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A planar k-restricted structure is a simple graph whose blocks are planar and each has at most k vertices. Planar
k-restricted structures are used by approximation algorithms for Maximum Weight Planar Subgraph, which motivates
this work.

The planar k-restricted ratio is the infimum, over simple planar graphs H , of the ratio of the number of edges in a
maximum k-restricted structure subgraph of H to the number edges of H . We prove that, as k tends to infinity, the
planar k-restricted ratio tends to 1/2. The same result holds for the weighted version.

Our results are based on analyzing the analogous ratios for outerplanar and weighted outerplanar graphs. Here both
ratios tend to 1 as k goes to infinity, and we provide good estimates of the rates of convergence, showing that they
differ in the weighted from the unweighted case.
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1 Introduction
We provide insight on approximation algorithms for MAXIMUM WEIGHT PLANAR SUBGRAPH and re-
lated problems. MAXIMUM WEIGHT PLANAR SUBGRAPH is the NP-hard problem Liu and Geldmacher
(1977); Yannakakis (1978) of finding a heaviest planar subgraph in an edge-weighted simple graph
G = (V,E,w), where w : E → Q+. That is, the objective is to find a set of edges F ⊆ E such
that (V, F ) is a planar graph, and which maximizes w(F ) =

∑
e∈F w(e). In the unweighted version,

called MAXIMUM PLANAR SUBGRAPH, the goal is to find a planar subgraph of G with maximum number
of edges — that is, all edges of G have weight 1.

A planar k-restricted structure is a graph whose blocks (2-connected components) are planar and each
has at most k vertices. As we are only interested in planar graphs, from now on we omit the word “planar”
— all our k-restricted structures are planar. The best known approximation algorithms for MAXIMUM
PLANAR SUBGRAPH Călinescu et al. (1998) and MAXIMUM WEIGHT PLANAR SUBGRAPH Călinescu
et al. (2003) are based on 3-restricted structures.
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Note that a 2-restricted structure is a forest, and finding a maximum weight forest is a classical problem
with polynomial-time algorithms (see, for example, Cormen et al. (2001)). It is known how to find a max-
imum 3-restricted structure Lovász and Plummer (1986); Gabow and Stallmann (1985); Szigeti (2003)
and an ε-approximation for a maximum weight 3-restricted structure (implicit in Camerini et al. (1992)).
For k > 3, several approximation algorithms, originally devised for the Steiner tree problem, produce
approximate maximum weight planar k-restricted structures Berman and Ramaiyer (1994); Zelikovsky
(1996). When applied to MAXIMUM WEIGHT PLANAR SUBGRAPH, the approximation ratio of these al-
gorithms depends on the planar k-restricted structure ratio ρk, defined below. The running time of these
algorithms is a polynomial in nk, where n = |V |.

For a simple graph H , denote by msk(H) the maximum number of edges in a subgraph of H whose
blocks have size at most k. Define ρk as the infimum, over planar simple graphs H , of msk(H)/|E(H)|.
When H is edge-weighted, denote by ms′k(H) the maximum weight of edges in a subgraph of H
whose blocks have size at most k. Define ρ′k as the infimum, over edge-weighted planar graphs H , of
ms′k(H)/w(E(H)). In this paper we prove that limk→∞ ρk = limk→∞ ρ′k = 1/2. Similar ratios have
been extensively studied for the Steiner tree problem Du et al. (1991); Promel and Steger (2000); Robins
and Zelikovsky (2000); Zelikovsky (1993), and are used in the analysis of most approximation algorithms
for Steiner tree. The ratios ρk and ρ′k play a similar role with respect to MAXIMUM PLANAR SUBGRAPH.

Our results are based on analyzing βk and β′k, defined as ρk, but for outerplanar and edge-weighted
outerplanar simple graphs. Precisely, we prove that there exist positive constants c1 and c2 such that
1 − c1 lg k

k ≤ βk ≤ 1 − c2 lg k
k , and that there exist positive constants c′1 and c′2 such that 1 − c′1 1

lg k ≤
β′k ≤ 1 − c′2 1

lg k . Hence limk→∞ βk = limk→∞ β′k = 1. We use only base 2 logarithms in this paper.
Our proofs are constructive, that is, they consist of explicit examples and deterministic algorithms.

Previous works show that ρ2 = ρ′2 = 1/3 Dyer et al. (1985), ρ3 = 4/9 Călinescu et al. (1998),
1/3 + 1/72 ≤ ρ′3 ≤ 5/12 Călinescu et al. (2003), that β2 = β′2 = 1/2, and β3 = β′3 = 2/3 Călinescu
et al. (1998, 2003). It is also known that a planar simple graph can have its edge set partitioned into
two outerplanar graphs Gonçalves (2005). Thus limk→∞ ρk ≥ 1

2 limk→∞ βk = 1
2 and limk→∞ ρ′k ≥

1
2 limk→∞ β′k = 1

2 .
Note that it is trivial that ρk ≥ ρ′k and βk ≥ β′k, and also ρk ≥ ρk−1, ρ′k ≥ ρ′k−1, βk ≥ βk−1, and

β′k ≥ β′k−1. Our results indicate that for βk > β′k for large values of k.
As in Călinescu et al. (2003), it is possible to prove that the approximation ratio of Berman and Ra-

maiyer’s algorithm Berman and Ramaiyer (1994) with blocks of size at most k, when applied to MAXI-
MUM WEIGHT PLANAR SUBGRAPH, is at least

ρ′2 −
ρ′2 − ρ′3

2
− ρ′3 − ρ′4

3
− · · · −

ρ′k−1 − ρ′k
k − 1

= (1)

ρ′2
1
2

+ ρ′3

(
1
2
− 1

3

)
+ ρ′4

(
1
3
− 1

4

)
+ · · ·+ ρ′k−1

(
1

k − 2
− 1
k − 1

)
+ ρ′k

1
k − 1

. (2)

This is a convex combination in ρ′j , for 2 ≤ j ≤ k. Our results do not improve the approximation ratio
for MAXIMUM PLANAR SUBGRAPH or MAXIMUM WEIGHT PLANAR SUBGRAPH. They do lead imme-
diately to an alternative proof of the main result of Călinescu et al. (2003): an approximation algorithm
with ratio strictly greater than 1/3, by using a large k in Berman-Ramaiyer’s formula of the previous
paragraph, the fact that ρ′j ≥ ρ′j−1 ≥ 1

3 for all j ≥ 3, and that limk→∞ ρ′k = 1/2.
Note that the restriction of working on simple graphs is natural. Indeed dealing with multigraphs in the
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unweighted case is similar to dealing with weighted simple graphs. Therefore, from now on, our graphs
are simple unless otherwise specified.

We continue this note as follows. In the next section we give examples for the upper bounds of the
limits, and construct the machinery we use for outerplanar graphs. Then we prove the lower bounds for
the limits for both weighted and unweighted outerplanar graphs. For the sake of simplicity we do not
present here our best c1 and c′1; they do not equal our c2 and c′2. We leave open finding the exact formulas
for βk and β′k for all k; such formulas are known for Steiner trees in graphs Borchers and Du (1997).

2 Upper bounds
Theorem 1 For any positive integer k, ρk ≤ 1/2.

Proof: Consider the following planar graph G. It has p + 2 vertices x, y, v1, v2, . . . , vp, and 2p edges:
{x, vi} and {y, vi} for each 1 ≤ i ≤ p. Let S be an arbitrary k-restricted structure of G. Any block
in S with t vertices, where t > 2, must contain x and y (and t − 2 vertices vi). Two blocks cannot
have two common vertices, and thus S has at most one block with more than two vertices; this block
can have at most 2(k − 2) edges. Thus the maximum number of edges in a k-restricted structure of G is
2(k − 2) + (p− (k − 2)) = p+ k − 2. Making p very large compared to k shows that ρk cannot exceed
1/2. 2

2.1 Outerplanar graphs
We continue with notions useful when working with outerplanar graphs, notions previously used in
Călinescu et al. (2003). Let H be a maximal outerplanar graph (no edge can be added without violat-
ing outerplanarity); then it is immediate that the boundary of the exterior face of H is a Hamiltonian cycle
C and each interior face is triangular (Harary, 1972, p. 106).

Let E be the edge set of H , b be the exterior face of H , F be the set of faces of H , and F ′ = F \ {b}.
Let D be the dual undirected multigraph of H . Let us call the vertices of D (which are faces of H) nodes,
and the edges of D, arcs. All nodes of D but b have degree three. Also, the edges in the Hamiltonian
cycle C correspond to the arcs incident to b in D. Let D′ be the graph obtained from D by subdividing
each arc incident to b, and then removing b. See Figure 2.1 for an example.

The “dual” construction is also possible: given any undirected tree whose all internal vertices have
degree three, one can obtain a maximal outerplanar graph by embedding the tree in the plane, collapsing all
the leaves into a single vertex, obtaining a plane multigraph, and taking the planar dual of this multigraph
(Bondy and Murty, 1976, Sec. 9.2).

The next lemma appears in Călinescu et al. (2003), but we include its proof for the sake of completeness.

Lemma 2 D′ is a tree all of whose internal nodes have degree three.

Proof: First, let us prove thatD′ has no cycle. It is enough to show that any cycle inD contains b. A cycle
in D corresponds to a cut in H (Bondy and Murty, 1976, p. 143, ex. 9.2.3). Because C is a Hamiltonian
cycle in H , any cut in H contains at least two edges in C, which correspond to arcs incident to b in D.
Therefore, any cycle in D contains at least two arcs incident to b, so it contains b.

Second, let us prove that D′ is connected. If D′ were not connected, there would be two nodes u and v
in different components of D′. Let us argue that we can choose u and v to be nodes in V (D). If u were
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Fig. 1: An outerplanar graph (solid lines) and the tree D′ (white vertices and dotted lines) obtained from its dual.

not a node in V (D), then it would be a node that originated from the subdivision of an arc incident to b,
and thus it would have degree one in D′. Change u to its unique neighbor in D′. Do the same for v. Note
that the new u and v must still be in different components of D′, since they are in the same component as
the initial u and v, respectively. So we can assume u and v are nodes of D. And because D is connected,
there is a path in D between u and v. For this path not to exist in D′, it has to go through node b. But
this implies that b would be a cut node in D. If b were a cut node in D, then there would be a minimal
cut in D containing exactly a proper subset of the arcs incident to b (consider the set of arcs going from b
to one of the components of D after the removal of b). A minimal cut in D corresponds to a cycle in H
(Bondy and Murty, 1976, p. 143, ex. 9.2.3). This implies that there would be a cycle in H whose edges
are a proper subset of the edges of C, a contradiction (a proper subset of the edges of any cycle induces
an acyclic graph, since it is enough to remove one edge of a cycle to be left with a path, which is acyclic).

Therefore D′ is indeed a tree. Recall that all nodes of D but b have degree three. Before removing b,
we subdivided all of the arcs incident to b. The new nodes have degree one in D′, and all others have the
same degree as in D, i.e., three. 2

A k-restricted structureK, subgraph ofH , is also outerplanar, so its blocks with more than two vertices
have each a Hamiltonian cycle. Thus having blocks of size at most k is equivalent, for outerplanar graphs,
to having cycles of length at most k.

Let e be an edge of H . We use e to denote also the corresponding arc in D or D′. A cycle C in H (seen
as a set of arcs) is a minimal cut in D (Bondy and Murty, 1976, p. 143, ex. 9.2.3). So C disconnects D.
See Figure 2.1 for an example. Recall that F ′ is the set of nodes of D other than b. Since C is minimal,
the nodes of D are partitioned into exactly two connected components, given by the set of nodes FC

1 3 b
(outside C) and FC

0 ⊆ F ′ (inside C), so that C is exactly the set of arcs of D with one endpoint in FC
0

and one in FC
1 . We omit the superscript when C is clear from the context.

Note that F0 induces a connected subtree of the tree D′, and F0 does not contain leaves of D′. Thus
we can relate the number of nodes of F0 to |C| as follows. Root D′ at an arbitrary leaf. If |F0| = 1,
then |C| = 3, since all internal nodes of D′ have degree 3. If |F0| > 1, let u be a node of F0 as low in
the tree as possible; the parent of u also belongs to F0, while the two children of u do not (u cannot be
a leaf). Then F0 \ {u} induces a connected component in D′ (or D). The number of arcs of D′ (or D)
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b

H D

Fig. 2: The dark edges show a cycle C in H and the gray edges show the corresponding cut in D. The black nodes
indicate F0 and the white nodes, F1.

with exactly one endpoint in F0 is exactly one more than the number of arcs of D′ (or D) with exactly
one endpoint in F0 \ {u}: we have two new arcs, from u to its children, and we miss the arc from u to its
parent. Immediate induction gives that |C| = |F0|+ 2.

The statement of the next lemma is a bit technical, so we give some intuition before stating it. Let S
be a k-restricted structure on an outerplanar graph H . Consider the embedding of S induced by H . If we
add to S an edge of H that lies on a non-external face of S, then the resulting graph is still outerplanar.
See Figure 2.1 for an illustration.

Fig. 3: The dark edges indicate a 4-restricted structure S. The dashed dark edge is inside some non-external face
of S, and could be added to S with the result still being a 4-restricted structure.

Lemma 3 Let H = (V,E) be a maximal outerplanar graph and K ⊆ E be such that (V,K) is a k-
restricted structure. Let Q = E \ K and e ∈ Q. Consider the duals D and D′ described above and
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consider e as an arc of D and D′. If there is no path in D′ with only arcs of Q starting from an endpoint
of e to a leaf, then (V,K ∪ {e}) is a k-restricted structure.

Proof: For a contradiction, suppose that (V,K) is a k-restricted structure, (V,K∪{e}) is not a k-restricted
structure, and there is no path in D′ with only arcs of Q starting from an endpoint of e to a leaf. So there
is also no path in D with only arcs of Q from an endpoint of e to b.

Let C be a cycle in (V,K ∪ {e}) of length greater than k. As (V,K) is a k-restricted structure, it has
no cycle of length greater than k. So e ∈ C. Let F0 = FC

0 and F1 = FC
1 be defined as above. The arcs in

D with exactly one endpoint in F0 correspond exactly to the edges in C, and thus are in K, except for e.
Let v ∈ F be the endpoint of e in F1. Let R be the set of nodes reachable in D from v using only arcs

of Q \ {e}. By assumption, b is not in R. Also, all arcs in D, except for e, with exactly one endpoint in R
are in K, as they are not in Q. Besides, there is at least one such arc f .

Let M be the set of arcs in D with exactly one endpoint in F0 ∪ R. From the two paragraphs above,
M ⊆ K. Note that F0 ∪ R induces a connected subgraph of D′. Indeed, the subgraph of D′ induced by
F0 is connected and all vertices in R are connected to v in (the subgraph of D′ induced by) R, and v is
adjacent through e to a vertex of F0. Also, F0 ∪R contains no leaves of D′, as b 6∈ F0 ∪R. Therefore M
is a minimal cut in D and thus, according to (Bondy and Murty, 1976, p. 143, ex. 9.2.3), is also a cycle in
H .

As D without b is a tree, e is the only edge in D between F0 and R. So f is not in C, and is in M .
Also, M contains all edges in C but e. Therefore the cycle M , which is in (V,K), has more than k arcs,
a contradiction, because (V,K) is a k-structure. 2

Theorem 4 There exists a constant c2 > 0 such that βk ≤ 1− c2 lg k
k for all k ≥ 4.

Proof: Let us describe a triangulated outerplanar graph Hk, simply denoted H here. We describe the
tree D′. Then D can be deduced from D′ by collapsing leaves, while H is constructed from D by planar
duality.

Consider balanced binary trees T1, T2, T3 (all interior nodes have two children, and all the leaves are
on the same level), each with between k and 2k nodes, add one more node r and make it adjacent to the
roots of T1, T2, and T3. This is the tree D′, and when convenient, we assume D′ is rooted at r. Also, let
D = (F,E) and H = (V,E) be constructed as above. See Figure 2.1 for an illustration. We have that
3k ≤ |E| ≤ 6k.

Let Q be a minimal set of edges such that (V,E \ Q) is a k-restricted structure. It is enough to show
that |Q| ≥ 6c2 lg k, for a constant c2 which we choose later.

We know that (V,E \ Q) is a k-restricted structure, and therefore it cannot have cycles longer than k.
The edges in Q correspond to arcs in D′.

Assume first that one arc e incident to r is inQ. By the minimality ofQ, we have that (V, (E\Q)∪{e})
is not a k-restricted structure. Thus, by Lemma 3, Q contains a path from r to a leaf of D′, and since T1,
T2, and T3 are balanced with at least k nodes, this path must have at least lg(k − 1) nodes.

Consider now the second case, when the three arcs incident to r are not in Q. Let the set R of nodes
of F ′ (recall that these are the interior faces of H) be constructed recursively as follows: r ∈ R, and if a
non-leaf node u has a parent in R and all its (three) incident arcs are not in Q, then add u to R. Observe
that all arcs that have exactly one endpoint in R are not in Q. Hence one cycle of (V,E \Q) is given by
the minimal cut of D which has R on one side. This cycle has |R| + 2 edges/arcs. As (V,E \ Q) is a
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r

Fig. 4: The example for k = 4 in Theorem 4.

k-restricted structure, |R| < k. If Q were empty, R = F ′. But |F ′| > 3bk/2c (the interior nodes of T1,
T2, and T3), so we get a contradiction. Thus, we may assume Q is non-empty.

As Q is minimal, Lemma 3 assures that there is a path in Q from each arc in Q to a leaf in D′. Let P
be such a path with, say, j arcs. Note that r is not in P , as in this second case no arc incident to R is in
Q. If a node u is the highest node of F ′ touched by P , then only the nodes in the balanced subtree rooted
at u (including u) are not included in R because of P .

We decomposeQ in ` such paths P1, P2, . . . , P` for some ` ≥ 1. Thus the number of nodes of F ′ not in
R cannot exceed 2|P1|+2|P2|+ · · ·+2|P`|. This number, given |Q|, is maximized when ` = 1 (one single
long path), and it must exceed k/2 since |F ′| > 3bk/2c and |R| < k. We conclude that |Q| ≥ lg(k/2),
in the second case.

In both cases |Q| ≥ lg(k/2) ≥ 1
2 lg k, so we can pick c2 = 1/12, finishing the proof. 2

Theorem 5 There exists a constant c′2 > 0 such that β′k ≤ 1− c′2 1
lg k for all k ≥ 4.

Proof: The example graph H = Hk is a triangulated outerplanar graph. We describe D′, and D can be
deduced from D′ by collapsing leaves, while H is constructed from D by planar duality.

Consider a balanced binary tree T1 with between 4k+1 and 8k nodes; add one more node r and make it
adjacent to the root of T1. This isD′, and we root it at r for convenience. The graphsD = (F,E) (r is also
considered to be a leaf here) and H = (V,E) are constructed as above. See Figure 5 for an illustration.
Let n be the number of nodes in D′. Note that n = 2h for some integer h. Also, 4k + 2 ≤ n ≤ 8k + 1,
so lg k < h ≤ lg k + 4 ≤ 3 lg k. Assign to each arc e of D′ a weight as follows: if the higher node of e is
at level i (with r at level 0), then w(e) = 1/2i. Then w(H) = h.

Let Q be a set of edges such that (V,E \ Q) is a k-restricted structure. We proceed to show that
w(Q) ≥ 1/8.

We know that (V,E \ Q) is a k-restricted structure, and therefore it cannot have cycles longer than k.
Again, the edges in Q correspond to arcs in D′. Let r′ be the neighbor of r in D′. If some arc incident to
r′ is in Q, then this arc has weight 1 or 1/2, and we are done proving that w(Q) ≥ 1/8. Assume in the
following that Q does not contain any arc incident to r′.

Let the set R of nodes of F ′ (the interior faces of H) be constructed recursively as follows: r′ ∈ R, and
if a non-leaf node u has a parent in R and all its (three) incident arcs are not in Q, then add u to R. One
cycle of (V,E \Q) is given by the minimal cut ofD which hasR on one side; this cycle has |R|+2 edges.
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r H
(a) (b)

D

Fig. 5: An example for Theorem 5. (a) A tree D′. (b) The corresponding graph H .

Thus we have that |R| < k. If Q was empty, R = F ′ and |F ′| ≥ 2k, since T1 has at least 4k + 1 nodes
and thus at least 2k interior nodes. But this is a contradiction, so we may assume that Q is non-empty.

An interior node u of D′ at level i (with r at level 0) has, including itself, 2h−i − 1 descendants which
are interior nodes of D′. The lightest edge incident to u has weight 1/2i. Thus at a cost (weight) of
1/2i one can prevent at most 2h−i vertices from F ′ to enter R. The cost per vertex removed is at least
1/2h = 1/n ≥ 1/(8k + 1). The edges of Q must prevent at least k + 1 nodes from F ′ to enter R (since
|R| < k and |F ′| ≥ 2k) and therefore w(Q) ≥ k+1

8k+1 ≥
1
8 .

Thus we proved that w(Q) ≥ 1/8 for any set Q of edges such that (V,E \Q) is a k-restricted structure.
It follows that a maximum weight k-restricted structure in H has weight at most h− 1/8. Thus

β′k ≤
(h− 1/8)
w(E(H))

=
h− 1/8

h
=
(

1− 1
8

1
h

)
≤
(

1− 1
24

1
lg k

)
, (3)

as h ≤ 3 lg k. Putting c′2 = 1/24 completes the proof. 2

3 Lower bounds
Theorem 6 There exists a constant c1 > 0 such that βk ≥ 1− c1 lg k

k for all k ≥ 4.

Proof: Let H = (V,E) be an outerplanar graph, and add an edge set E′ such that H ′ = (V,E ∪ E′) is a
maximal outerplanar graph. Construct D and D′ for H ′; both D and D′ have arc set E ∪ E′.

We give an algorithm to construct a set of edges Q ⊆ E such that (V,E \Q) is a k-restricted structure,
and |Q| ≤ c1(|E|/k) lg k, for a constant c1 to be chosen later. For a tree T and a non-root node u in T ,
denote by Tu the subtree of T rooted at u plus the parent of u and the arc from u to its parent in T .

To construct Q, the algorithm iteratively builds a sequence of sets of edges Q0, Q1, . . . , Q` and a
sequence of rooted trees D0, D1, . . . , D`. It starts with j = 0, Qj = ∅, and Dj = D′, rooted at an
arbitrary leaf. If Dj has at most k arcs of E, the algorithm outputs Q = Q0 ∪ Q1 ∪ · · · ∪ Qj . Else,
increment j and find in Dj−1 the lowest node uj such that Tuj

, for T = Dj−1, has more than k arcs of E;
such a uj must exist since the unique child of the root of Dj−1 is a valid candidate. Construct in Tuj a
path Pj as follows: set u = uj and do the following until u becomes a leaf of Dj−1. Find u′, a child of u
such that Tu′ has at most as many edges of E as Tu′′ , where u′′ is the other child of u. Put in Pj the edge
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{u, u′}, make u = u′, and resume constructing Pj . Of course Pj may contain edges/arcs from E′. Define
Qj = Pj ∩ E and Dj = Dj−1 − Zj , where Zj is the set of proper descendants of uj in Dj−1 (that is,
without uj itself). Note that uj is a leaf in Dj . Go back to the checking of the number of arcs of E in Dj .
Denote by ` the final value of j.

Immediate induction gives that, for j = 1, . . . , `, each Dj is a rooted almost-binary tree (the root has
only one child, while any other non-leaf node has two children). By the choice of uj , the subtrees rooted
at both children of uj have at most k edges of E. Therefore Pj contains at most 1 + lg k arcs of E and
thus |Qj | ≤ 1 + lg k ≤ 2 lg k. If we let Ej be E ∩ E(Dj), then |Ej+1| ≤ |Ej | − k, as at most one arc
of Tuj remains in Ej+1: the arc from uj to its parent in D′. Hence it is immediate by induction on ` that
|E| ≥ `k and |Q| ≤

∑`
i=1 |Qi| ≤ 2` lg k. We conclude that indeed |Q| ≤ 2(|E|/k) lg k, and we now set

c1 = 2.
It remains to prove that K = (V,E \ Q) is a k-restricted structure. Define Q′ =

(
∪`

i=1Pj

)
\ E. If

` = 0, then |E| ≤ k, and no cycle of K can have more than k edges. Thus we assume in the following
that ` > 0. Note that u1 is connected to a leaf of D′ by the path P1. For 2 ≤ i ≤ `, each ui is connected
by the path Pi to either a leaf of D′ or a previous ui′ (1 ≤ i′ < i). Therefore by immediate induction each
ui, with 1 ≤ i ≤ `, is connected to a leaf of D′ by a path contained in Q ∪Q′.

Assume for a contradiction that K is not a k-restricted structure. Let C be a cycle of K with more than
k edges. Recall that FC

0 , or simply F0, is a set of nodes of D and b 6∈ F0. Consider F0 as a set of nodes in
D′ and recall also that F0 induces a connected subgraph of D′. We claim that F0 ∩ {u1, u2, . . . , u`} 6= ∅.
Indeed, next we prove this by induction on `, by looking at the algorithm above, that picked u1, u2, . . . , u`.

When ` = 1, we reason as follows: as F0 induces a connected subgraph of D′, we have that either
u1 ∈ F0, or F0 ⊆ A1, the set of proper descendants of u1, or F0 ⊆ V (D′) \ (A1 ∪ {u1}). If u1 ∈ F0,
we are done. So we analyze the two other possibilities. Assume that F0 ⊆ V (D′) \ (A1 ∪ {u1}). Since
` = 1, the whole tree induced by V (D′) \ A1 has at most k edges from E, and all the edges with exactly
one endpoint in F0 are in this induced tree (as in this case u1 6∈ F0), contradicting |C| > k. So it is not
possible that F0 ⊆ V (D′) \ (A1 ∪ {u1}). Assume now that F0 ⊆ A1. Let u′ and u′′ be the children
of u1. Then F0 does not contain u1 and, as it is connected, F0 must lay entirely in the subtree rooted at
either u′ or u′′. Say, by symmetry, it is contained in the subtree rooted at u′. By our choice of u1 (with
lowest level in the tree D′ = D0), the subtree Tu′ has at most k edges/arcs of E. Noting that F0 does not
contain leaves of D′, we conclude that all the arcs of D′ with exactly one endpoint in F0 must be in Tu′ ,
and therefore |C| ≤ k, a contradiction.

Now assume ` > 1. The argument above gives that F0 cannot be a subset of A1. Unless u1 ∈ F0, in
which case we are done, we must have that F0 is a subset of V (D1) that does not contain leaves of D1.
Then we can apply the same arguments to u2 as we did to u1, with D1 instead of D0. This continues for
u3 and so forth until we conclude that, unless F0 ∩ {u1, u2, . . . , u`−1} 6= ∅, we must have u` ∈ F0.

We proved that, assuming |C| > k, we have F0 ∩ {u1, u2, . . . , u`} 6= ∅. So let i, with 1 ≤ i ≤ `, be
such that ui ∈ F0. We know that ui is connected by a path P contained in Q ∪ Q′ to a leaf of D′; this
path must have an edge e with exactly one endpoint in F0, since no leaf of D′ is in F0. By the way F0 is
defined, e ∈ C. However, e ∈ Q ∪Q′ ⊆ Q ∪ E′, and C ⊆ E(K) = E \Q. That is, e ∈ E ∩ E′ = ∅, a
contradiction. We conclude that K is indeed a k-restricted structure, completing the proof. 2

Theorem 7 There exists a constant c′1 > 0 such that β′k ≥ 1− c′1 1
lg k for all k ≥ 4.

Proof: The idea of the proof comes from Lemma 25 of Călinescu et al. (2003), where the case k = 3 is
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considered. Let H = (V,E,w) be a weighted outerplanar graph, and add an edge set E′ such that H ′ =
(V,E∪E′) is a maximal outerplanar graph. Setw(e) = 0 for all e inE′. We have thatw(E∪E′) = w(E)
and thus without loss of generality we may construct a k-restricted structure inH ′ instead ofH . Construct
D and D′ for H ′; both D and D′ have arc set E ∪ E′.

The proof idea consists of picking a value j ≥ lg k
c′
1

(with c′1 > 0 to be picked later) and color each arc
of D′ with one color from the set {1, 2, . . . , j} so that, if Ei is the set of edges/arcs colored i, then the
graph Gi = (V, (E ∪ E′) \ Ei) is a k-restricted structure. It then follows that

j∑
i=1

w(E(Gi)) = j · w(E ∪ E′)−
j∑

i=1

w(Ei) = j · w(E ∪ E′)(1− 1/j) = j · w(E)(1− 1/j). (4)

It is enough to then pick a Gi with maximum w(E(Gi)) to obtain a k-restricted structure of weight at
least (1− 1/j)w(E) ≥

(
1− c′1 1

lg k

)
w(E), which is what we want to prove.

Consider j ≥ 3. Root D′ at an arbitrary leaf. The resulting rooted tree is almost binary — every node
but the root has two children. For convenience, assume the root has a right child only. Color the arc
incident to the root 1. Traverse the tree in preorder, going right first, processing every non-leaf node u as
follows. Let v be the parent of u, u′ be the left child of u and u′′ be the right child of u. Also, assume
the arc {v, u} has color i, where 1 ≤ i ≤ j. Color the arc {u, u′} with color i. If u is the right child of
v, color the arc {u, u′′} with color (i mod j) + 1. (That is, if i = j, then color 1, else color i + 1.) If u
is the left child of v, and the arc from v to its other child is colored i′, then use for {u, u′′} color (i′ mod
j) + 1 if (i′ mod j) + 1 6= i, otherwise use for {u, u′′} color (imod j) + 1. See the example in Figure 3.
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Fig. 6: (a) An example of the coloring of D′ with j = 4 for the proof in Theorem 7. (b) The darker edges are the
edges in G1.

Now we analyze the size of some arbitrary cycle C in Gi. As before, C is given by the arcs of D′ with
exactly one endpoint in F0 = FC

0 , where F0 induces a connected component of D′ and does not contain
leaves of D′.

We claim that F0 cannot contain a node adjacent to an arc in Ei. Indeed, if u is a node of F0 adjacent
to an arc in Ei, then it is immediate from the way Ei is constructed that there is a path P from u to a leaf
of D′ with all of its arcs in Ei: just follow the arcs downwards in D′ going left only. Since F0 does not
contain leaves in D′, by following P from u downwards we find an arc of D′ with only one endpoint in
F0. Thus there is an arc of Ei which is an edge in C; however Gi does not contain edges from Ei. Thus
no node of F0 is adjacent to Ei.
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Let u be the highest node of F0 inD′. Then u is not a leaf ofD′ and thus is not the root of the rootedD′.
All the nodes of F0 are in the subtree of D′ rooted at u. Thus we may assume without loss of generality
that i = j. Let the arc from u to its parent be colored i′, and the arc from u to its right child u′′ be colored
i′′. By construction, i′ 6= i′′. Also, as no node in F0 is adjacent to an arc in Ej , we have that i′ 6= j and
i′′ 6= j.

We claim that the number of nodes of F0 is at most 2j−i′′−1 if i′′ > i′, and at most 2j−i′′−2j−i′−1−1
if i′′ < i′. The proof is by induction on 2j−3− i′′− i′. Note that our coloring ensures that the edge from
u to its left child u′ is colored i′.

The induction has two base cases: i′′ = j − 1 and i′ = j − 2, or i′′ = j − 2 and i′ = j − 1. In the first
case, both u′ and u′′, unless they are leaves (in which case they cannot be in F0), have one incident arc
colored j and they cannot be in F0. Thus |F0| = 1 as desired. In the second case, u′′, unless a leaf, has
edges incident colored as follows: j − 2 to the parent, and j − 1 to the right child. This is the first case,
and therefore none of the children of u′′ can be in F0. Unless u′ is a leaf, the edge going from u′ to its
right child has color j, and therefore u′ 6∈ F0. We conclude that F0 ⊆ {u, u′′} and therefore |F0| ≤ 2, as
desired.

Consider now the general induction step. We have three case. In the first case, i′ < i′′. Then u′,
unless a leaf, has the arc going to its right child colored i′′ + 1. If i′′ = j − 1, then u′ 6∈ F0; else by
induction at most 2j−(i′′+1) − 1 nodes in the subtree rooted at u′ can be in F0. Unless it is a leaf, u′′

has arcs incident to it colored i′′, to its left child, and i′′ + 1, to its right child. Thus if i′′ = j − 1, we
have that u′′ 6∈ F0; otherwise, by induction, at most 2j−(i′′+1) − 1 nodes in the subtree rooted at u′′

can be in F0. In all subcases (i′′ = j − 1 or not), the number of nodes of F0 in the subtrees rooted
at u′ or at u′′ is at most 2j−i′′−1 − 1. Then the number of nodes of F0 in the subtree rooted at u cannot
exceed one (for u) plus the number of nodes of F0 in the subtrees rooted at u′ and u′′. This number is
2j−i′′−1 − 1 + 2j−i′′−1 − 1 + 1 = 2j−i′′ − 1, completing this induction case.

The second case is when i′′ = i′ − 1. Unless it is a leaf, u′′ has the arc going to its right child colored
i′′ + 1 = i′, and to its left child colored i′′. Induction gives 2j−i′ − 1 as the maximum number of nodes
of F0 in the subtree rooted at u′′. Unless it is a leaf, u′ has the arc going to its right child colored i′ + 1
and the arc going to its left child colored i′. Induction gives 2j−(i′+1) − 1 as the maximum number of
nodes of F0 in the subtree rooted at u′. Then the total number of nodes of F0 in the subtree rooted at u
cannot exceed

1 + 2j−i′ − 1 + 2j−i′−1 − 1 = 2j−i′ + 2j−i′ − 2j−i′−1 − 1 (5)
= 2j−i′+1 − 2j−i′−1 − 1 (6)
= 2j−i′′ − 2j−i′−1 − 1, (7)

as desired.
In the third case, i′′ < i′ − 1. Unless it is a leaf, u′′ has the arc going to its right child colored i′′ + 1,

and to its left child colored i′′. Induction gives 2j−(i′′+1) − 1 as the maximum number of nodes of F0 in
the subtree rooted at u′′. Unless it is a leaf, u′ has the arc going to its right child colored i′′ + 1 and the
arc going to its left child colored i′. Note that i′′+1 < i′. Induction gives that the subtree rooted at u′ has
at most 2j−(i′′+1) − 2j−i′−1 − 1 nodes of F0. Combining and adding u, we obtain that the total number
of nodes in the subtree rooted at u cannot exceed

1 + 2j−i′′−1 − 1 + 2j−i′′−1 − 2j−i′−1 − 1 = 2j−i′′ − 2j−i′−1 − 1, (8)
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as desired.
Thus the maximum number of nodes of F0 is obtained when i′′ = 1 and i′ = 2, and is 2j−1−2j−3−1.

Hence the cycle C has size |F0| + 2 ≤ 2j−1. To ensure that |C| ≤ k, we pick j = dlg ke ≥ lg k. With
this value of j, each Gi, for i = 1, 2, . . . , j, is a k-restricted structure.

We pick c′1 = 1 at this moment. Thus we showed that H has a k-restricted structure Gi with

w(E(Gi)) ≥ (1− 1/j)w(E) ≥
(

1− 1
lg k

)
w(E), (9)

finishing the proof. 2

The proofs of Theorems 6 and 7 give the more precise bounds of βk ≥ 1 − blg(k+1)c
k and β′k ≥

1 − 1
b3−lg 3+lg(k−1)c . We conjecture that βk = 1 − γ dk+lg k

k and β′k = 1 − γ′ 1
d′

k+lg k , with γ and γ′

positive constants, dk = o(lg k) and d′k = o(lg k). Besides, it maybe the case that γ = γ′ = 1 and dk and
d′k are bounded by a constant. However we do not believe that dk or d′k are zero.
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G. Călinescu, C. Fernandes, U. Finkler, and H. Karloff. A better approximation algorithm for finding
planar subgraphs. Journal of Algorithms, 27(2):269–302, 1998.
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