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1University of South Africa, P.O. Box 392, UNISA, 0003 South Africa
frickm@unisa.ac.za
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A digraph is k-traceable if each of its induced subdigraphs of order k is traceable. The Traceability Conjecture is that
for k ≥ 2 every k-traceable oriented graph of order at least 2k − 1 is traceable. The conjecture has been proved for
k ≤ 5. We prove that it also holds for k = 6.
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1 Introduction
The set of vertices and the set of arcs of a digraph D are denoted by V (D) and A(D), respectively, and
the order of D is denoted n(D). A directed cycle (path, walk) in a digraph will simply be called a cycle
(path, walk). A digraph is hamiltonian if it contains a cycle that visits every vertex, traceable if it contains
a path that visits every vertex, walkable (or unilaterally connected) if it contains a walk that visits every
vertex, and strong (or strongly connected) if it has a closed walk that visits every vertex.

The maximum number of vertices on a path in a digraph D is denoted by λ(D). A digraph D of order
n is p-deficient if λ(D) = n− p.

A maximal strong subdigraph of a digraph D is called a strong component of D. We say that a strong
component is trivial if has only one vertex.

If v is a vertex of a digraph D, we denote the sets of out-neighbours and in-neighbours of v by N+(v)
and N−(v) and the cardinalities of these sets by d+(v) and d−(v), respectively. The minimum degree of
D, δ(D), is defined as minv∈V (D) (d+(v) + d−(v)).

If D is a digraph and X ⊂ V (D), then 〈X〉 denotes the subdigraph induced by X in D.
A digraph of order n is k-traceable for some k ≤ n if each of its induced subdigraphs of order k is

traceable. The main topic of this paper is the following conjecture, which was formulated by Morten
Nielsen in 2006. It is stated in (5).
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1365–8050 c© 2008 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/volumes/
http://www.dmtcs.org/volumes/dm10:3ind.html


106 Marietjie Frick and Peter Katrenič

Conjecture 1.1 (The Traceability Conjecture (TC)) For k ≥ 2, every k-traceable oriented graph of
order at least 2k − 1 is traceable.

The Traceability Conjecture was inspired by the Path Partition Conjecture for 1-deficient Oriented Graphs
(called the OPPC(1)), which is treated in (5) and (10). The OPPC(1) is an important special case of the
Path Partition Conjecture for Digraphs (DPPC), which is treated in (2) and (4). The OPPC(1) may be
stated as follows in terms of traceability (see (5)).

Conjecture 1.2 (OPPC(1)) Let a and b be integers with 1 ≤ a ≤ b. If D is a 1-deficient oriented graph
of order n = a + b + 1, then D is not (a + 1)-traceable or D is not (b + 1)-traceable.

The truth of the TC would obviously imply the truth of the OPPC(1). In particular, if the TC holds for
k = t, it would follow that the OPPC(1) holds for a = t− 1.

In the case of undirected graphs, it is an easy corollary of Dirac’s degree condition for hamiltonicity
that for k ≥ 2 every k-traceable graph of order at least 2k − 1 is hamiltonian. The same is not true for
oriented graphs, though we do have the following result, which is proved in (5).

Theorem 1.3 For k = 2, 3 or 4, every strong k-traceable oriented graph of order greater than k is
hamiltonian.

For k ≥ 5 the situation changes dramatically. As shown in (5), for every n ≥ 5 there exists a non-
hamiltonian strong oriented graph of order n that is k-traceable for every k ∈ {5, . . . , n}. However, no
counterexample to the TC has yet been found. In fact, we do not even know if there exists a k-traceable
oriented graph of order bigger than k + 1 that is nontraceable.

It is shown in (5) that the TC holds for k ≤ 5. In this paper we prove that the TC also holds for k = 6,
i.e. every 6-traceable oriented graph of order at least 11 is traceable.

2 Auxiliary Results
First, we present some general properties of k-traceable oriented graphs. The following result concerning
the minimum degree is proved in (5).

Lemma 2.1 If k ≥ 2 and D is a k-traceable oriented graph of order n ≥ k, then δ(D) ≥ n− k + 1.

Our next result concerns k-traceable oriented graphs that are nontraceable.

Lemma 2.2 Suppose D is a k-traceable oriented graph of order n > k. If D is nontraceable and v is a
vertex of D with d+(v) = n− k + 1 then 〈N+(v)〉 is nontraceable. Similarly, if d−(v) = n− k + 1, then
〈N−(v)〉 is nontraceable.

Proof: Suppose 〈N+(v)〉 has a hamiltonian path x1x2 . . . xn−k+1. Then the graph D − {x1, . . . xn−k}
has order k and therefore has a hamiltonian path P . If P contains the arc vxn−k+1, then the path obtained
from P by replacing the arc vxn−k+1 with the path vx1x2 . . . xn−kxn−k+1 is a hamiltonian path of D.
If P does not contain the arc vxn−k+1, then v is the end-vertex of P . In this case Px1x2 . . . xn−k is a
hamiltonian path of D. The proof that 〈N−(v)〉 is nontraceable if d−(v) = n− k + 1 is similar. 2

The following easy observation is proved in (5).

Lemma 2.3 If D is an oriented graph of order n that is k-traceable for some k ∈ {2, . . . , n}, then D is
walkable.
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In view of Lemma 2.3 we shall be mainly concerned with walkable oriented graphs. The strong com-
ponents of a digraph have an acyclic ordering, i.e. they may be labelled D1, . . . , Dh such that if there is
an arc from Di to Dj , then i ≤ j (cf. (1), p. 17). If D is walkable then, for i = 1, . . . , h − 1 there is
at least one arc from Di to Di+1, so in this case the acyclic ordering is unique. Throughout the paper
we shall label the strong components of a walkable oriented graph in accordance with this unique acyclic
ordering.

In the proof of our main result we shall consider oriented graphs that are strong and those that are not
strong (but walkable) separately. The nonstrong case relies on the following three results concerning the
strong components of k-traceable oriented graphs. The first is an obvious but useful result, proved in (5).

Lemma 2.4 If P is a path in a digraph D, then the intersection of P with any strong component of D is
either empty or a path.

The next result follows from Theorem 1.3 and Lemma 2.4.

Lemma 2.5 Let k ≥ 5 and suppose D is a k-traceable oriented graph of order n > k. Then every
nonhamiltonian nontrivial strong component of D has order at least n− k + 5.

Proof: Suppose D has a nonhamiltonian nontrivial strong component X of order at most n−(k−4). Then
|V (X)| ≥ 4 and |V (D)\V (X)| ≥ k−4. If |V (X)| = 4, then |V (D)\V (X)| = n−4 ≥ k−3. Theorem
1.3 implies that X is not 3-traceable and, if |V (X)| > 4, then X is also not 4-traceable. In either case, we
can choose an induced subdigraph H of D of order k such that 〈V (H)∩V (X)〉 is nontraceable. But then
it follows from Lemma 2.4 that H is nontraceable, contradicting our assumption that D is k-traceable. 2

The following result, which is proved in (5), is very useful in the case of k-traceable oriented graphs of
large enough order.

Lemma 2.6 Suppose D is a k-traceable oriented graph of order at least 2k− 1, k ≥ 2. If D is nontrace-
able, then D has a nonhamiltonian nontrivial strong component.

For the proof of the strong case of our main result, we shall use the following theorem, proved in (3).

Theorem 2.7 (Chen and Manalastas) Every nontraceable strong digraph has independence number at
least 3.

We shall also use the following result on k-traceable strong oriented graphs, which appears as part of the
proof of Theorem 3.5 in (5).

Lemma 2.8 Let D be a k-traceable strong oriented graph and let X = {x1, x2, x3} be an independent
set of vertices in D. Let

Ai = V (D) \ {X ∪N−(xi)}, Bi = V (D) \ {X ∪N+(xi)}; i = 1, 2, 3.

Then |Ai| ≤ 3k − 12 and |Bi| ≤ 3k − 12 for i = 1, 2, 3.

Proof: Let i, j be any pair of distinct integers in {1, 2, 3}. If |Ai ∩Aj | ≥ k − 3, let H be an induced
subdigraph of D whose vertex set consists of x1, x2, x3 and k − 3 vertices of Ai ∩ Aj . Then H has
order k and is nontraceable, since both xi and xj have no in-neighbours in H . This contradiction shows
that |Ai ∩Aj | ≤ k − 4. Similarly, |Bi ∩Bj | ≤ k − 4. Now suppose |A1 ∩B2| ≥ 2k − 7. Then,
since |A1 ∩A3| ≤ k − 4, at most k − 4 vertices of A1 ∩ B2 are in A3, so at least k − 3 vertices of
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A1 ∩B2 are in B3, but then |B2 ∩B3| ≥ k − 3. This contradiction proves that |A1 ∩B2| ≤ 2k − 8. But
A1 = (A1 ∩A2)∪ (A1 ∩B2). Hence |A1| ≤ (k − 4)+2k− 8 = 3k− 12. Similarly, |B1| ≤ 3k− 12. 2

Theorem 2.7 and Lemma 2.8 were used in (5) to prove the following theorem.

Theorem 2.9 For k ≥ 2 every k-traceable strong oriented graph of order at least 6k − 20 is traceable.

We now turn our attention to k-traceable oriented graphs of small order. Knowledge of their structure
is actually important when considering the traceability of k-traceable oriented graphs of large order.

3 Hypotraceable oriented graphs
A digraph D of order n is called hypotraceable if n ≥ 3 and D is (n − 1)-traceable but not n-traceable.
Thus a hypotraceble digraph is nontraceable but the removal of any vertex leaves a traceable digraph. Our
next result shows the importance of hypotraceable oriented graphs in connection with the TC.

Lemma 3.1 If k > 2 and D is a nontraceable, k-traceable oriented graph of order n ≥ k + 1, then D
has a hypotraceable induced subdigraph of order h for some k + 1 ≤ h ≤ n.

Proof: Suppose n = k + r. Then, for any set S consisting of r vertices of D, the oriented graph D − S
is traceable. If D itself is not hypotraceable, then D has a vertex x1 such that D − x1 is nontraceable.
We repeat this procedure until we obtain a subset {x1, . . . , xt} in D for some t ≤ r − 1 such that
D − {x1, . . . , xt} is hypotraceable. 2

In view of Lemma 3.1 it is important to know the possible orders of hypotraceable oriented graphs.
Grötschel, Thomassen and Wakabayashi constructed an infinite family of hypotraceable oriented graphs
in (6). These graphs are obtained from hypohamiltonian digraphs. The smallest hypotraceable ori-
ented graph constructed by applying the construction in (6) to hypohamiltonian digraphs constructed
by Thomassen in (9) has order 12. If there does not exist a hypotraceable oriented graph of order less than
12, then it would follow immediately from Theorem 2.9 and Lemma 3.1 that every 6-traceable oriented
graph of order n, where 6 ≤ n ≤ 12 is traceable. However, the best that we’ve managed to do so far was
to show that there does not exist a hypotraceable oriented graph of order less than 8. To prove this, we
need the following result, which is stated in (6) without proof.

Lemma 3.2 If D is a hypotraceable digraph, then D does not have a vertex with indegree 1 or outdegree
1.

Proof: Let D be a hypotraceable digraph, x ∈ V (D) and suppose y is the only out-neighbour of x. Then
every hamiltonian path of D−{y} must end in x, hence can be extended with y, which is a contradiction.

2

A strong digraph of order at least 2 cannot have a vertex of indegree 0 or outdegree 0, so the following
holds.

Corollary 3.3 If D is a strong hypotraceable digraph, then D has minimum indegree at least 2 and
minimum outdegree at least 2.

We shall also use the following corollary of Lemma 2.2.
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Corollary 3.4 Let D be a hypotraceable oriented graph. If D contains a vertex v, such that d+(v) = 2
(or d−(v) = 2), then the out-neighbours (or in-neighbours) of v are nonadjacent.

The following result is proved in (7).

Lemma 3.5 (Grötschel and Wakabayashi) Every nontrivial strong component of a hypotraceable ori-
ented graph has order at least 5.

It is stated in (6) (without proof) that there does not exist a hypotraceable digraph of order less than 7.
We now use the lemmas above to extend this bound in the case of oriented graphs.

Lemma 3.6 There does not exist a hypotraceable oriented graph of order less than 8.

Proof: Suppose D is a hypotracable oriented graph of order n, with 3 ≤ n ≤ 7.
Case 1. D is strong: In this case Theorem 2.7 implies that D has three independent vertices {x1, x2, x3}

and it follows from Corollary 3.3 that d+(x1) ≥ 2 and d−(x1) ≥ 2. This is not possible if n ≤ 6, so
assume n = 7. Then d+(xi) = d−(xi) = 2 for i = 1, 2, 3. Let N+(x1) = {a1, a2} and N−(x1) =
{b1, b2}. By Corollary 3.4, {a1, a2} and {b1, b2} are independent sets. If D − {b1, b2} has a hamiltonian
path Q, then Q starts at x1 and ends at either x2 or x3, say x3. But d+(x3) = 2, so x3 is adjacent to at
least one of b1 and b2, say b2. But then b1Qb2 is a hamiltonian path of D. This contradiction shows that
D − {b1, b2} has no hamiltonian path and hence D − b1 has no hamiltonian path starting at b2. Since D
is 6-traceable, D − b1 has a hamiltonian path P . The initial vertex of P cannot be x1, otherwise b1P is
a hamiltonian path of D. Without loss of generality, we assume that the initial vertex of P is either x2 or
a1.

Subcase 1.1 The initial vertex of P is x2: In this case b1 6∈ N−(x2), otherwise b1P would be a
hamiltonian path of D. Hence b1 ∈ N+(x2). There are now two possibilities to consider for the second
vertex of P .

Subcase 1.1.1 The second vertex of P is a1: Then N+(x2) = {a1, b1}, so N−(x2) = {a2, b2}. If
a1x3 ∈ A(D), then x1a2x2a1x3 is a hamiltonian path in D−{b1, b2}, but we have shown D−{b1, b2} is
nontraceable, so a1 6∈ N−(x3). Also, a2 6∈ N−(x3), otherwise b2x2b1x1a2x3a1 would be a hamiltonian
path of D. Hence N−(x3) = {b1, b2}. But then b2x3a2x2b1x1a1 is a hamiltonian path of D.

Subcase 1.1.2 The second vertex of P is b2: Then N+(x2) = {b1, b2}, so N−(x2) = {a1, a2}. Then
we may assume w.l.o.g. that P is the path x2b2x1a1x3a2. But then b2x1a1x3a2x2b1 is a hamiltonian
path in D.

Subcase 1.2 The initial vertex of P is a1: We have shown that D − {b1, b2} has no hamiltonian path,
so we may assume w.l.o.g. that D − b1 has the hamiltonian path a1x2b2x1a2x3. Then b1 6∈ N+(x3), so
N+(x3) = {a1, b2}. But then b1x3a1x2b2x1a2 is a hamiltonian path in D.

Case 2. D is not strong:
Subcase 2.1 D has a nontrivial strong component X that is nonhamiltonian: By Lemma 3.5, |V (X)| ≥

5, so n = 6 or 7. Since D is (n−1)-traceable, Lemma 2.5 now implies that |V (X)| = 6 and hence n = 7.
By symmetry, we may assume that D1 has order one and X = D2. Let x be the vertex in D1 and let
v1v2 . . . v6 be a path in D2. Then x, v6 6∈ N−(v1), so it follows from Lemma 3.2 and Corollary 3.4 that
{v3, v5} ⊆ N−(v1). Similarly, {v2, v4} ⊆ N+(v6). Hence each of the vertices v1, v4 and v6 is an initial
vertex of a hamiltonian path of D2, so x is not adjacent to v1, v4 or v6. However, Lemma 3.2 implies that
d+(x) ≥ 2 and, by Lemma 3.4, N+(x) 6= {v2, v3}, so v5 ∈ N+(x). Then v6 6∈ N+(v1), otherwise
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xv5v1v6v2v3v4 is a hamiltonian path in D. Hence N+(v1) = {v2, v4}, which implies that v2 and v4 are
nonadjacent vertices. But then N+(v4) = {v5}, which contradicts Lemma 3.2.

Subcase 2.2 Every nontrivial strong component of D is hamiltonian: In this case, if D had only two
strong components, D would be traceable. Hence D has at least three strong components. By Lemma
3.5, each nontrivial strong component of D has order at least 5. Thus the only possibility is that n = 7
and D has two trivial strong components and one of order 5. The two trivial strong components cannot be
consecutive, otherwise D would be traceable. Hence n(D1) = 1, n(D2) = 5 and n(D3) = 1.

Let x be the vertex in D1, let y be the vertex in D3 and let C = v1v2v3v4v5v1 be a hamiltonian cycle of
D2. If x has only one out-neighbour vi in D2, then D−vi cannot be traceable, so |N+(x)∩V (D2)| ≥ 2.
Similarly, |N−(y) ∩ V (D2)| ≥ 2. Since D is nontraceable, no predecessor of a neighbour of x on C
is a neighbour of y. Thus, at least one of x and y has at most two neighbours in D2. By symmetry,
we may assume that x has only two out-neighbours in D2, say a and b. If ab is an arc in D, then any
hamiltonian path xb . . . vjy of D − a can be extended to a hamiltonian path xab . . . vj of D. Hence a
and b are nonadjacent. We may assume, w.l.o.g. that a = v2 and b = v5. Then v1, v4 /∈ N−(y). But
then v1 has only four possible neighbours, namely v2, v3, v4, v5. Hence, by Lemma 3.2 and Corollary
3.4, N+(v1) = {v2, v4} and N−(v1) = {v3, v5}. Now, if v5 is adjacent to y, then xv2v3v1v4v5y is a
hamiltonian path of D. Hence v5 is not adjacent to y, so N−(y) = {v2, v3}, which contradicts Corollary
3.4. 2

Lemmas 3.1 and 3.6 imply the following.

Corollary 3.7 If 2 ≤ k ≤ 7, then every k-traceable oriented graph of order n is traceable, where
k ≤ n ≤ 7.

4 Oriented graphs that are 6-traceable
In this section we prove that the TC holds for k = 6, i.e. that every 6-traceable oriented graph of order at
least 11 is traceable. We first prove it for oriented graphs that are not strong.

Lemma 4.1 If D is a 6-traceable oriented graph of order n ≥ 11 that is not strong, then D is traceable.

Proof: It follows from Lemma 2.6 that D has a nontrivial strong component X that is nonhamiltonian,
and from Lemma 2.5 that |V (X)| = n− 1.

By symmetry we may assume that X = D2. Then D1 has only one vertex x. Now D2 is 5-traceable
and of order n− 1 ≥ 10. However, it is shown in (5) that the TC holds for k = 5, so D2 is traceable. Let
v1v2 . . . vn−1 be a hamiltonian path in D2.

Let vi be a vertex in D2 that is nonadjacent to x. If d−(vi) ≤ n − 6, then D − N−(vi) has order at
least 6. But if H is any subdigraph of D − N−(vi) that has order 6 and contains both vi and x, then H
is nontraceable, since neither x nor vi has any in-neighbour in H . This proves that every vertex in D that
is not a neighbour of x has indegree at least n− 5. In particular, d−(v1) ≥ n− 5. Hence it follows from
Lemma 2.2 that v3, vn−2 ∈ N−(v1).

Since X is strong, vn−1 has an out-neighbour vi such that 2 ≤ i ≤ n − 3. If vn−1 ∈ N+(x), then
xvn−1vi . . . vn−2v1 . . . vi−1 is a hamiltonian path of D. This contradiction shows that vn−1 is not a
neighbour of x and hence d−(vn−1) ≥ n− 5.

By Lemma 2.1, d+(x) ≥ n − 5, so x has at least n − 5 neighbours in the set v2 . . . , , vn−2. However,
if 2 ≤ i ≤ n − 2 and vi ∈ N+(x), then the predecessor vi−1 is not in N−(vn−1), otherwise D has the
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hamiltonian path xvi . . . vn−2v1 . . . vi−1vn−1. Thus at least n− 5 vertices in D2 are not in-neighbours of
vn−1, which implies that d−(vn−1) ≤ 3, contradicting that d−(vn−1) ≥ n− 5 ≥ 6. 2

For the proof of the strong case, we also need the following result concerning 6-traceable oriented
graphs that are not strong.

Lemma 4.2 If D is a 6-traceable oriented graph of order 8 that is not strong, then D is traceable.

Proof: Suppose D is nontraceable. Then, since we have shown that there does not exist a hypotraceable
oriented graph of order 7, Lemma 3.1 implies that D itself is hypotraceable. We need to consider two
cases.

Case 1. D has a nontrivial strong component X that is nonhamiltonian: It follows from Lemma 2.5
that X has order 7. By symmetry we may assume that D1 has order 1 and D2 = X . Let x be the
vertex in D1 and let v1 . . . v7 be a path in D2. It now follows exactly as in the proof of Lemma 4.1 that
v3, v6 ∈ N−(v1) and also that v1 and v7 are not neighbours of x, and d−(v1) ≥ 3 and d−(v7) ≥ 3.

We now consider the possible neighbourhoods of x. By Lemma 2.1, d+(x) ≥ 3, and by Lemma 2.2, if
d+(x) = 3, then 〈N+(x)〉 is nontraceable. Moreover, if vi ∈ N+(x), then vi−1 6∈ N−(v7).

Suppose {v2, v6} ⊆ N+(x). Then N+(v1) ⊆ {v2, v4, v5}. But if v4 ∈ N+(v1) then xv2v3v1v4v5v6v7

is a hamiltonian path of D. Hence, by Lemma 3.2, v5 ∈ N+(v1). But then v4 ∈ N−(v1) and
xv2v3v4v1v5v6v7 is a hamiltonian path of D. This proves that {v2, v6} 6⊆ N+(x), so we need to consider
four cases.

Case 1.1 {v2, v3, v5} ⊆ N+(x): In this case v1, v2, v4 6∈ N−(v7). Hence N−(v7) = {v3, v5, v6}.
Since v1 6∈ N+(v7), this implies that N+(v7) = {v2, v4}. But then xv3v7v4v5v6v1v2 is a hamiltonian
path of D.

Case 1.2 {v2, v4, v5} ⊆ N+(x): In this case N−(v7) = {v2, v5, v6}. But then N+(v7) = {v3, v4},
which contradicts Lemma 2.2, since D is hypotraceable.

Case 1.3 {v3, v4, v6} ⊆ N+(x): In this case N−(v7) = {v1, v4, v6}. If either v2 or v3 is in N+(v7),
then D would obviously be traceable. But then d+(v7) ≤ 1, contradicting Lemma 3.2, since D is hypo-
traceable.

Case 1.4 {v3, v5, v6} ⊆ N+(x): In this case N−(v7) = {v1, v3, v6}. By Lemma 3.2, d+(v7) ≥ 2. But
by Corollary 3.4, N+(v7) 6= {v4, v5}. Hence v2 ∈ N+(v7). Now if v4 ∈ N−(v1), then xv5v6v7v2v3v4v1

is a hamiltonian path in D. But we have shown that d−(v1) ≥ 3, hence v5 ∈ N−(v1). But then
xv6v7v2v3v4v5v1 is a hamiltonian path in D.

Case 2 Every strong component of D is hamiltonian. In this case D has at least three strong compo-
nents, otherwise D would be traceable. By Lemma 3.5, every nontrivial strong component of D has order
at least 5. Hence the only possibility is that N(D1) = 1, N(D2) = 6 and N(D3) = 1.

Let x and y be the vertices in D1 and D3, respectively, and let v0v1v2v3v4v5v0 be a hamiltonian cycle
of D2. If x has only two neighbours in D2, then removal of those two neighbours leaves a nontraceable
subdigraph of D that has order 6. Hence x has at least 3 neighbours in D2 and, similarly, y has at least
three neighbours in D2. But if x is adjacent to vi and j = (i − 1) mod 6, then vj cannot be adjacent to
y. This implies that |N+(x) ∩ V (D2)| = 3 and |N−(y) ∩ V (D2)| = 3 and N+(x) ∩ N−(y) 6= ∅. A
similar argument to that used in Lemma 2.2 shows that both 〈N+(x) ∩ V (D2)〉 and 〈N−(y) ∩ V (D2)〉
are nontraceable.

If |N+(x) ∪ N−(y)| ≤ 3, then D has a subdigraph of order 6 that contains at most one vertex in
N+(x) ∩ N−(y). But such a subdigraph cannot be traceable. Hence |N+(x) ∪ N−(y)| ≥ 4. There are
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two possibilities to consider: N+(x) = {v0, v1, v3}, N−(y) = {v1, v3, v4} and N+(x) = {v0, v1, v4},
N−(y) = {v1, v2, v4}. In the first case, since D − {v0, v1} must be traceable, D must contain the path
xv3v5v2v4y. But then D−{v3, v4} cannot be traceable. In the second case, D−{v1, v2} is nontraceable,
since D2 − {v1, v2} does not have a path starting at v0 and ending at v4. Thus either case contradicts the
6-traceability of D. 2

We are now ready to prove our main theorem.

Theorem 4.3 Every 6-traceable oriented graph of order at least 11 is traceable.

Proof: Suppose, to the contrary that D is a 6-traceable oriented graph of order n that is nontraceable,
for some n ≥ 11. By Lemma 4.1 we may assume that D is strong. Thus Theorem 2.9 implies that
n ≤ 15. By Theorem 2.7, D has three independent vertices x1, x2, x3. Let A = N+(x1) and B =
V (D)\ (A∪{x1, x2, x3}). Lemma 2.8 implies that |A| ≤ 6 and |B| ≤ 6. Hence, if n = 12, then |A| ≥ 3
and |B| ≥ 3. If n = 11, then it follows from Lemma 2.2 and the 6-traceability of D that |A| 6= 6 and
|B| 6= 6, so in this case 3 ≤ |A| ≤ 5 and 3 ≤ |B| ≤ 5.

If |B| = 3, then put S1 = B ∪{x1, x2, x3} and S2 = {x1}∪A. If B ≥ 4, then put S1 = B ∪{x1, x2}
and S2 = {x1, x3} ∪ A. In either case, 6 ≤ |S1| ≤ 8 and 6 ≤ |S2| ≤ 8, S1 ∪ S2 = V (D) and
S1 ∩ S2 = {x1}. Moreover, x1 has no in-neighbours in S2 and no out-neighbours in S1, so neither 〈S1〉
nor 〈S2〉 is strong. Hence, it follows from the 6-traceability of D and Theorem 3.6 and Lemma 4.2 that
S1 has a hamiltonian path ending in x1 and S2 has a hamiltonian path starting in x1. But then D has a
hamiltonian path, contradicting our assumption. 2

Corollary 4.4 The OPPC(1) holds for a ≤ 5.

Corollary 4.5 The OPPC(1) holds for oriented graphs of order at most 12.
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