02 0.172s

150 500 ∞ 7.2947817992× 10−03 9.9959925625× 10−01 2.725s
6249 7.2947817992× 10−03 9.9959925625× 10−01 30.530s

10 5000 ∞ 1.0 1.3627569774× 10−20 1.827s
8309 1.0 1.3627569774× 10−20 3.068s

100 5000 ∞ 1.0 1.6547536595× 10−13 16.894s
8959 1.0 1.6547536595× 10−13 30.174s

10 96 15 500 ∞ 9.7610094277× 10−01 2.3899057230× 10−02 0.361s
3722 9.7610094277× 10−01 2.3899057230× 10−02 0.707s

150 500 ∞ 0.0 1.0 3.790s

10 5000 ∞ 1.0 3.5772469492× 10−22 2.404s
8184 1.0 3.5772469492× 10−22 3.957s

100 5000 ∞ 1.0 5.4838685880× 10−21 23.625s
8227 1.0 5.4838685880× 10−21 38.643s

20 186 15 500 ∞ 9.4063094425× 10−01 5.9369055746× 10−02 0.466s
3691 9.4063094425× 10−01 5.9369055746× 10−02 3.407s

150 500 ∞ 0.0 1.0 4.898s

10 5000 ∞ 1.0 8.8864498503× 10−22 3.051s
8221 1.0 8.8864498503× 10−22 5.072s

100 5000 ∞ 1.0 1.3622800965× 10−20 30.375s
8196 1.0 1.3622800965× 10−20 49.583s

Tab. 2: Numerical performance of Algorithm 1 and Algorithm 2 to compute the distribution of the pattern w =
(100100100)j (ex: with j = 2, w = 100100100100100100) in a (1, 4)-sequence starting with X1 = 0 and with
the following transition probabilities: π0,0 = 0.4, π0,1 = 0.6, π1,0 = 1.0 and π1,1 = 0.0. n∞ is the largest value
of n used in the infinite sum; a finite value corresponds to the position where numerical convergence is achieved in
Algorithm 1 while an infinite one corresponds to exact result of Algorithm 2. Algorithm 1 failed to produce a result on
two occasions (r = 150, n = 500 for j = 10 and j = 20).

158 Grégory Nuel

x1 x2 q P(N500 > 5|N̄ (1,4)
Y5

= 0) P(N500 > 5|N̄ (1,4)
500 = 0)

0 0 0.3 0.8484458330 0.0794428210
0 1 0.3 0.8498548514 0.0800356376
0 0 0.4 0.9745916345 0.4565899323
0 1 0.4 0.9750222448 0.4587174663
0 0 0.5 0.9983578453 0.8752575333
0 1 0.5 0.9984031350 0.8766482482

Tab. 3: Results of Algorithm 1 and Algorithm 4 for r = 5 with n = 500, w = 100100100, with an order 2 Markov
model whose transition matrix is π00,0 = 0.4, π00,1 = 0.6, π01,0 = 1.0, π01,1 = 0.0, π10,0 = q, π10,1 = (1 − q),
π11,0 = 1.0 and π11,1 = 0.0 where q ∈ [0, 1] and assuming that the Markov chain starts with X1 = x1 and X2 = x2.

For example let us consider the order m = 2 Markov chain whose transition probabilities are given by:
π00,0 = 0.4, π00,1 = 0.6, π01,0 = 1.0, π01,1 = 0.0, π10,0 = q, π10,1 = (1− q), π11,0 = 1.0 and π11,1 = 0.0
where q ∈ [0, 1]. If q = 0.4, the order of the model is reduced to 1, and we get the same model as in the
previous numerical example. We can see in Table 3 that in this case, the results are very close to those in
Table 1. As a validation, one can get exactly the same result as in Table 1 with q = 0.4 by considering the
starting distribution µ2(00) = 0.4 and µ2(01) = 0.6. However, we should emphasize that this result is not
a weighted combination of rows 3 and 4 of Table 3 since the computed probabilities are conditional ones.
If we now consider a higher value of q (like q = 0.5) we shall favor the occurrences of ‘100’ thus resulting
in higher probabilities. At the opposite, a lower value of q (like q = 0.3) will decrease accordingly our
probabilities of interest.

3.2 Renewal occurrences
Up to now, we have studied the number Ni of overlapping occurrences of our pattern of interest (up to
position i). It may also be useful to consider the number N ′i of renewal occurrences up to position i instead
of Ni. We recall here that a renewal occurrence is only counted if it does not overlap a previously counted
one. For instance, if w = 100100100, there is three overlapping occurrences of w in ‘01001001001001001’
but only one renewal occurrence (the first one).

It is often a great deal of work to study N ′i rather than Ni, it is however possible here with only a small
modification of our transition function δ. The basic idea is just that looking for a renewal occurrence of w
after one of its occurrences is exactly the same as looking for an occurrence from the start. Hence, simply
setting δ(w, 0) = 0 and δ(w, 1) = 1 ensures that not any unwanted occurrence will be counted.

Using the same model (with X1 = 0) as in Section 2.4 we get

P(N500 > 5|N̄ (1,4)
Y5

= 0) = 0.9748567886 ; P(N ′500 > 5|N̄ (1,4)
Y ′
5

= 0) = 0.9064203814

P(N500 > 5|N̄ (1,4)
500 = 0) = 0.4578925276 ; P(N ′500 > 5|N̄ (1,4)

500 = 0) = 0.2996029919

for w = 100100100 and where N ′500 and Y ′5 are the renewal version of N500 and Y5. Unsurprisingly, it is
more difficult to observe 5 renewal occurrences of w than to observe 5 overlapping ones.

3.3 Heterogeneous models
Like in Stefanov and Szpankowski (2007), we have supposed that our sequence model is homogeneous.
However, it is interesting to observe that our results hold with heterogeneous models. The matrices P and
Q must be replaced in all algorithms by their actual value at the current position.

159

For example, we can consider the following model: X1 = 0 and for all 2 6 i 6 n let

P(Xi = 0|Xi−1 = 0) = 0.4×
(

n−i
n−2

)
+ 0.6×

(
i−2
n−2

)
; P(Xi = 0|Xi−1 = 1) = 1.0

P(Xi = 1|Xi−1 = 0) = 0.6×
(

n−i
n−2

)
+ 0.4×

(
i−2
n−2

)
; P(Xi = 1|Xi−1 = 1) = 0.0

Applying Algorithm 4 for w = 100100100 using these matrices P and Q (which here depend on i) in
lines 7 and 8 we get:

P(N500 > 5|N̄ (1,4)
500 = 0) = 0.6646404828

which should be compared to 0.4578925276 the result using the homogeneous model of Section 2.4 (the
higher probability obtained with the heterogeneous model is consistent with the increase of π0,0 along the
sequence). It is of course possible to do the same with Algorithm 1 but in this case, we need to define the
transition matrix for all positions (and not like here, up to position i = n); this point is left to the reader.

3.4 More complex pattern of interest
Now we consider the occurrence of a set W of patterns of interest, rather than considering a single word
w. In such case, one simply has to add the corresponding prefixes to the set P to get the Aho-Corasick
DFA corresponding to the problem. However, one should note that this approach may not be optimal since
a smaller DFA may exist. A more elegant solution could consist to build directly the optimal DFA in
replacement to the Aho-Corasick one which is exactly what is proposed in Nuel (2007).

By using this approach, we understand the sequence X̃ as a PMC allowing to count both the patterns of
interest w ∈ W and the forbidden patterns w̄ ∈ W̄ . Algorithm 1 and Algorithm 4 then remain exactly the
same, only change the state space P and the transition matrices P , Q and Q̄.

For example, let us consider the patternW = 10(2−4)10(2−4)10(2−4) which is the set of the following 27
words: ‘100100100’, ‘1001001000’, ‘10010010000’, ‘1001000100’, . . . , ‘100001000010000’. The smallest
DFA allowing to count both occurrences ofW and ‘00000’ has L = 20 states and F = 5 final states (which
is far smaller than the number of states of the Aho-Corasick DFA). If N500 (resp. Y5) is the number of
occurrence (the position where ends the fifth) ofW then we get:

P(N500 > 5|N̄ (1,4)
Y5

= 0) = 0.9997627166 and P(N500 > 5|N̄ (1,4)
500 = 0) = 0.9822759719

which are unsurprisingly both larger probabilities than the corresponding ones when we only count occur-
rences of ‘100100100’.

3.5 Multistate trial sequences
Up to now, the results presented in this paper focus only binary trial sequences. However, it is important to
point out that the results hold with sequences over any finite alphabet. Moreover, any constraints may be
used as long as they may be expressed as a set of forbidden patterns.

For instance, let us consider a random i.i.d. sequence of length n = 500 over the DNA alphabet A =
{a,c,g,t}. Let w = gacgac be our pattern of interest and W̄ = {ttga,actt} be our set of forbidden
patterns. If we denote by Ni (resp. N̄i) the number of occurrences of the pattern of interest (resp. of the
forbidden patterns) up to position i, and if Yr denote the ending position of the rth occurrence of w then we
get:

P(N500 > 1|N̄Y1 = 0) = 0.9796349439 and P(N500 > 1|N̄500 = 0) = 0.1067240581.

with similar computational times as in the previous examples.

160 Grégory Nuel

4 Conclusion
In this paper, we have proposed several methods based on Markov chain embedding techniques allowing us
to study the distribution of a pattern of interest in random (d, k)-sequences. The case where the sequence is
constrained up to Yr has already been treated by Stefanov and Szpankowski (2007) using generating function
but the case where the sequence is constrained up to n is a new result.

In both cases, we suggest efficient algorithms using basic linear algebra only (sums, sparse matrix×vector
products, etc.) which are both easy to understand and implement. As a validation, we have compared our
numerical results to those of Stefanov and Szpankowski (2007), and they are exactly the same.

We also have demonstrated the flexibility and usefulness of our approach by providing several exten-
sions (renewal occurrences, heterogeneous models, complex patterns of interest, etc.) which are here quite
straightforward to obtain while some may be hard to get in the generating functions framework.

References
V. A. Aho and M. J. Corasick. Efficient string matching: an aid to bibliographic search. Communication of

the ACM, 18(6):333–340, 1975.

D. L. Antzoulakos. Waiting times for patterns in a sequence of multistate trials. J. Appl. Prob., 38:508–518,
2001.

S. Chadjiconstantinidis, D. L. Antzoulakos, and M. V. Koutras. Joint distribution of successes, failures and
patterns in enumeration problems. Adv. Appl. Prob., 32:866–884, 2000.

Y.-M. Chang. Distribution of waiting time until the rth occurrence of a compound pattern. Statistics and
Probability Letters, 75(1):29–38, 2005.

J. C. Fu. Distribution theory of runs and patterns associated with a sequence of multi-state trials. Statistica
Sinica, 6(4):957–974, 1996.

J. C. Fu and Y. M. Chang. On probability generating functions for waiting time distributions of compound
patterns in a sequence of multistate trials. J. Appl. Prob., 30:183–208, 2002.

M. Lothaire, editor. Applied Combinatorics on Words. Cambridge University Press, Cambridge, 2005.

B. Marcus, R. Roth, and P. Spiegel. Handbook of Coding Theory, chapter 20: constrained systems and
coding for recording channels. Elvesier Science, Pless, V. S. and Huffman, W. C. edition, 1998.

G. Nuel. Pattern markov chains: optimal markov chain embedding through deterministic finite automata. J.
Appl. Prob., 45:226–243, 2007.

V. T. Stefanov and W. Szpankowski. Waiting Time Distributions for Pattern Occurrence in a Constrained
Sequence. Discrete Mathematics and Theoretical Computer Science, 9(1):305–320, 2007.

E. Zehavi and J. Wolf. On runlength codes. Transactions on Information Theory, 34:45–54, 1988.

	Introduction
	Main results
	Embedding Markov Chain
	The sequence is constrained up to Yr
	The sequence is constrained up to n
	Numerical application
	Numerical limits of the presented algorithms

	Extensions of the method
	Markov chain of higher order
	Renewal occurrences
	Heterogeneous models
	More complex pattern of interest
	Multistate trial sequences

	Conclusion

