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rafikaguech@ipeit.rnu.tn
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We investigate distances between pairs of nodes in digital trees (digital search trees (DST), and tries). By analytic
techniques, such as the Mellin Transform and poissonization, we describe a program to determine the moments of
these distances. The program is illustrated on the mean and variance. One encounters delayed Mellin transform
equations, which we solve by inspection. Interestingly, the unbiased case gives a bounded variance, whereas the
biased case gives a variance growing with the number of keys. It is therefore possible in the biased case to show that an
appropriately normalized version of the distance converges to a limit. The complexity of moment calculation increases
substantially with each higher moment; A shortcut to the limit is needed via a method that avoids the computation
of all moments. Toward this end, we utilize the contraction method to show that in biased digital search trees the
distribution of a suitably normalized version of the distances approaches a limit that is the fixed-point solution (in the
Wasserstein space) of a distributional equation. An explicit solution to the fixed-point equation is readily demonstrated
to be Gaussian.
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1 Introduction
Various types of distances in random trees have lately become a topic of interest, as can be seen in half a
dozen or so of recent papers. The distance between pairs of nodes in a recursive tree was investigated in
Neininger (2002). The distance between pairs of nodes in a random binary search tree was investigated in
Mahmoud and Neininger (2003) and in Devroye and Neininger (2004); Panholzer and Prodinger (2004)
give a generalization. This extended abstract reports on results in Aguech, Lasmar and Mahmoud (2005a,
2005b) where distances between random pairs in digital trees are studied.

The standard data model for digital search trees is the Bernoulli probability distribution (infinitely long
independent keys of independent bits). The probability model should ideally be unbiased. In practice this
unbias is not guaranteed. So, our study is not limited to the unbiased Bernoulli case, and puts in good
perspective the contrast between biased and unbiased data models.

2 Digital trees
There are two flavors of naturally grown digital trees, the digital search tree and the trie. We consider
both. Digital trees are suited for digital data, which abound in science, engineering and technology. For
instance, they are the building blocks of computer files. For ease of exposition, we shall deal with the
binary case. Generalization to larger alphabets should not be hard. For example, for DNA strands one
uses a 4-letter alphabet of protein nucleotides.

Let δn be the depth of a randomly selected node in a random digital tree of sizen, with randommeaning
that all nodes are equally likely choices. Let∆n be the distance (i.e. the number of tree edges) between
two randomly selected keys in a random digital tree of sizen, where all

(
n
2

)
pairs of keys are equally

likely. The recurrence equations for∆n will use δn.
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2.1 Digital search trees

The digital search tree was invented in Coffman and Eve (1970). In addition to the uses already mentioned
as a data structure, the digital search tree provides a model for the analysis of several important algorithms,
such as the Lempel-Ziv parsing algorithm (see Louchard and Szpankowski (1995)), and Conflict Resolu-
tion (see Mathys and Flajolet (1985)).

The binary DST grows according to an algorithm. The keysK1,K2 . . . ,Kn come in serially. Initially
we have an empty tree. For the first key, a root is allocated. The keyK2 is guided to the left subtree,
where it becomes a left child of the root, if its first bit is 0, otherwise it goes to the right subtree, where it is
linked as a right child of the root. Subsequent keys are treated similarly, they are taken into the left or right
subtree according as whether the first bit is 0 or 1, and in the subtree the algorithm is applied recursively,
but at level̀ of the recursion the(`+ 1)st bit is used for guiding the search.

2.2 Tries

The trie was invented independently by De La Briandais (1959) and Fredkin (1960) for information
retrieval. A binary trie is a digital tree consisting of internal nodes that each has one or two children,
and leaves that hold data. The trie grows fromn keys according to a construction algorithm. Ifn = 0, the
insertion algorithm terminates. Ifn = 1, a leaf is allocated for the key given. Ifn ≥ 2, an internal node
is allocated as a root of the tree; keys starting with0 go to the left subtree, and keys starting with1 go to
the right. The construction proceeds recursively in the subtrees, but at level` the(` + 1)st bit of the key
is used for branching. When the algorithm terminates, each key is in a leaf by itself, and the root-to-leaf
paths correspond to minimal prefixes sufficient to distinguish the keys.

In addition to the uses already mentioned as a data structure, the trie provides a model for the analysis
of several important algorithms, such as Radix Exchange Sort (see Knuth 1998), and Extendible Hashing
(see Fagin, Nievergelt, Pippenger and Strong (1979)).

A main distinction between the algorithm for digital search trees and that for tries is that all the nodes
of the digital tree hold keys, whereas in tries the keys reside only in leaves.

3 Notation and methodology
The Mellin transform of a functionf(x) is ∫ ∞

0

f(x)xs−1 ds,

and will be denoted byf∗(s). For a survey of the Mellin transform in the context of the analysis of
algorithms we refer the reader to the comprehensive survey in Flajolet, Gourdon and Dumas (1995).

Another tool we rely on in the analysis is depoissonization. This method is now standard and we shall
not produce the details in any great length. We refer the reader to an original source such as Jacquet and
Szpankowski (1998), or a textbook such as Szpankowski (2001).

Instrumental to our presentation is the functions

Qk(s) =
k∏

j=0

(1− pj−s − qj−s),

with q = 1− p, and the data entropy

hp = −p ln p− q ln q.

We shall also need the two functions

h̃p = p ln2 p+ q ln2 q and ĥp = p2 ln p+ q2 ln q.

In the sequel the symbolγ is Euler’s constant.
We remark in passing that some of the intermediate steps in the forthcoming derivation may be reachable

via the binomial transform (see Poblete, Papadakis and Munro (1995).).
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4 Distances in DST
In a random DST letLn andRn be respectively the number of keys residing in the left and right subtrees,
among then keys stored in the tree (so,Ln + Rn = n − 1). GivenLn, the distance∆n satisfies the
recurrence

∆n |Ln =



∆Ln , with probability

(
Ln

2

)
(
n

2

) ;

∆̃Rn , with probability

(
Rn

2

)
(
n

2

) ;

(δLn
+ 1) + (δ̃Rn

+ 1), with probabilityLnRn(
n

2

)
δLn

+ 1, with probability Ln(
n

2

)
δ̃Rn

+ 1, with probability Rn(
n

2

) .

(1)

Here∆̃Rn
is conditionally independent of∆Ln

andδ̃Rn
is conditionally independent ofδLn

.

4.1 Functional equations

From the conditional recursion (1), we obtain fort real(
n

2

)
E

[
e∆nt

]
= E

[(
Ln

2

)
e∆Ln t

]
+ E

[(
Rn

2

)
e∆̃Rn t

]
+ e2tE

[
LnRne

δLn teδ̃Rn t
]
+ etE

[
Lne

δLn t
]
+ etE

[
Rne

δ̃Rn t
]
.

We handle this recurrence, via poissonization—LetN(z) be distributed like a Poisson random variable
with meanz, and put

Ψ(t, z) := E
[(
N(z)

2

)
e∆N(z)t

]
= e−z

∞∑
n=0

(
n

2

)
E

[
e∆nt

]zn

n!
.

The poissonized functionΨ(t, z) satisfies the equation

∂

∂z
Ψ(t, z) + Ψ(t, z) = Ψ(t, pz) + Ψ(t, qz) + e2tψ(t, pz)ψ(t, qz)

+etψ(t, pz) + etψ(t, qz),

with ψ(t, z) = e−z
∑∞

k=0 kE[eδkt]zk/k!.

4.2 Moments

One can routinely show that the first derivative

X(z) =
∂

∂t
Ψ(t, z)

∣∣
t=0

− z2

2
= E

[(
N(z)

2

)
∆N(z)

]
− z2

2

satisfies

X ′(z) +X(z) = X(pz) +X(qz) + pzx(qz) + qzx(pz) + x(pz) + x(qz) + pqz2, (2)
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with x(z) =
∑∞

n=1 nE[δn]zne−z/n!, andx∗(s) is its Mellin transform. Functional equations forx(z),
and an explicit expression forx∗(s) can be gleaned from a number of sources, such as Louchard and
Szpankowski (1995):

x∗(s) =
Q∞(−2)
Q∞(s)

Γ(s).

Note that we definedX(z) as a poissonized average with a shift to ensure the existence of its Mellin
transform.

An informative rearrangement of (2) is helpful to our purpose:(
X ′(z)− z2

2

)
+X(z) = X(pz) +X(qz) + pzx(qz) + qzx(pz)

+
(
x(pz)− p2z2

2

)
+

(
x(qz)− q2z2

2

)
.

Taking the Mellin transform of the latter equation, we obtain

− (s− 1)X∗(s− 1) +X∗(s) = (p−s + q−s)X∗(s) + (pq−s + qp−s)x∗(s+ 1)
+(p−s + q−s)x∗(s), (3)

existing in the strip−3 < < s < −2.
We now find a closed form expression forX∗(s) by inspection. Put

X∗(s) = Γ(s)λ(s).

By (3),λ(s) must satisfy

−λ(s− 1) =
(
p−s + q−s − 1

)
λ(s) +

( (
pq−1−s + qp−1−s

)(
1− p−1−s − q−1−s

)s+ p−s + q−s
)Q∞(−2)
Q∞(s)

.

After some tedious iterative algebra we get

λ(s) =
Q∞(−2)
Q∞(s)

(
2κ∞ −

1
2pq

+
∞∑

k=0

T (s− k)
1− pk−s − qk−s

)
,

where

T (s) =
(pq−1−s + qp−1−s)
1− p−1−s − q−1−s

s+ p−s + q−s,

κ∞ = −
∞∑

k=1

T (−2− k)
2(1− pk+2 − qk+2)

.

Putting it together, the complete Mellin transform ofX(z) is

X∗(s) =
Q∞(−2)
Q∞(s)

(
2κ∞ −

1
2pq

+
∞∑

k=0

T (s− k)
1− pk−s − qk−s

)
Γ(s).

It suffices to compute the residue ofX∗(s)z−s at poles located on the line< s = −2 to obtain an
asymptotic expression forX(z). The required result then follows by depoissonization. The variance can
be computed by similar methods, starting from second derivatives ofΨ(t, z). It involves a significantly
more elaborate residue computation.

Proposition 1 In a random digital search tree ofn random keys, the average distance between two ran-
domly selected keys is

E[∆n] =
2
hp

lnn+
ĥp

pqhp
+
h̃p

h2
p

− 2(1− γ)
hp

+
ln(pq)
hp

−2α∞
hp

+ 2− 2ξp(lnn) +O
( 1
n

)
,
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whereξp(.) is a small oscillating function. The variance is

Var[∆n] = 2σ2
p lnn+O(1),

whereσ2
p = (h̃p − h2

p)h
−3
p .

Remark: Except for the symmetric case, the variance grows logarithmically with the number of keys
inserted in the tree. In the symmetric case the variance isO(1) (oscillating but uniformly bounded),
showing the stiff resistance of inter-node distances in digital search trees to change with the number of
keys. In either case we have a concentration law as an immediate corollary (by Chebyshev’s inequality).

Corollary 1 Asn→∞,
∆n

lnn
P−→ 2

hp
.

4.3 Limit laws
In principle, one can continue pumping higher moments by the methods utilized for the mean and variance,
and aspire to determine limit distributions by a method of recursive moments (see Chern, Hwang and
Tsai (2002), for example). However, as already mentioned, the explosive complexity is forbidding.

The contraction method offers a shortcut. Let

∆∗
n :=

∆n −E[∆n]√
lnn

.

Based on some heuristics in the structure of the problem, a solution is guessed for the limit distribution
of ∆∗

n. The guess is then verified by showing convergence of the distribution function to that of the
guessed limit in some metric space. The contraction method was introduced by Rösler (1991). Rachev
and R̈uschendorf (1995) added several useful extensions. Recently general contraction theorems and
multivariate extensions were added by Rösler (2001), and Neininger (2001). Rösler and R̈uschendorf
(2001) provide a valuable survey.

We start from the recursive decomposition (1), adapted in the form

∆n = ∆Ln
In + ∆̃Rn

Jn + (δLn
+ δ̃Rn

+ 2)Kn + (δLn
+ 1)Mn + (δ̃Rn

+ 1)Sn,

whereIn, Jn,Kn,Mn, Sn are indicators of the mutually exclusive events that pick the right action and
truncate all other. For example,In is the indicator of the event that both keys come from the left subtree.
Forn ≥ 2, we can rewrite the latter relation in terms of the standardized variables:

∆∗
n = ∆∗

Ln
In

√
lnLn

lnn
+ ∆̃∗

Rn
Jn

√
lnRn

lnn
+ Y ∗nKn +Gn, (4)

where

Y ∗n :=
δLn −E[δLn ]√

lnLn

×
√

lnLn

lnn
+
δ̃Rn −E[δ̃Rn ]√

lnRn

×
√

lnRn

lnn
,

and

Gn :=
1√
lnn

(
E[∆Ln

]In + E[∆̃Rn
]Jn +

(
E[δLn

] + E[δ̃Rn
] + 2

)
Kn

+(δLn
+ 1)Mn + (δ̃Rn

+ 1)Sn −E[∆n]
)
.

We first argue heuristically the existence of a limit for∆∗
n. We then confirm our guess by an inductive

proof in the Wasserstein metric space. By the sharp concentration of the binomial distribution ofLn we
have

Ln

n

a.s.−→ q,
Rn

n

a.s.−→ p, (5)

and consequently √
lnLn

lnn
a.s.−→ 1,

√
lnRn

lnn
a.s.−→ 1. (6)
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If ∆∗
n converges to a limit, so would the ancillary variables∆∗

Ln
and∆̃∗

Rn
, because bothLn andRn grow

to infinity almost surely, and these limits would be eventually independent. The limit variableδ∗ of (δn −
E[δn] lnn) ln−

1
2 n is known to beN (0, σ2

p) for biased digital search trees (it does not exist in unbalanced

digital search trees); see Louchard and Szpankowski (1995). Similarly,(δLn
−E[δLn

] lnn) ln−
1
2 Ln and

(δ̃Rn
−E[δRn

] lnn) ln−
1
2 Rn, albeit dependency, would eventually be independent copies ofN (0, σ2

p).
The indicators(In, Jn,Kn) also tend to a vector(I, J,K) of three jointly distributed Bernoulli random

variables on the nonzero vertices of the unit simplex in three dimensions, with marginals

In
a.s.−→ I = Ber(q2), Jn

a.s.−→ J = Ber(p2), Kn
a.s.−→ K = Ber(2pq). (7)

The indicatorsMn andSn are much less probable than the former three, and we haveMn → 0, and so
doesSn.

Lemma 1 Asn→∞,

Gn
P−→ 0.

Proof. Omitted. 2

In view of (4)–(7) and Lemma 1, if∆∗
n converges to a limit, say∆∗, that limit would satisfy the

distributional equation

∆∗ L= ∆∗I + ∆̃∗J + Y ∗K, (8)

with Y ∗
L= δ∗ + δ̃∗, and(∆∗, ∆̃∗, Y ∗) independent of(I, J,K). This can be rigorously justified by

showing that the sequence of distribution functions corresponding to the random variables∆∗
n converges

in the Wasserstein metric space to the distribution of∆∗.

Theorem 1 In a digital search tree ofn random keys following the biased Bernoulli model, the distance
∆n between two randomly selected keys satisfies

∆n − 2
hp

lnn
√

lnn
L−→ N (0, 2σ2

p).

Proof. Let φW (t) be the moment generating function ofW . The limiting random variable∆∗ of ∆∗
n

has a distribution that satisfies the distributional equation (8). Conditioning onM = (I, J,K), we find
the representation

φ∆∗(t) = E
[
et(I∆∗+J∆̃∗+Y ∗K)

]
= E

[
et(I∆∗+J∆̃∗+Y ∗K) |M = (1, 0, 0)

]
P

(
M = (1, 0, 0)

)
+E

[
et(I∆∗+J∆̃∗+Y ∗K) |M = (0, 1, 0)

]
P

(
M = (0, 1, 0)

)
+E

[
et(I∆∗+J∆̃∗+Y ∗K) |M = (0, 0, 1)

]
P

(
M = (0, 0, 1)

)
= q2φ∆∗(t) + p2φ∆∗(t) + 2pqφY ∗(t).

Thus,

φ∆∗(t) = φY ∗(t),

and∆∗ = δ∗ + δ̃∗; bothδ∗ andδ̃∗ are independent copies of the limit of the (normalized) random depth,

which is known to beN (0, σ2
p), see Louchard and Szpankowski (1995). That is,∆∗ L= N (0, 2σ2

p). 2
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5 Tries
In a random trie, letLn andRn be respectively the number of keys residing in the left and right subtrees,
among then keys stored in the tree (so,Ln+Rn = n). GivenLn, ∆n can be∆Ln

we have the conditional
recurrence

∆n |Ln =



∆Ln , with probability

(
Ln

2

)
(
n

2

) ;

∆̃Rn
, with probability

(
Rn

2

)
(
n

2

) ;

(δLn
+ 1) + (δ̃Rn

+ 1), with probabilityLnRn(
n

2

) ,

(9)

with boundary condition∆0 = ∆1 = δ0 = δ1 = 0. Here∆̃Rn
is conditionally independent of∆Ln

and
δ̃Rn is conditionally independent ofδLn .

5.1 Functional equations

We begin by deriving a functional equation for the moment generating function∆n from the basic condi-
tional recurrence (9):(

n

2

)
φ∆n

(t) :=
(
n

2

)
E

[
e∆nt

]
= E

[(
Ln

2

)
e∆Ln t

]
+ E

[(
Rn

2

)
e∆Rn t

]
+e2tE

[
LnRne

(δLn+δ̃Rn )t

]
.

Direct work withΦ(t, z) = e−z
∑∞

k=0

(
n
2

)
E[e∆nt]zn/n! gives rise to technical difficulty in the Mellin

transform. To ensure the existence of the transform, we shiftΦ(t, z) down bye2t z2

2 , and define

P (t, z) = Φ(t, z)− e2t z
2

2
.

We can now express the recurrence in the form

P (t, z) = P (t, pz) + P (t, qz) + e2t
[(
Q(t, pz) + pz

)(
Q(t, qz) + qz

)]
− e2tpqz2, (10)

whereQ(t, z) is the shifted poissonized functionE[Nze
δNzt ]− z for the random depth.

5.2 The Mean

Thekth derivative of (10) yields a functional equation for the (shifted poissonized)kth moment of∆n.
The first derivative gives

A(z) :=
∂

∂t
P (t, z)

∣∣∣
t=0

= E
[(
Nz

2

)
∆Nz

]
− z2.

And so,
A(z) = A(pz) +A(qz) + pza(qz) + qza(pz),

wherea(z) := ∂
∂tQ(t, z)|t=0 = E[NzδNz ]. The Mellin transform ofA(z) is

A∗(s) =
(qp−1−s + pq−1−s)a∗(s+ 1)

1− p−s − q−s
,
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wherea∗(s) is the Mellin transform ofa(z), which can be found in a number of sources. It is developed in
Szpankowski (2001) via a shortcut argument that avoids recurrence and uses poissonization as a paradigm.
These references give

a∗(s) = − Γ(s+ 1)
1− p−s − q−s

.

Upon plugging ina∗(s) we get the Mellin transform

A∗(s) = − (pq−(s+1) + qp−(s+1))Γ(s+ 2)
(1− p−s − qs)(1− p−(s+1) − q−(s+1))

,

existing in−3 < < s < −2. Inverting the Mellin transform and going through depoissonization we obtain
the following result.

Proposition 2 In a trie of n random keys following the Bernoulli model, the average distance between
two randomly selected keys is

E[∆n] =
2
hp

lnn+
2γ
hp

+ 2− 1
pqh2

p

(
p3 ln2 p+ 2pq ln p ln q + q3 ln2 q

)
+4β(n) + o(1),

whereβ(n) is a small oscillating function. The variance is

Var[∆n] = 2
pq

h3
p

(ln p− ln q)2 lnn+O(1) := 2σ̃2
p lnn+O(1).

The casep = q presents a degeneracy, which was handled in Christophi and Mahmoud (2005), where the
details of theO(1) term are specified, and where it is proved that no limit exists.

Corollary 2
∆n

lnn
P−→ 2

hp
.

Proof. By Chebyshev’s inequality.2

By an argument similar in its general gist to the one we used for the DST, but differing in many of its
details we arrive at the main result for inter-distance in random tries.

Theorem 2 In a trie of n random keys following the biased Bernoulli model, the distance∆n between
two randomly selected keys satisfies

∆n − 2
hp

lnn
√

lnn
L−→N (0, 2σ̃2

p).
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