
Discrete Mathematics and Theoretical Computer Science AB(DMCS), 2003, 117–128

On undecidability of equicontinuity
classification for cellular automata

Bruno Durand1 and Enrico Formenti1 and Georges Varouchas1

1Laboratoire d’Informatique Fondamentale de Marseille (LIF),
Centre de Mathématique et Informatique (CMI), 39 rue Joliot-Curie, 13453 Marseille Cedex 13, France.
email: {bdurand,eforment,gvarouch}@cmi.univ-mrs.fr

Equicontinuity classification is a popular classification of cellular automata based on their dynamical behavior. In this
paper we prove that most of its classes are undecidable.

Keywords: cellular automata, classification, discrete dynamical systems, undecidability

Introduction
Cellular automata are simple model for the study of complex phenomena produced by simple local inter-
actions. They consist of a regular lattice of cells. Each cell contain finite automaton which has a state
chosen from a finite set of states. Updates are made according to a local rule which takes into account
the current state of the cell and those of a fixed finite set of its neighboring cells. All cells are updated
synchronously. A snapshot of the state of all cells at the same time is called a configuration.

Despite of their definition simplicity, cellular automata exhibit a wide range of dynamical behaviors.
The classification of such behaviors is known as “the classification problem”. It has captivated researchers
for years and a complete solution does not appear to be on coming.

The first empirical classification was proposed about twenty years ago by Wolfram after an extensive
experimental work. Successive studies of researchers in the field, tried to give this classification a formal
justification. The first attempts ofČulik et al. [CY88, CPY89], made immediately clear were the problem
is: CA behavior is so complex that almost any question about their long-term behavior is undecidable.
Unfortunately we do not know how to formalize (and then prove) this idea. Two attempts in this direction
are [Kar94] (a Rice theorem with variable states) and [CD00] (a partial Rice theorem with fixed states).

In the middle of nineties, P. Kůrka proposed to classify CA according to their degree of equicontinu-
ity [Kur97]. Denote E the set of equicontinuity points of a CA and X the set of all configurations. Kůrka
devised the following four classes

K1) E = X ;
K2) E 6= /0 ;
K3) E = /0 ;
K4) expansive CA .

1365–8050 c© 2003 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

118 Bruno Durand and Enrico Formenti and Georges Varouchas

Since many of these classes are defined by properties that are not strictly related to limit sets, one might
suspect that at least some of them are decidable. In this paper we prove that the first three classes are unde-
cidable. These undecidability results are meaningful and have consequences on other decision problems
(e.g. nilpotency). Decidability (or undecidability) of the fourth class is still open.

1 Cellular automata, discrete dynamical systems
Cellular automata are formally defined as quadruples 〈d,Q ,N,δ〉. The integer d is the dimension of the
space the cellular automaton works on. The set Q is a finite set of states of cells. The neighborhood
N = (x1, . . .xv) is a v-tuple of distinct vectors of Z

d . The xi’s are the relative positions of the neighbor
cells with respect to the cell, whose new state is being computed. The states of these neighbors are used
to compute the new state of the center cell by the local function of the cellular automaton δ : Q v 7→ Q .

A configuration is an application from Z
d to Q . Let X = Q Z

d
be the set of all configuration. The local

function induces a global function on X as follows

∀c ∈ Q Z
d
,∀i ∈ Z

d ,A(c)i = δ(ci+x1 , . . . ,ci+xv) .

A state q is called quiescent if f (q,q, . . . ,q) = q (in the sequel we explain how our results are still
valid when no quiescent state exists). More than one state can be quiescent, but only one of them is
distinguished as the quiescent state. Denote XF the set of finite configurations, i.e., those configurations
that are almost everywhere equal to the quiescent state — non-quiescent in a finite number of cells.

Let us now recall some classical definitions from discrete dynamical systems theory.

A dynamical system (X ,F) consists of a compact metric space X and F is a continuous function from
X to itself. Denote d the metric on X and Fn the n-fold composition of F with itself.

We are interested in the study of dynamical systems in symbolic spaces. Q Z
d

is endowed with the
product topology (also called Cantor topology) of a countable product of discrete spaces on Q . For the
sake of simplicity, we will study cellular automata in dimension k = 1 or 2. The generalization of results
to higher dimensions is straightforward for all the results in the present paper.

The metric d on Q Z
d

is defined as ∀x,y∈QZ
d
, d(x,y) = 2−n where n = inf{i ∈ N, xi 6= yi or x−i 6= y−i}.

This metric induces the product topology on Q Z
d
.

Denote by Q ? the set of finite words on Q . For w ∈ Q?, |w| denotes the length of w. For t ∈ Z,w ∈ Q ?,
the sets

[w]t =
{

x ∈ Q Z,xt = w0, . . . ,xt+|w| = w|w|
}

are called cylinders and form a basis for the product topology on Q Z. The shift map σ is often used
as a paradigmatic example of chaotic symbolic system. It is defined as ∀c ∈ QZ,∀i ∈ Z, σ(c)i = ci+1.
Cellular automata are exactly those continuous maps from Q Z to Q Z that commute with the shift (i.e.,
A ◦σ = σ◦A) [Hed69].

Kůrka’s classes are defined by properties on the whole set of configurations. Using Proposition 1.1 one
can express the properties defining some of Kůrka’s classes in terms of behavior on finite patterns.

Proposition 1.1 ([Knu94]) Let A be a cellular automaton. Then A is sensitive to initial conditions w.r.t.
finite configurations if and only if A is sensitive to initial conditions.

Undecidability of CA classification 119

A point x∈ is ultimately periodic if there exists two integers t̄, p (p > 0) such that implies that F pt+t̄+i(x) =
F t̄+i(x) for i, t ∈ N. The minimal t̄, p with such a property are called, respectively, the length of the tran-
sient and the period of x. If t̄ = 0 then x is called periodic.

A point x ∈ X is an equicontinuity point for F if for any ε > 0 there exists δ > 0 such that for any y ∈ X ,
d(x,y) ≤ δ implies that ∀t ∈ N, d(F t(x),F t(y)) < ε. If X is perfect and all of its points are equicontinuity
points then F is equicontinuous.

In other words, an equicontinuous systems has a very stable dynamic. Small errors in initial conditions
will not grow during evolutions. Periodic systems are a trivial example of equicontinous systems, although
not all equicontinuos systems are periodic. In the special case of CA we have the following result.

Lemma 1.2 ([BT00]) A CA is equicontinuous if and only if it is ultimately periodic.

The notion of blocking word is rather intuitive central for characterizing cellular automata dynamics in
the presence of equicontinuity points as we can see in Proposition 1.3. It will be crucial in the proof of
the main result of this section.

A word V ∈ Q ? is blocking if there exists an infinite sequence of words (vt)t∈N such that

1. for any t ∈ N, |vt | is finite, odd and greater than or equal to r;
2. for any c ∈ [V]−(|V |−1)/2 and any t ∈ N, At(c) ∈ [vt]−(|vt |−1)/2.

In other words V partitions the evolution diagram of A in two completely disconnected parts: all per-
turbations made in one side are completely “blocked” by V .

Proposition 1.3 ([BT00]) Any equicontinuity point has an occurrence of a blocking word. Conversely, if
there exist blocking words, then any point with infinitely many occurrences of a blocking word to the left
and to the right (of 0) is an equicontinuity point.

Regularity is another property connected with periodicity. A system is regular if it has a dense set of
periodic points.

A dynamical system (X ,F) is sensitive to initial conditions if there exists ε > 0 such that for any x ∈ X
and any δ > 0, there exists y ∈ X such that 0 < d(x,y) < δ implies that there exists t ∈ N such that
d(F t(x),F t(y)) ≥ ε. In other words a systems that is sensitive to initial conditions defeat all numerical
simulations. In fact small error in the measure of initial configurations are magnified during evolutions at
a point that after some iterations the “real evolution” and the simulated one can be quite different.

Remark 1.4 In a perfect space, any system with no equicontinuity points is sensitive to initial conditions
and vice-versa. This property, de facto, inspired the definition of Kůrka’s classes and separates class
K1 ∪K2 from K3.

Expansivity is a stronger version of instability than sensibility to initial conditions (at least in perfect
spaces). The system (X ,F) is expansive if there exists ε > 0 such that for any x,y ∈ X , d(x,y) > 0 implies
that ∃t ∈ N such that d(F t(x),F t(y)) ≥ ε. Be the definitions, it is easy to see that K4 is contained in K3.

2 Undecidability of the class K1

Theorem 2.1 is the main result of this section. Its proof adresses the following problem in Kari’s work [Kar94]:
the set of states is not fixed. The hardest part of the proof consists in proving that, in our particular case,
letting the set of states vary is not necessary.

120 Bruno Durand and Enrico Formenti and Georges Varouchas

Theorem 2.1 Consider K1 for a fixed set of states Q and a fixed dimension d ∈ N. Then membership in
K1 is undecidable.

Remark 2.2 In [CY88], Culik and Yu prove that membership in K1 is undecidable for one-dimensional
CA for any fixed set of states when considering finite configurations. This result cannot be used here since
there are CA that are equicontinuous over finite configurations but not on more general configurations.
Consider, for example, the one-dimensional CA on {0,1} with local rule δ(x,y,z) = xy for x,y,z ∈ {0,1}.

In the proof of the main result of the section we make a reduction to a well-known undecidable problem
for CA. To this purpose we need some more definitions and some results from literature.

A CA 〈1,Q ,N,δ〉 is nilpotent if there exists an integer n such that ∀x ∈ Q Z
d
, Fn(x) = c for a quiescent

configuration c. Given a CA 〈1,Q ,N,δ〉, a state q ∈ Q is spreading if δ(x1 . . .x2r+1) = q whenever there
is at least one i (1 ≤ i ≤ 2r +1) such that xi = q. Even if nilpotent CA (even with a spreading state) have
a quite simple dynamics, these properties are undecidable as proved by the following result.

As pointed out by J. Kari and N. Ollinger [KO03], the proof technique of [Kar94] allows to assert the
following result (stronger form than published in [Kar94] because of restriction to CA with a spreading
states).

Theorem 2.3 Nilpotency is undecidable in the class of 1D cellular automata with a spreading state.

However, Kůrka’s classes are defined for a fixed set of states, while the proof of the previous result does
not allow to bound the cardinality of the set of states. We prove a slightly stronger version of this result:

Proposition 2.4 Nilpotency is undecidable for one-dimensional CA with state set {0,1}.

Proof. Let CA01S be the class of one-dimensional CA with state set {0,1} such that δ(x−r . . .xr) = 0 if 0r

is contained in x−r . . .xr. For any configuration c, call segment wi, j the word wi,k = ci+k for i ≤ j. Given a
configuration c, we will say that a segment wi,n is admissible if it does not contain the word 1n and wi−n,2n

does not contain 010n−101. Moreover we say that c is n-admissible if any of its segment of length n is
admissible.

We reduce nilpotency to the problem of deciding nilpotency for CA in CA 01S.
For any CA A = 〈1,Q ,{−r, . . . ,r} ,δ〉 with a spreading state, build the CA

BA = 〈1,{0,1} ,{−rn, . . . ,rn} ,δA〉

where n is the cardinality of Q . Let IQ = 0,1, . . . ,n−1 be a relabeling of the states of A such that 0 is a
spreading state. We will code any state q ∈ IQ by π(q) = 01q0n−1−q.

For any n-admissible configuration c, for any i ∈ Z, denote q(i) the state of the simulate cell. Remark
that q(i) can always be detected from i; in fact it suffices to find the first occurrence of 01 to the left of i.
Now define:

δA(ci−rn, . . . ,ci+rn) = π(δ(q(i− r), . . . ,q(i+ r))) . (1)

By the above definition ∀c ∈ QZ, BA(π(x)) = π(F(x)) where F is the global function of A . For all non
(2rn+1)-admissible segments, let

δA(ci−rn, . . . ,ci+rn) = 0 . (2)

Remark that since A is spreading then, by (2), BA is CA01S. We claim that A is nilpotent if and only if
BA is nilpotent.

Undecidability of CA classification 121

Assume that A is nilpotent. Then there exists n ∈ N such that Fn(c) = 0. For all n-admissible config-
urations, by (1) and (2), we have that Fn

B(c) = 0. If c is not n-admissible, then let i ∈ Z be the index of a
cell in a non-admissible segment. Remark that 0n will occur in FB(c)i−rn,2rn. Then since BA is in CA01S

one finds Fn
B(c)i = 0.

Assume that A is not nilpotent. By definition, there exists c such for all n ∈ N,Fn(c) 6= 0. Therefore,
by (1), one finds that ∀n ∈ N, Fn

B (π(c)) = π(Fn(c)) 6= 0. We thus get the required reduction. �

The previous result can be generalized to arbitrary dimension and state set because 1-dimensional CA
over {0,1} are a decidable class among d-dimensional CA over Q ({0,1}⊂Q), and analogously nilpotent
cellular automata are decidable class among the class of ultimately periodic cellular automata.

Corollary 2.5 Nilpotency is undecidable for cellular automata on any fixed state set and dimension.

Theorem 2.6 Ultimate periodicity is undecidable among for CA on any fixed state set and dimension.

Proof of Theorem 2.1. Use Theorem 2.6 and Lemma 1.2. �

3 Undecidability of the class K2

Theorem 3.1 For a fixed dimension d and alphabet Q , it is undecidable if a CA on Q Z
d
has a blocking

word.

We shall prove this result by proposing a reduction, inspired from [Sut89], of the classical Halting
theorem to our problem. We will present this reduction in several steps: the first step describes a universal
class of Turing machines with constrains on their global behaviour, the second step will be the reduction
of this particular universal model to cellular automata, and the final step will prove that this last reduction
can be done with a fixed number of states.

By Proposition 1.3, the previous theorem and Remark 1.4, we get the following theorems.

Theorem 3.2 Given a set of states Q and a dimension d, the class K1 ∪K2 is undecidable on the class of
CA over Q Z

d
.

Theorem 3.3 Given a set of states Q and a dimension d, the class K3 is undecidable on the class of CA
over Q Z

d
.

The reduction we propose is a reduction of the Halting problem on Turing machines to our K2 problem
over one-dimensional cellular automaton. The main difficulty is that we want to enforce a fixed behav-
ior of our cellular automaton on all configurations, but not all configurations correspond to admissible
instances.

There is a classical way to simulate a Turing machine M with a CA C = 〈1,QC,r = 2,δ〉: let Q and Σ
denote the set of states and the working alphabet of M , and µ its transition rule. We set QC = Q ∪Σ, and
we define δ as follows (∗ matches any state, and σ any state in Σ):

• if µ(q1,σ1)=(q2,σ2,+1), then δ(∗,∗,q1,σ1,∗)=σ2 and δ(∗,q1,σ1,∗,∗)=q2;
• if µ(q1,σ1)=(q2,σ2,0), then δ(∗,q1,σ1,∗,∗)=σ2 and δ(∗,∗,q1,σ1,∗)=q2;
• if µ(q1,σ1)=(q2,σ2,−1), then δ(∗,q1,σ1,∗,∗)=σ2, δ(∗,σ,q1,σ1,∗)=σ and δ(∗,∗,σ,q1,σ1)=q2;
• for any unmatched neighborhood, δ does not modify the central cell.

122 Bruno Durand and Enrico Formenti and Georges Varouchas

To represent the configuration of M in the state q, with its reading head at position i on the data string
w, one can use the following finite configurationω0w[0..i−1]qw[i..|w|]0

ω . One evolution step of C on the
above configuration simulates one computation step of M on w.

Remark that this simulation does not allow us to link the properties of M with a behavior of C on all
its configuration: the simulation is not consistent with M when C acts on a configuration which does not
represent a configuration of M (e.g. a configuration with several reading heads, or an infinite configuration
etc.).

A solution to this problem is suggested by Sutner in [Sut89]. He proposes a simulation process which
constrains the behavior of the automaton on all finite configurations, and which we enhance to ensure
properties over all possible configurations.

Instead of directly simulating the computation of the machine, we build an automaton CM which simu-
lates a machine PM working on the following set of predicates: {Pn :=“after n computation steps starting
on the empty entry ε, the machine M reaches the configuration wn”,n ∈ N}, where wn = M n(ε).

The first step of our reduction will be the description of this machine PM .
We represent Pn with the string [n|wn] (n is the string representing n in unary). On this representation,

PM will be able to perform two things: compute Pn+1 from Pn (i.e., simulate M ’s computation), and also
decide whether a given string represents a valid predicate or not (the set {Pn|n ∈ N} is recursive). In order
to validate the behavior of CM , we need to describe more precisely the behavior of PM .

The data string of PM will have the following structure:
Reading head

Certification zone

Simulation zone
Counter zone

To implement such a structure, we use the alphabet ΣP consisting in the union of the following sets:

• a singleton containing the blank character BP ;

• a set Σcount of two characters for the counter zone:
1
�

and
1
�

(both will be used to write k in

unary, and we need to be able to “check” each bit during the certification cycle);
• a set Σsimul of characters for the simulation and certification zone:

Σsimul :=

{
a
b

∣∣∣∣a,b ∈ Σ∪Q
}

(note that Σ also contains the blank character of the machine M). We shall distinguish two subsets:
the set Σchar := Σ× (Σ∪Q) (simulation of a character of M) and the set Σhead := Q × (Σ∪Q)
(simulation of the reading head of M);

• a set of separators, in order to point clearly out the various zones in the data string: [,| and].

Call ID (as in Instantaneous Description) the set of syntactically valid data strings for our machine PM :

ID := [Σ∗
count | Σ∗

charΣheadΣ∗
char]

The computation of PM simulating M on the empty entry proceeds as follows:

1. Check if the data string is in ID;

Undecidability of CA classification 123

2. simulate one computation step in the simulation zone (if necessary, extend the simulation zone by
shifting the rightmost separator one cell to its right);

3. increment the counter by adding one extra
1
�

to its left (thus extending the counter zone by one

cell to its left);

4. uncheck the counter zone (i.e., replace all
1
�

by
1
�

);

5. initialize the certification zone (it should just contain the string describing M in its starting config-
uration);

6. resimulate the k first steps of computation in the certification zone, checking one bit in the counter
zone at each step;

7. compare the result obtained in the certification zone with the content of the simulation zone;
8. if no error occurred during the certification, check whether the simulated machine M has reached

a halting configuration: if so, end the simulation (and enter an acceptance state), else proceed with
the simulation loop.

During the simulation loop, several kind of errors can occur:

• during step 1, PM can detect a syntax error;
• no error can occur during the steps 2 to 5;
• during step 6, the certification process should not use more space than delimited by the separators.

The certification can thus fail at this step if it appears that the space between the central and the
rightmost separators is not enough;

• during step 7, PM can detect a simulation error, if the simulation does not match the certification;
• step 8 describes only the looping condition, and no error can appear here.

If any of these errors is raised, the machine enters a rejecting state, and halts.

Definition 3.4 (valid configuration) A configuration of PM is valid when the computation of PM on this
configuration does not lead to a rejecting state.

We shall denote by VM the set of valid configurations. VM is recursive, and can be described as follows:
a word w is in VM if and only if

• w ∈ ID;
• if k represents w’s counter and c its simulation zone, c = M k(ε);
• the space between w’s central separator and its rightmost separator is greater than or equal to the

number of cells used by M during its k first computation steps.

The following remarks will be useful in the sequel.

Remark 3.5 One whole simulation loop simulates exactly one computation step of M .

Remark 3.6 By the certification process it holds that: PM will complete a simulation loop without enter-
ing a rejecting state if and only if its data string represents a predicate in VM .

Remark 3.7 Only Step 2 and 3 allow PM to use extra cells on its data string. Thus, if PM completes a
simulation loop, the length of the data string increase by at most 1 to its right, and exactly 1 to its left.

124 Bruno Durand and Enrico Formenti and Georges Varouchas

Denote by QP the set of states of PM .

Lemma 3.8 The three following statements hold:

1. M halts on the empty entry if and only if PM halts on all entries.
2. If M halts in k steps on ε, then, on any entry of size s, PM halts and uses at most s+2k cells during

its computation.
3. If M doesn’t halt on ε, then there is an entry of PM on which PM doesn’t halt and uses an unbound

number of cells during its computation.

Proof. Consider an entry w of PM .

1. If w 6∈VM , then by Remark 3.6, we know that PM halts on w.
If w ∈VM then

• either M halts on ε, then any computation on a configuration which derives from ε leads to
termination, hence the computation of PM on w eventually terminates;

• or M does not halt on ε; then, by Remark 3.5, PM will compute indefinitely many simulation
loops on w, and will not stop.

2. By Remark 3.5, if M halts on ε in k steps, then any computation of PM involves at most k simulation
loops, and therefore, by Remark 3.7, the growth of the data string is bounded by 2k.

3. If M does not halt on ε, then, by Remark 3.5, PM ’s computation on

[∣∣∣∣
q0

]
does not halt too.

The simulation loop is thus executed an unbounded number of times, and by Remark 3.7, one finds
that after each simulation loop, the data string grows by at least one cell.

�

Let us now describe the second step of our reduction: CM will mainly consist in a classical simulation of
PM , but it will be able to erase the zones of its configurations which do not correspond to a configuration
of PM .

More precisely: we set QCM := ΣP ∪QP ∪{kill}. These states will play different roles in the sequel;

• 0 denotes the blank character BP ;
• Qinert denotes the subset ΣP −{BP};
• Qhead denotes the subset QP .

The radius is 4, and the local rule acts as follows:

1. if a cell is in the state kill, it enters the state 0;
2. if a cell’s state is neither kill nor 0, and there is at least a cell kill state in its neighborhood, it

enters the kill state;
3. if a cell’s state is neither kill nor 0, and there is at a local configuration error in its neighborhood,

it enters the kill state;
4. otherwise, the usual simulation rule of a Turing machine by a cellular automaton is applied.

A local configuration error on a given configuration is a local block (of radius 4) of the configuration
which should not appear in a valid simulation. More precisely, we will have a local configuration error
when the block contains:

Undecidability of CA classification 125

• PM ’s rejecting state,
• non blank characters to the right of a right separator],
• non blank characters to the left of a left separator [,
• two reading heads, that is two cells whose states are in Qhead.

Definition 3.9 (data zone, active signal) Given a configuration c, a data zone on this configuration will
be any maximal connected part of c which does not contain 0.

With the local rule of CM defined above, we can see that the only possible modifications can occur
around cells with a state in Qhead ∪{kill}. We will call these states active signals.

A configuration of CM can be seen as a sequence of data zones, on which CM acts through these active
signals. The kill signal is invoked whenever a simulation error is detected, and destroys the zone in
which it appears; the other signals (which represent the trajectory of PM ’s reading head) modify the data
zone, possibly extending it.

Lemma 3.10 If the kill state appears inside a finite data zone, this data zone will be entirely erased
after a finite number of steps.

Proof. With the radius of our automaton, the kill signal is at least twice as fast as the other active signals:
it can act on a neighborhood of radius 4, while the other signals, following the classical simulation rule,
act on a neighborhood of radius 2. Thus, if a kill signal appears in a finite data zone, the other signals
will not be able to compensate indefinitely its destruction. �

Definition 3.11 (valid zone) A data zone will be valid when it represents a real valid configuration of
PM , that is a word in VM , with an adequately placed reading head.

In other words: a valid data zone is a finite zone, which represents a real simulation of PM , in which
no kill signal will be invoked, unless it interacts with other data zones on the configuration.

Lemma 3.12 The two following hold:

1. if a data zone is not valid, it will grow by at most 2 cells;
2. if a data zone is valid, it will grow, for each complete loop simulated by CM in this zone, by exactly

one cell to the left and at most one to the right.

Proof. A data zone can only grow under the action of a signal in Qhead . Hence, if the invalid data zone
does not contain a reading head character, it will not grow.

Else, if it is not valid, at least one kill signal will be invoked before one complete loop of PM could
be simulated by CM in this data zone. Steps 2 and 3 of PM ’s loop will therefore be simulated at most
once each, and the data zone will grow by at most 2 cells.

Statement 2 follows from the simulation process of PM by CM , and Remark 3.7. �

Lemma 3.13 If M halts on the empty entry in k steps, then 02k+5 is a blocking word of CM .

Proof. By Lemma 3.12 that, if M only computes k steps on ε, then the growth of any data zone is bounded
by k cells to the left and k to the right.

If the word 02k+5 is present in the configuration, it defines (at least) two data zones (one to its left and
one to its right), which won’t grow more than k cells to either side along the evolution of CM . Hence the
five central cells of the word 02k+5 will never be affected, which ends the proof. �

126 Bruno Durand and Enrico Formenti and Georges Varouchas

Lemma 3.14 If M does not halt on the empty entry, then no word of Q ∗ is blocking for CM .

Proof. Consider a word w of Q ∗, we want to prove that we can always create around w a configuration
which disturbs any letter of w. By Lemma 3.12, any valid data zone will grow indefinitely to its left,
unless it interacts with another data zone.

Consider a word v representing a valid zone. If we let CM evolve on the configuration c0 := ω0wv0ω,
then exactly one of the following statements holds:

• all the data zones of w disappear completely before the evolution of v gets a chance to interact with
it;

• v’s evolution interacts with some data zone of w.

If the first case holds, then w is not a blocking word: v’s evolution can proceed indefinitely, and will
eventually reach any cell to its left.

If the second case holds: a kill signal is invoked after a finite number of steps, in the middle of a
finite data zone (the concatenation of w’s rightmost data zone and v’s evolution), so by Lemma 3.10, this
data zone will be erased in a finite number of steps n1.

Now, consider the evolution of the configuration c1 := ω0wv02n1v0ω.
We know that the first v will disappear along with w’s rightmost data zone after n1 steps. The space

between the two v makes it thus impossible for the second to interact with the first. Therefore examining
the evolution of CM on this configuration, exactly one of two statements holds:

• all the data zones of wv disappear completely before the evolution of the second v gets a chance to
interact with it;

• the second v’s evolution interacts with some data zone of w.

If the first case holds, w is not a blocking word.
In the second case: another data zone of w will be destroyed, after a certain number of steps n2. In this

case, we can consider the configuration c2 := ω0wv02n1v02n2v0ω.
By induction, we can thus build an arbitrarily long sequence of configurations (ck), such that the con-

figuration ck “kills” k data zones of w. Since w is finite, it only has a finite number of data zones, and
eventually disappears entirely. �

Corollary 3.15 CM has an equicontinuity point if and only if M halts on ε.

Proof of Theorem 3.2. We will now describe the final part of our reduction: we need to prove that the
reduction M → CM can be done even if the set of states of CM is fixed. As in the preceding section, we
will build a similar reduction with a 2-state automaton.

From CM build the 2-state automaton C̃M which simulates CM as follows: choose a fixed indexation
of CM ’s states Q = {q0, . . . ,qn}, imposing q0 = 0, and represent qi by the binary sequence 01i0n−i.

A state of CM is thus represented by a sequence of n + 1 states of C̃M . The radius of CM is 4, so a
radius of 5(n+1) for C̃M is enough for a cell to determine both the state to which it belongs, and the state
of its two simulated neighbors.

The beginning of a simulated state is represented by the sequence 01, so that any cell of a simulated
state is able to determine if, locally, the simulated configuration is valid (there must be exactly a multiple
of (n+1) cells between two consecutive occurrences of 01).

Undecidability of CA classification 127

The local rule of C̃M proceeds as follows: if the neighborhood of a cell contains an alignment error, the
cell enters the state 0, else the cell evolves according to the simulated rule.

Both Lemma 3.13 and 3.14 can be adapted to C̃M : the simulation of 02k+5, that is 0(2k+5)(n+1), is a
blocking word for C̃M if M halts on ε; and if M does not halt, then any simulated valid zone will also
grow indefinitely, allowing to perturb any given finite word. �

Acknowledgements
The authors are very grateful to Jarkko Kari and Nicolas Ollinger for pointing out the result about nilpotent
CA with a spreading state that was fundamental to extend our proof in Section 2 (originally designed for
dimension at least 2) to all dimensions.

References
[BT00] F. Blanchard and P. Tisseur. Some properties of cellular automata with equicontinuity points.

Annales de l’Instute Henri Poincaré, 36(5):562–582, 2000.

[CD00] J. Cervelle and B. Durand. Tilings: Recursivity and regularity. In STACS 2000, volume 1770
of LNCS, pages 491–501, 2000.

[CPY89] K. Culik, J. Pachl, and S. Yu. On the limit set of cellular automata. SIAM Journal on Computing,
18:831–842, 1989.

[CY88] K. Culik and S. Yu. Undecidability of cellular automata classification schemes. Complex
Systems, 2:177–190, 1988.

[Hed69] G. A. Hedlund. Endomorphism and automorphism of the shift dynamical system. Mathematical
System Theory, 3:320–375, 1969.

[Kar94] J. Kari. Rice’s theorem for the limit set of cellular automata. Theoretical Computer Science,
127:229–254, 1994.

[Knu94] C. Knudsen. Chaos without nonperiodicity. American Mathematical Montly, 101:563–565,
1994.

[KO03] J. Kari and N. Ollinger. Why proof of indecidability of nilpotency applies to cellular automata
with a spreading state. Personal communication, 2003.

[Kur97] P. Kurka. Languages, equicontinuity and attractors in cellular automata. Ergodic Theory &
Dynamical Systems, 17:417–433, 1997.

[Sut89] K. Sutner. A note on culik-yu classes. Complex Systems, 3:107–115, 1989.

128 Bruno Durand and Enrico Formenti and Georges Varouchas

