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Discrete Random Walks on One-Sided
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In this paper we consider discrete random walks on infinite graphs that are generated by copying and shifting one
finite (strongly connected) graph into one direction and connecting successive copies always in the same way. With
help of generating functions it is shown that there are only three types for the asymptotic behaviour of the random
walk. It either converges to the stationary distribution or it can be approximated in terms of a reflected Brownian
motion or by a Brownian motion. In terms of Markov chains these cases correspond to positive recurrence, to null
recurrence, and to non recurrence.
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1 Introduction
The purpose of this paper is to consider random walks on infinite graphs G of the following type. Let K
and L be a finite strongly connected di-graphs and K0 � K1 � K2 ������� copies of K. The set of nodes, V

�
G � , of

G is now given by V
�
L ��� V

�
K0 ��� V

�
K1 ���
	�	�	 . The directed edges of G, E

�
G � , consist first of the edges

E
�
L ��� E

�
K0 ��� E

�
K1 ����	�	�	 and second of edges between L and K0, between K0 and K1, between K1 and

K2 etc., where the edges from K j to K j � 1 are the same for all j  0 � 1 � 2 ������� . We also assume that every
node of K0 has the same outdegree as K j for j  1 � 2 ������� , that is, every directed edge from K j � 1 to K j (for
j  0 � 1 � 2 ������� ) has a counterpart from K0 to L.

We consider a discrete random walk Xn (as a Markov chain) on G, where the starting point X0 is in L.
We also assume that the transition probabilities of the corresponding nodes of K j are the same for all
j  0 � 1 � 2 ������� .

The simplest case is the one-sided “linear” graph, where L and K j have size 1 (see Figure 1). Of course,
the corresponding random walk is just a Markov chain on the non-negative integers with reflection at zero,
see Feller (1968, 1971), or a discrete time version of the continuous time Markov chain modeling a M/M/1
queue (see Neuts (1981, 1989); Latouche and Ramaswami (1999)). It is well known that the random walk
Xn on G is either positive recurrent, null recurrent, or non recurrent.

The general case corresponds to a discrete time version of a homogeneous quasi-birth-and-death process
(see Neuts (1981, 1989); Latouche and Ramaswami (1999)) that is characterised by a Neuts structure given
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Fig. 1: One-sided “linear” graph (with transition probabilities)

by an infinite matrix of the form ������
�

B � C � 0 0 	�	�	
D � B C 0 	�	�	
0 D B C 0 	�	�	
0 0 D B C 	�	�	

. . .
. . .

. . .
. . .

�������
� �

where the (finite) matrices B� � C � � D � � B � C � D collect the transition probabilities (see Section 3). These
kinds of graphs also appear in performance evaluation, for example, compare with Hermanns et al. (2002).

It is also worth mentioning that there are specific problems in combinatorics, where graphs of this type
appear, for example, the graph presented in Figure 2† is related to a problem of bin-packing (see Prodinger
(1985, 1990)).

PSfrag replacements

L K0 K1 K2

Fig. 2: Graph related to bin-packing

The main purpose of this paper is to indicate that depending on the transition probabilities there are
three typical asymptotic behaviours of Xn. It either converges to the stationary distribution or it can be
approximated in terms of a reflected Brownian motion or by a Brownian motion.‡ In terms of Markov
chains these cases correspond to positive recurrence, to null recurrence, and to non recurrence.

† This example was in fact the motivating example for writing this paper.
‡ We only present one dimensional distributional results. However, with help of the same proof techniques we easily obtain

corresponding functional versions. One has to show finite-dimensional distributional results and tightness. Both properties can
be shown with help of analytic methods applied to corresponding multivariate generating functions, for related problems and
methods see Drmota and Gittenberger (1997) or Drmota et al. (2001).
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In what follows we present a unified approach to these kinds of problems that is bases on generating
functions and on analytic methods (singularity analysis, saddle point techniques) for obtaining asymptotic
relations for the coefficients via Cauchy’s formula. It seems that this kind of method has not been used in
this context in this generality.

It also seems that the precise statements given below (in particular the second and third part of Theo-
rem 2) are new in this generality. The case of positive recurrence (of Theorem 2) has been discussed in
detail (see Latouche and Ramaswami (1999)). Also, it is well known that Dyck paths and Motzkin paths
can be approximated by a reflected Brownian motion. Further, the paper of Lalley (2001) deals with ran-
dom walks on regular languages – it seems that our case may be viewed as special cases – but the results
there concern only asymptotic expansions for the probabilities Pr � X0  v � Xn  w � , where v � w � V

�
G � are

fixed and n tends to infinity, compare also with Lalley (1995).
It would be interesting, too, to extend the present results to graphs G with specific infinite graphs L and

K j. This would cover one-sided versions of the random walk on the d-dimensional grid. (One can either
try to use the method by Lalley (2002) for infinite systems of functional equations or the Fourier analytic
methods by Guivarc’h (1984) and Krámli and Szász (1984), compare also with (Woess, 2000, Section
13).)

In section 2 we first consider the simplest case of a one-sided “linear” graph (see Figure 1) that is
related to the classical random walk on the non-negative integers (Dyck paths, Motzkin paths etc.). The
general case will then treated in section 3.

2 The one-sided “linear” graph

2.1 Statement of the Result

In this section we will describe in detail the asymptotic behaviour of Xn with X0  L for the one-sided
“linear” graph G, where b � c � d and b � � c � denote the corresponding transition probabilities (compare with
Figure 1).§

Theorem 1. Suppose that b � c � d and b � � c � are positive numbers with b � c � d  b ��� c �  1; and let Xn

be the random walk on the one-sided “linear” graph G with X0  L.

1. If c � d then we have

lim
n � ∞

Pr � Xn  L �  d � c
d � c � c � and lim

n � ∞
Pr � Xn  K���  c � � d � c �

d
�
d � c � c � �

	 c
d 
 � ����

0 � �

that is, Xn is positive recurrent. The distribution of Xn converges to the stationary distribution.

2. If c  d then Xn ��� cn is null recurrent and converges weakly to the absolute normal distribution. In
particular, we have, as n � ∞,

Pr � Xn  L �  1
c �
�

2c
nπ

� O � 1
n � �

§ Theorem 1 is surely not new, but it seems that the proof method is. Furthermore, it plays the rôle of a prototype for the general
case covered by Theorem 2.
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and (uniformly for all
� 

0)

Pr � Xn  K���  �
2

ncπ
exp � � � 2

2cn � � O � 1
n � �

3. If c
�

d then Xn is non recurrent and
�
Xn � �

c � d � n � � � �
c � d � �

c � d � 2 � n converges weakly to the
standard normal distribution. We also have, as n � ∞ and uniformly for all

� 
0,

Pr � Xn  K� �  1�
2π
�
c � d � �

c � d � 2 � n exp � � ��� � �
c � d � n � 2

2
�
c � d � �

c � d � 2 � n � � O � 1
n � �

Note that the assumption that b
� 0 and b � � 0 are not that restrictive. In particular if one of them is zero

then the result remains true as it is. Only if both are zero then Xn �� K� (and consequently Pr � Xn � K� �  0)
if n and

�
have the same parity. However, if n �� �

mod 2 then we get qualitatively the same result (and
the proofs are a little bit more technical).

Note also that the probabilities Pr � Xn  L � have been discussed in Lalley (2001) for the case b  0 and
b � � 0.

Finally, as mentioned above, with a little bit more effort it can be shown that in the case c  d the
normalized discrete processes � X � tn �� cn

� t  0 � n � 1

converges weakly to a reflected Brownian motion as n � ∞; and for c � d the processes�
X � tn � � t

�
c � d � n� �

c � d � �
c � d � 2 � n

� t  0 	
n � 1

converges weakly to the standard Brownian motion.

2.2 Generating Functions
We start with a property of one-sided paths on the integers (see Figure 3).
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Fig. 3: Random walk on the integers

Lemma 1. Let Yn denote the random walk on the integers (see Figure 3) with Y0  0. Then the generating
function of one-sided return probabilities

M
�
x �  ∑

n � 0

Pr � Y1


0 � Y2


0 ��������� Yn 
 1


0 � Yn  0 � 	 xn (1)
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satisfies the functional equation

M
�
x �  1 � bxM

�
x � � cdx2M

�
x � 2 (2)

and is thus explicitly given by

M
�
x �  1 � bx � � �

1 � bx � 2 � 4cdx2

2cdx2
�

The radius of convergence x0 is given by

x0  1

b � 2 � cd
 1

1 � � � c � � d � 2
�

If b
� 0 then x0 is also the only singularity on the circle of convergence � x �  x0. Furthermore, M

�
x � has

a local expansion of the form

M
�
x �  b � 2 � cd� cd

� 1� 2

�
b � 2 � cd� cd

	 3 � 2

	
�

1 � �
b � 2 � cd � x � O

	
1 � �

b � 2 � cd � x 
 (3)

around its singularity x  x0.

Note that the generating function M
�
x � is closely related to the generating functions U

�
x � , G

�
x � , and

R
�
x � presented in (Latouche and Ramaswami, 1999, p. 96). We have M

�
x �  1 � � 1 � U

�
x ��� , G

�
x � 

M
�
x � 	 dx, and R

�
x �  cx 	 M �

x � .
Proof. The functional equation (2) is immediately clear by writing it in the following way:

M
�
x �  1 � bx 	 M �

x � � cx 	 M �
x � 	 dx 	 M �

x � �

If the first step is the loop (with probability b) then the remaining part is just a non-negative path from
0 to 0 and the contribution is bx 	 M �

x � . If the first step goes to the right (with probability c) then we
decompose the path into four parts: first the step from 0 to the right, then we consider the part from 1
to 1 that is followed by the first step back from 1 to 0, the third part is this step back, and the last part
is again a non-negative path from 0 to 0. Hence, in terms of generating functions this case contributed
cx 	 M �

x � 	 dx 	 M �
x � . This proves (2).

The remaining properties follow directly from (2).

Next consider the original one-sided “linear” graph.

Lemma 2. Let Xn denote the random walk on the graph represented by Figure 1 and set

ML
�
x �  ∑

n � 0
Pr � Xn  L � 	 xn and M � � x �  ∑

n � 0
Pr � Xn  K��� 	 xn ��� 

0 � �

Then

ML
�
x �  1

1 � b � x � c � dx2M
�
x � and M � � x �  c �

c

�
cxM

�
x ��� � � 1

1 � b � x � c � dx2M
�
x �

� � 
0 � �
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Proof. With help of the same reasoning as in the proof of Lemma 1 one gets the relation

ML
�
x �  1 � b � xML

�
x � � c � xM

�
x � dxML

�
x �

that proves the proposed representation for ML
�
x � .

Next we have M0
�
x �  ML

�
x � c � xM

�
x � . Here we have to divide all paths from L to K0 into three parts.

The first part is just the path from L to L that is followed by the last step from L to K0. This step is the
second part, and the third part is a non-negative path from K0 to K0. In a similar way we also obtain the
recurrence M � � 1

�
x �  M � � x � cxM

�
x � . This completes the proof of Lemma 2.

2.3 Analytic Methods

We now use the above explicit representations for ML
�
x � and M � � x � ��� 

0 � and Cauchy’s formula to
extract the coefficients, e.g.

Pr � Xn  K���  1
2πi ��� x � � r

M � � x �
xn � 1 dx �

where r is smaller that the radius of convergence of M � � x � . By shifting the path of integration suitably in
the analyticity region of M � � x � and evaluating asymptotically the integral we will thus obtain asymptotic
expansions for Pr � Xn  K��� . In particular we have to deal with three different cases, first with a polar
singularity, second with a square-root singularity, and third we have to apply saddle point techniques.
These kinds of techniques are very well established in the literature. Therefore we will not work out all
the details but refer to proper references (e.g. to Drmota (1994)).

We start with the case c � d.

Lemma 3. Suppose that c � d. Then the radius of convergence of ML
�
x � and M � � x � � �  0 � is x1  1 that

is also a polar singularity of order 1. Furthermore, we have

lim
n � ∞

Pr � Xn  L �  d � c
d � c � c � and lim

n � ∞
Pr � Xn  K���  c � � d � c �

d
�
d � c � c � �

	 c
d 
 � ��� 

0 � � (4)

Proof. First note that (for c � d) we have M
�
1 �  1 � d and M � � 1 �  �

1 � d � c � � � d � d � c ��� . Thus,

1 � b � x � c � dx2M
�
x �  d � c � c �

d � c

�
1 � x � � O

���
1 � x � 2 � �

and consequently

ML
�
x �  d � c

d � c � c � 1
1 � x

� analytic function

and

M � � x �  c � � d � c �
d
�
d � c � c � �

	 c
d 
 � 1

1 � x
� analytic function

for � x � � 1 � � b � 2 � cd � . (Note that 1 � � b � 2 � cd � � 1.) Of course, this directly implies (4).

The most interesting case is the case c  d.
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Lemma 4. Suppose that c  d. Then the radius of convergence of ML
�
x � and M � � x � � �  0 � is x1  1 that

is an algebraic singularity. Here we get, as n � ∞,

Pr � Xn  L �  1
c �
�

2c
nπ

� O � 1
n � � (5)

and (uniformly for all
� 

0)

Pr � Xn  K���  �
2

ncπ
exp � � � 2

2cn � � O � 1
n � � (6)

Proof. The essential difference between the present case and that of Lemma 3 is that M
�
x � is not regular

at x  1. We have to use the singular expansion (3) of Lemma 1 and obtain (around x  1)

1 � b � x � c � dx2M
�
x �  c �� 2c

� 1 � x � O
�
1 � x � �

Furthermore �
cxM

�
x ��� �  exp � � �� 2c

� 1 � x � O
��� �

1 � x ��� � �

Thus, the dominant behaviour of M � � x � around x0  1 is of the form�
2
c
	
exp

	 � ��
2c
� 1 � x 
� 1 � x

�

We can now proceed as in the proof of Theorem 4 of Drmota (1994). We just have to use the formula

1
2πi � γ

e 
 λ
� 
 t 
 t� � t

dt  1� π
e 
 λ2 �

where γ denotes a Hankel contour. This directly leads to (5) and (6).

The analysis of the final case c
�

d is a little bit different from the previous ones. In the first two cases
the singular behaviour of ML

�
x � and M � � x � around the point x0  1 has governed the asymptotic behaviour

of the coefficients. In the third case we will again work around the critical point x0  1 but now with help
of a saddle point method. The radius of convergence is larger than 1.

Lemma 5. Suppose that c � d. Then Xn satisfies a central limit theorem with mean value EXn �
�
c � d � n

and VarXn �
�
c � d � �

c � d � 2 � n. In particular we have the following local limit theorem as n � ∞ and
uniformly for all

� 
0:

Pr � Xn  K���  1�
2π
�
c � d � �

c � d � 2 � n exp � � ��� � �
c � d � n � 2

2
�
c � d � �

c � d � 2 � n � � O � 1
n � � (7)

Proof. Note first that M� � x �  c �
c ML

�
x � � cxM

�
x ��� � � 1 and that x1  1 is a regular point of M � � x � . Thus,

M � � x � is (despite of an analytic factor) a power of the function cxM
�
x � . Consequently, we can directly

apply the (saddle point) methods of Drmota (1994) and obtain the result.
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3 The general case
3.1 Matrices of Generating Functions
We are now going to consider the general situation. We will denote by B � C � D the corresponding matrices
containing the transition probabilities inside K j, from K j to K j � 1, from K j � 1 to K j and by and B � � C � � D �
the transition probabilities inside L, from L to K0 and from K0 to L. (Note that in contrast to the “linear”
case D and D � are different in general.)

We now assume that the random walk Xn starts at a vertex w in L.
The first (and easy) step is to generalize the above relations for generating functions. Let ML

�
x � �

ML;w� w �
�
x ��� w� w � � V � L � denote the matrix of the generating functions

ML;w� w �
�
x �  ∑

n � 0
Pr � X0  w � Xn  w � � 	 xn

and M � � x �  �
M � ;w� v � x ��� w � V � L ��� v � K� the matrix of functions

M � ;w� v � x �  ∑
n � 0

Pr � X0  w � Xn  v � 	 xn �

Lemma 6. Let M
�
x �  �

Mv� v �
�
x ��� v� v �

�
K denote the (analytic) solution with M

�
0 �  I of the matrix equation

M
�
x �  I � xBM

�
x � � x2CM

�
x � DM

�
x � � (8)

Then ML
�
x � and M � � x � are given by

ML
�
x � �� I � xB � � x2C � M �

x � D �	� 
 1
(9)

and (for
� 

0)

M � � x �  x
� � 1 � I � xB � � x2C � M �

x � D �
� 
 1
C � M �

x � � CM
�
x ��� � � (10)

Proof. The proof is exactly the same as that of Lemma 1 and 2 and already appears (for the case of
Figure 2) in Prodinger (1990), compare also with Kuich and Urbanek (1983). For x  1 the matrix
M  M

�
1 � is also related to the matrices U, G, and R of (Latouche and Ramaswami, 1999, p. 137), in

particular, M  �
I � U � 
 1, G  MD, and R  CM.

The main difference to the “linear” case is that we are now not able to solve the above system (8)–(10)
explicitly. Nevertheless, from an analytic point of view they behave in a similar way. Let us start with
M
�
x � , the solution of (8).

Lemma 7. Suppose that B is a primitive irreducible matrix and let M
�
x �  �

Mv� v �
�
x ��� v� v � � V � K � denote the

solution of (8). Then all functions Mv� v �
�
x � have a common radius of convergence x0


1. Furthermore, x0

is the only singularity on the circle of convergence � x �  x0 and there is a local expansion of the form

M
�
x �  M̃1 � M̃2

�
1 � x

x0
� O � 1 � x

x0 � (11)

around its singularity x  x0, where M̃1 and M̃2 are matrices with positive elements.
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Proof. The relation (8) is a system of � V �
K � � 2 algebraic equation for the functions Mv� v �

�
x � that can be

written in the form Q
�
x �  F

�
x � Q �

x ��� , where Q
�
x � is just the vector of functions Mw� w �

�
x � and F

�
x � y �

is a proper (non-linear) polynomial vector function with non-negative coefficients. By assumption B is
irreducible (and non-negative). Thus, the so-called dependency graph (compare with Drmota (1997)) of
this system is strongly connected, that is, it is impossible to solve a subsystem before solving the whole
system. Consequently, all (algebraic) functions Mv� v �

�
x � have the same finite radius of convergence and

by Lalley (2001) (compare also with Drmota (1997)) they have a square-root singularity at x  x0 of the
form (11), where all entries of M̃1 and M̃2 are positive.

The assumption that B is primitive implies that all (sufficiently large) coefficients of the power series
Mv� v �

�
x � are positive. This property shows that x  x0 is the only singularity on the circle of convergence

� x �  x0 (compare with Drmota (1997), where this property is called of simple type).
Finally, we surely have x0


1. For, if x0 � 1 then the coefficients of Mv� v �

�
x � are unbounded. However,

the coefficients of Mv� v �
�
x � are probabilities (compare also with (1)) and thus bounded. This completes the

proof of the lemma.

This lemma also shows that all entries of the matrix function

ML
�
x �  � I � xB � � x2C � M �

x � D � � 
 1

have a finite radius of convergence x1 that satisfies

1 � x1 � x0 �
(Note that x1 cannot be smaller than 1 since the coefficients are probabilities and thus bounded.)

3.2 A General Theorem
As in the “linear” case there are three kinds of asymptotic behaviours for Xn, where we assume that
X0  w0 with a given node w0 � V

�
L � .

Theorem 2. Suppose that the matrices B and B � are primitive irreducible, that no row of C is zero, and
that the matrices D � C � � D � are non-zero. Let Xn denote the random walk on G with X0  w0 � V

�
L � and

let x0 and x1 denote the radius of convergence of the entries of M
�
x � and ML

�
x � .

1. If x0
� 1 and x1  1 then Xn is positive recurrent and for all v � V

�
G �  V

�
L � � V

�
K0 � � V

�
K1 � � 	�	�	

we have
lim
n � ∞

Pr � Xn  v �  pv �
where

�
pv � v � V � G � is the (unique) stationary distribution on G. Furthermore, there exists a non-

negative matrix R (where all eigenvalues have moduli � 1) such that

p � � 1  p � R � (12)

in which p �  �
pv � v � K� .

2. If x0  x1  1 then Xn is null recurrent and there exist ρv �
� 0

�
v � � V

�
K ��� , ρ �w � 0

�
w � V

�
L ��� and

η � 0 such that, as n � ∞,

Pr � Xn  w �  ρ �w
�

1
nπ

� O � 1
n � �

w � V
�
L ��� � (13)
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and (uniformly for all
� 

0)

Pr � Xn  v �  ρ ṽ

�
1

nπ
exp � � � 2

2ηn � � O � 1
n � �

v � V
�
K����� � (14)

where ṽ (for v � K� ) denotes the corresponding node in K.

3. If x1
� 1 then Xn is non recurrent and there exist τv �

� 0
�
v � � V

�
K ��� , µ

� 0 and σ � 0 such that, as
n � ∞ and uniform for all

� 
0,

Pr � Xn  v �  τ ṽ� n
exp � � ��� � µn � 2

2σ2n � � O � 1
n � �

v � V
�
K����� � (15)

where ṽ (for v � K� ) denotes the corresponding node in K.

Theorem 2 is, of course, a direct generalization of Theorem 1. As above the second and the third case
can be generalized to functional limit theorems in the following sense. For v � V

�
L � let v̂ :  � 1 and for

v � V
�
K� � set v̂ :  �

. Then X̂n is a process on the integers
 � 1 and after a proper scaling X̂n can be

approximated by a reflected Brownian motion or by a Brownian motion. Note further that the matrix R in
the first part of Theorem 2 is the classical R-matrix for positive recurrent quasi-birth-and-death processes,
it is given by R  C 	 M �

1 � and satisfies the equation R  C � RB � R2D, compare with (Latouche and
Ramaswami, 1999, Theorem 6.2.1).

3.3 Proof of the Theorem
Proof. First, let us consider the case x0

� 1 and x1  1. By assumption, x  1 is a regular point of M
�
x �

and, thus, the function
f
�
x �  det � I � xB � � x2C � M �

x � D � �
is regular at x  1 and satisfies f

�
1 �  0. Equivalently, 1 is an eigenvalue of the matrix B� � C � M �

1 � D � .
Since the matrix B � � C � M �

1 � D � is primitive irreducible, 1 is a simple eigenvalue. Consequently x  1
is a simple zero of f

�
x � (and there are no further zeros on the circle � x �  1). Hence all functions of the

inverse matrix � I � xB � � x2C � M �
x � D � � 
 1

have a simple pole at x  1 (and no other singularities on the
circle � x �  1). Thus, it follows as in the proof of Lemma 3 that the limits

lim
n � ∞

Pr � Xn  w �
exist for w � V

�
L � . Similarly we get the existence of the corresponding limits for v � K � and (12) with

R  CM
�
1 � . Since ∑v

�
V � G � pv  1 the moduli of all eigenvalues of R have to be smaller than 1.

Next, suppose that x0  x1  1. Now M
�
x � is singular at x  1 and behaves like (11). We also have

f
�
1 �  0 (with f

�
x � from above) and by using the definition of the determinant it also follows that f

�
x �

has a square-root singularity of the form

f
�
x �  c � 1 � x � O

�
1 � x � �

where c � 0. (If we consider s  � 1 � x as a new variable then it follows as in the first part of the proof
that f

�
x �  f̃

�
s � has a simple zero in s. Thus, c � 0.)
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Next, consider the powers
�
xCM

�
x ��� � . By assumption xCM

�
x � has just positive entries (for real x with

0 � x � 1). Hence, there exists a unique positive eigenvalue λ
�
x � of xCM

�
x � such that the moduli of all

other eigenvalues are smaller than λ
�
x � . By continuity this is also true in a neighborhood of the real axis.

Thus, �
xCM

�
x ��� �  λ

�
x � � Q � O

	
λ
�
x � � 1 
 η � � 


for some matrix Q and some η � 0. Since M
�
x � has a square-root singularity at x  1, the eigenvalue λ

�
x �

has the same property:
λ
�
x �  c1 � c2 � 1 � x � O

�
1 � x � �

Hence, we are in a similar situation as in Lemma 4 and (13) and (14) follow with the only difference that
an additional factor c �1  λ

�
1 � � appears. However, if c1 � 1 then the probabilities do not sum up to 1 but

the sum is bounded by O
�
1 � � n � . On the other hand, if c1

� 1 then the sum of the probabilities does not
converge. This provides c1  1 and completes the proof of the second part of Theorem 2.

Finally, suppose that x1
� 1. Then we also have x0

� 1. Thus, if we consider M � � x � in a neighborhood
of x  1 then all components of M � � x � behave (almost) as powers of λ

�
x � (the largest eigenvalue of

xCM
�
x � ) that is now analytic at x  1. Thus, we can again use the (saddle point) methods of Drmota

(1994) and obtain (15), however, again with a factor λ
�
1 � � . As above it follows that λ

�
1 �  1 and we are

done. Note that µ  1 � λ � � 1 � .
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