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The Additive-Increase-Multiplicative Decrease (AIMD) algorithm is an effective technique for controlling competi-
tive access to a shared resource. LetN be the number of users and letxi(t) be the amount of the resource in possession
of thei-th user. The allocationsxi(t) increase linearly until the aggregate demand

P
i xi(t) exceeds a given nominal

capacity, at which point a user is selected at a random time and its allocation reduced fromxi(t) to xi(t)/γ, for
some given parameterγ > 1. In our new, generalized version of AIMD, the choice of users to have their allocations
cut is determined by a selection rule whereby the probabilities of selection are proportional toxα

i (t)/
P

j xα
j , with

α a parameter of the policy. Variations of parameters allows one to adjust fairness under AIMD (as measured for
example by the variance ofxi(t)) as well as to provide for differentiated service. The primary contribution here
is an asymptotic, large-N analysis of the above nonlinear AIMD algorithm within a baseline mathematical model
that leads to explicit formulas for the density function governing the allocationsxi(t) in statistical equilibrium. The
analysis yields explicit formulas for measures of fairness and several techniques for supplying differentiated service
via AIMD.

Keywords: AIMD analysis, congestion avoidance algorithms, fair resource allocation, differentiated service

1 Introduction
A numberN > 1 of users share a limited resource such as transmission bandwidth, storage, or processing
rate. Sharing is competitive, each user requesting more of the resource than any fair allocation of it would
provide. Competition creates increasing allocations, with the rate of increase fixed at some constant. A
rate of 1 is a convenient normalization to be used hereafter. Competition has to be controlled so that total
demand does not become too large. When total demand exceeds the nominal capacity, at timet say, a user
is selected according to some policy and its allocationx(t) is reduced tox(t)/γ, whereγ ∈ (1,∞) is a
parameter of the policy.

In a simple example of such AIMD (Additive Increase, Multiplicative Decrease) congestion control
policies, a fixed capacityB limits the total demand; if at some timet, total demand reaches levelB,
a user is selected at random, say thei-th is chosen, and has its allocationxi(t) reduced toxi(t)/γ, so
total demandXN (t) =

∑
16i6N xi(t) is reduced toB − γ−1

γ xi(t). A sample function for the resource
allocated to a user resembles a simple sawtooth waveform in which linear increases in allocation are
punctuated by abrupt decreases by a factor ofγ. The total demand is also a sawtooth waveform, but the
rate of increase isN and the peaks occur at levelB.

Although investigations of specific applications of AIMD policies are not within the scope of this paper,
it must be noted that, by far, the most studied application is the Transmission Control Protocol (TCP) of the
Internet (Jacobson (1988)), where the discrete nature of packet transmission is replaced by the continuous
(fluid flow) model in the formulation above. Users arewindowswhich bound the number of packets in
transit in the network between acknowledgements.
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The literature on modeling of TCP is extensive. Models range from the macroscopic (Fredj et al. (2001))
to the microscopic (Gilbert and Karloff (2003)) with various models focusing on different aspects of the
protocol. We refer the reader to Ott et al. (1996); Misra et al. (1999); Padhye et al. (2000); Lakshman
et al. (2000); Low (2000); Altman et al. (2000); Yang and Lam (2000); Hollot et al. (2001); Dumas et al.
(2002); Guillemin et al. (2004); Tinnakornsrisuphap and La (2004) and references therein. The analysis
in this paper is in the spirit of Adjih et al. (2001) and Baccelli et al. (2002) (see also McDonald and
Reynier (to appear)), i.e., we consider a mean-field analysis of many users interacting through a single
resource. However, in contrast with the earlier papers, our focus is not on modeling TCP, but on studying,
in a general setting, the effects that variation of parameters have on the resource partition produced by the
AIMD algorithm. And in particular, we examine a new, nonlinear version of the algorithm.

Interestingly, in addition to the last three papers mentioned above in connection with TCP (see also Du-
mas et al. (2002)), results of similar form apply to the asymptotic analysis of Ethernet’s exponential
back-off protocol (Aldous (1987)), models in the mathematics of finance (Carmona et al. (1997)), proba-
bilistic counting in data base applications (Flajolet and Martin (1985)), and polling systems (Litvak and
van Zwet (2004)). This suggests an underlying common structure not yet fully understood. See, however,
recent work (Robert (to appear)) in which the connective tissue of some of these problems is shown to lie
in the asymptotic analysis of recursive splitting (or tree) algorithms.

Our study of AIMD, unfettered by application-specific issues, concentrates on baseline models appli-
cable to a broad class of service systems providing a shared resource. In the design of control algorithms,
this type of analysis represents a critical first step in the process of deciding whether or not to adopt an
AIMD policy. It can be expected to yield qualitative insights that will suggest the general behavior one
should anticipate in applications.

The analysis here centers on issues of fairness, differentiated service, and the effects of the parameterγ
that determines the decreases in allocations. The fairness question relates to the shares received by differ-
ent users, and usually implies nearly equal shares by some statistical measure. This problem is addressed
in part by a simple boundary protocol whereby the larger shares tend to be selected for reduction. An
exogenous marking process randomizes size-cutting epochs. In our case the ‘hard’ boundaryB of our
earlier example is made a ‘soft’ boundary as follows: Whenever the total demandXN (t) exceedsB, an
inhomogeneous Poisson process is activated with a rate parameter proportional to the overflow beyondB,
i.e., a rateλ(XN (t)−B)+, whereλ > 0 is a given constant. At each epoch of the Poisson process, a user
is chosen at random; in the new, nonlinear version of AIMD considered here, a user is chosen with a prob-
ability equal to theα fraction of the resource that it currently holds, i.e., the fractionxα

i (t)/
∑N

j=1 xα
j (t)

for the i-th user. The user selected has its share reduced by a factorγ. The Poisson process becomes
dormant as soon as the total demand falls belowB again. Whenα = 0, the earlier example applies; users
are chosen at random, each with probability1/N . Whenα = 1 the probability of being selected reduces
to the linear special casexi(t)/XN (t), i.e., the selection probability increases linearly with size. Two im-
mediate properties are noteworthy: First, the processXN (t) has the property of an Ornstein-Uhlenbeck
process whereby the “restoring force” acting toward the boundary in the overflow region increases with
the distance from the boundary; and second, user selection, by its preference for large shares, creates
a distribution of share size having a smaller variance than that achieved under random selection. The
preference for large sizes increases withα.

To this point, we have assumed symmetric, undifferentiated sharing under AIMD. That is, all users have
been assumed to have the same parameters, e.g., unit growth rate and coefficientγ. This case is covered
in the next section along with a discussion of AIMD behavior as it varies with parameters. The analytical
approach is similar to earlier studies, but the results are explicit and new, with novel applications. Specif-
ically, the parametrization of the dependence of the size-reduction criterion (i.e., the dependence of the
parameterα) is new.

In section 3, we examine cases where users are not uniform in their congestion control; randomiz-
ing reductions, varying rates, and varying the size-dependence parameterα are all studied within the
mathematical model. The last of these is proposed as a new, implementable mechanism for service differ-
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entiation. Section 4 concludes the paper with a brief discussion of AIMD in the TCP context by arguing
the feasibility of implementing quadratic selection (α = 2).

2 Symmetric sharing
2.1 Allocation-size density

Let{Tn} be the sequence of times when signals are generated by the marking process (the Poisson process
described in the previous section), and letX

(α)
N (t) :=

∑
16i6N xα

i (t). Then for anyi, 1 6 i 6 N, the
following serves as a formal reference for the earlier definitions

xi(t) = xi(Tn) + t− Tn, t ∈ [Tn, Tn+1),

xi(Tn+1) = xi(T−n+1)
(
1− (1− γ−1)1{i=S}

)
,

where1{·} is the indicator function,T− denotes the left limiting value atT , and, forU uniformly dis-
tributed on[0, 1],

S = min

{
k :

k∑
m=1

xα
m(T−n+1) > UX

(α)
N (T−n+1)

}
.

Times between signals consist of two components

Tn+1 − Tn =
1
N

(B −XN (Tn))+ + τ(XN (Tn));

the first term is the time needed for the intensity of the marking process to become non-zero, and the
second is a random interval between the time that the intensity of the marking process becomes non-zero
and the time when a signal is generated. The random variableτ(·) is defined by the tail probability

P[τ(x) > t] = e
−λ

“
t2
2 +(x−B)+t

”
, t > 0,

of the interarrival time in a non-stationary Poisson process (see, e.g., (Cinlar, 1975, Sec. 4.7)). The
parameter of the random variableτ(·) determines the initial intensity of the Poisson marking process. In
particular, for all values of this parameter belowB, the initial intensity is 0. We focus on the case when
the number of usersN is large. In order to allow for finite user allocations, the total capacity needs to
be scaled proportionally withN , i.e., B = Nb for someb > 0. We relate the number of users with
allocations not exceeding some values at timet + ∆t to the number with allocations not exceedings at
time t. The dynamics of the process yields, as∆t ↓ 0,

E

[
N∑

i=1

1{xi(t+∆t)6s}

]
= E

[
N∑

i=1

1{xi(t)6s−∆t}

]
+ λ∆t E

[
(XN (t)−Nb)+ ·

N∑
i=1

1{s6xi(t)6γs}
xα

i (t)

X
(α)
N (t)

]
+ 0(∆t).

(1)

The first term on the right-hand side of (1) indicates that users with allocations no more thans − ∆t at
time t have their allocations limited bys at timet + ∆t. This is a simple consequence of linear growth at
unit rate. The second term represents the event that a user has its allocation reduced belows within time
interval∆t; in that case, prior to the cut, the allocation cannot be larger thanγs. If we divide (1) byN ,
let N →∞, and introduce the limiting distribution

G(s, t) = lim
N→∞

E

[
1
N

N∑
i=1

1{xi(t)6s}

]
,
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then we obtain

G(s, t + ∆t)
∆t

=
G(s−∆t, t)

∆t
+ λ

(x(t)− b)+

xα(t)
(1 + o(1))

∫ γs

s

xα dxG(x, t),

as∆t ↓ 0, wherexα(t) = limN→∞X
(α)
N (t)/N . Furthermore, in the limit as∆t ↓ 0, we obtain the

following partial differential equation

∂G(s, t)
∂t

= −∂G(s, t)
∂s

+ λ
(x(t)− b)+

xα(t)

∫ γs

s

xα dxG(x, t). (2)

A rigorous proof of convergence and the existence of the limit is beyond the scope of this paper. As-
suming these, in the limit ast →∞, the partial derivative∂G/∂t vanishes and∂G/∂s tends to a density
g(s) described by

Lemma 1. The densityg(s) satisfies

g(s) = λ
(x− b)+

xα

∫ γs

s

xαg(x) dx, s > 0, (3)

wherexα :=
∫∞
0

xαg(x) dx.

In order to obtain a closed form expression forg(·) we establish the following auxiliary result.

Lemma 2. Letβ = γα+1. The function

h(s) =
∞∑

k=0

βk∏k
i=1(1− βi)

e−c βk

α+1 sα+1
, s > 0, (4)

is a positive integrable solution (unique up to a constant factor in the class of integrable functions rapidly
decreasing at infinity) of the integral equation

h(s) = c

∫ γs

s

xαh(x) dx, c > 0. (5)

Proof. Equation (5) implies a system of linear relations for the moments ofh, from which the uniqueness
follows via standard arguments. That (4) solves (5) can be verified immediately.

Denote the space of solutions to (5) asS(c, α, γ), c > 0, α > −1, γ > 1. It turns out that the group
of log-linear substitutions

gk,ρ(h)(x) := h(kxρ)

permutes the spacesS as follows:

Lemma 3. If h belongs toS(c, α, γ) (i.e. h solves (5)), then

gk,ρ(h)(x) = h(kxρ) ∈ S(ρkα+1c, (α + 1)ρ− 1, γ1/ρ)

This group action on the solutions of (5) accounts for most of their diversity.
The following theorem characterizes, based on Lemma 1 and Lemma 2, the densityg(·). Let Γ(·)

denote the Gamma function and, for notational simplicity, for givenγ, let

q(x) :=
∞∑

k=0

γxk∏k
i=1(1− γxi)

.
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Theorem 1. The densityg(s) is given by

g(s) = µ
∞∑

k=0

γ(α+1)k∏k
i=1(1− γ(α+1)i)

e−
γ(α+1)k

α+1 (ξs)α+1
, s > 0, (6)

where

µ =
(α + 1)

α
α+1 ξ

Γ
(

1
α+1

)
q(α)

(7)

andξ is given by

ξ =
λb

2
q(α)
q(0)

Γ( 1
α+1 )

(α + 1)
α

α+1


√√√√1 +

4(α + 1)
λb2

q(α− 1)q(0)
q2(α)

Γ( 2
α+1 )

Γ2( 1
α+1 )

− 1

 . (8)

Proof. Integral equations (3) and (5) are of the same form and, thus,g(s) can be represented as in (6)
with ξ andµ being positive constants. To ensure thatg(s) is a probability density, i.e. integrates to 1, the
constantµ needs to satisfy (recall thatβ = γα+1)

µ−1 =
∞∑

k=0

βk∏k
i=1(1− βi)

∫ ∞

0

e−
βk

α+1 (ξs)α+1
ds

=
1

α + 1

∞∑
k=0

βk∏k
i=1(1− βi)

(
α + 1
βk

) 1
α+1

Γ
(

1
α + 1

)
1
ξ

=
Γ
(

1
α+1

)
q(α)

(α + 1)
α

α+1 ξ

which is the reciprocal of (7), as desired; the second equality follows from integration by parts. The
remaining free parameterξ is selected in such a way that (3) holds (see also (5)). To this end, therth
moment ofg(·) is given by∫ ∞

0

srg(s) ds = µ

∞∑
k=0

βk∏k
i=1(1− βi)

∫ ∞

0

sre−
βk

α+1 (ξs)α+1
ds

=
µ

α + 1
(α + 1)

r+1
α+1

q(α− r)
ξr+1

Γ
(

r + 1
α + 1

)
=

(α + 1)
r

α+1

ξr

q(α− r)
q(α)

Γ
(

r+1
α+1

)
Γ
(

1
α+1

) , (9)

after substitution forµ from (7). Hence, settingr = 1 to evaluatex, Lemmas 1 and 2 show thatξ must
satisfy

λ

 (α + 1)
1

α+1

ξ

q(α− 1)
q(α)

Γ
(

2
α+1

)
Γ
(

1
α+1

) − b

 = ξ (α + 1)
α

α+1
q(0)
q(α)

1

Γ
(

1
α+1

) ,

or equivalently,ξ is the positive solution to the quadratic equation

ξ2 + ξλb
q(α)
q(0)

Γ( 1
α+1 )

(α + 1)
α

α+1
− λ

q(α− 1)
q(0)

Γ( 2
α+1 )

(α + 1)
α−1
α+1

= 0. (10)

The solution of (10) is given by (8) as desired.
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Fig. 1: Densityg(s) with γ = 4/3, 3/2, 2, 5, 50, and∞ as a parameter. The curves corresponding toγ = ∞ are
plots of (13). Parameterα is set to 1 and 5 for the left and right plot, respectively.
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Fig. 2: Densityg(s) for γ = 2 andα = 0, 1, 5, 20, 200.

The densityg(s) is graphed in Figures 1 and 2 for a variety of values of the parametersγ andα. The
general shapes of these densities resemble those of Adjih et al. (2001); Baccelli et al. (2002); Guillemin
et al. (2004). However, the details of the analysis are different, and in the model here, the algorithm allows
for nonlinear user selection.

The value at the origin,g(0) = 0, is not immediately obvious from the formula, but is in fact easy
to prove; it comes down to proving thatq(α + 1) = 0. To verify this last equality, writeq(α + 1) =
limn→∞ q(n)(α + 1), where

q(n)(α + 1) =
n∑

k=0

γ(α+1)k∏k
i=1(1− γ(α+1)i)

, n > 1.

An easy induction establishes that forn > 1

q(n)(α + 1) =

(
n∏

i=1

(1− γ(α+1)i)

)−1

,

and sinceγ > 1, it follows thatq(α + 1) = 0, as claimed.
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Observe from (10) that, in the limit asλ →∞, one has

ξ → (α + 1)
1

α+1

b

Γ( 2
α+1 )

Γ( 1
α+1 )

q(α− 1)
q(α)

and, therefore, from (9), withr = 1, we have thatx → b, as expected.

2.2 Specific policies

Specializing the result of Theorem 1 provides results for a number of potentially implementable policies.

Random selection When users are chosen uniformly at random (α = 0), thenµ = ξ/q(0) and

ξ =
λb

2

[√
1 +

4
λb2

q(−1)
q(0)

− 1

]
.

Linear selection In the caseα = 1, the selection probability is proportional to size, and the coefficients
areµ =

√
2/π ξ/q(1) and

ξ =
λb

2

√
π

2
q(1)
q(0)

(√
1 +

8
λb2π

q2(0)
q2(1)

− 1

)
.

This policy with size bisection (γ = 2) is the one most often seen in the literature.

Largest-allocation selection As suggested by Figure 2,g(s) simplifies to a uniform distribution for this
selection rule, which is obtained in the limit asα →∞.

Corollary 1. In the limitα →∞, the densityg(s) is given by

g(s) = µ(1{sµ>1/(γ−1)} − 1{sµ>γ/(γ−1)}), (11)

i.e., it is uniform on( 1
µ(γ−1) ,

γ
µ(γ−1) ], where

µ =
λb

2

[√
1 +

2
λb2

γ + 1
γ − 1

− 1
]

. (12)

Proof. We need the estimatesΓ(x) = x−1 + o(x−1), asx ↓ 0, andq(α − i) = 1 − γ−i−1 + o(γ−i−1),
asα →∞, to obtain

ξ =
λb

2
γ − 1

γ

[√
1 +

2
λb2

γ + 1
γ − 1

− 1
]

(1 + o(1)),

asα → ∞. Hence, the formula forµ given in (12). According to Theorem 1 the densityg(s) can be
represented as an infinite sum. However, in the limit asα → ∞ only the first two terms have nonzero
limits and the expression reduces to (11).

The qualitative behavior corresponding to thisα →∞ result is easily described. For largeN , the users
can be thought of as being organized into a cyclic chain. Following the user ahead of it(by a time about
oneN -th the cycle time), each user increases its allocation from about2x/(γ + 1) to about2γx/(γ + 1),
then has it cut back to about2x/(γ + 1), and repeats the process cyclically. Thus, in the limit,g(s)
converges to a uniform distribution on( 2x

γ+1 , 2γx
γ+1 ]. In this casex = 1

2µ
γ+1
γ−1 .
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Allocation reset In the limit γ → ∞ we arrive at a policy in which allocations selected for reduction
are reset to (are made to restart from) zero. In this limit, only thek = 0 term survives in (6) and in the
sum that definesq(x). In this limit then,q(x) = 1, 0 6 x 6 α, and

g(s) =
(α + 1)

α
α+1 ξ

Γ( 1
α+1 )

e−
(ξs)α+1

α+1 , s > 0, (13)

where

ξ =
λb

2
Γ( 1

α+1 )

(α + 1)
α

α+1


√√√√1 +

4(α + 1)
λb2

Γ( 2
α+1 )

Γ2( 1
α+1 )

− 1

 .

This formula forg(s) is plotted in Figure 1 for the limitγ →∞.

Jitter limit If γ = 1 + ε, ε → 0, with fixed c, α, the solutions of (5), properly rescaled, tend to a
Gaussian curve. This is enough to prove for a fixedα (by virtue of lemma 3), for example forα = 0. In
this case, it is easy to prove that the deviationY (t) of the size of a given window from its mean (which is
of orderε−1), when rescaled asε1/2Y (t/ε), converges to a non-degenerate Ornstein-Uhlenbeck process.

2.3 Variability and fairness
Theorem 1 allows one to estimate the variability of allocations observed by individual users. The coeffi-
cient of variation, the ratio of the standard deviation to the mean, is a conventional measure, and by (9) it
is given by

ρ =

√
x2

x2 − 1 =

√√√√q(α− 2)q(α)
q2(α− 1)

Γ( 3
α+1 )Γ( 1

α+1 )

Γ2( 2
α+1 )

− 1, (14)

which we note is independent of the parametersλ andb. As expected,ρ is monotone increasing inγ and
decreasing inα.

A lower bound on the coefficient of variation is as follows.

Theorem 2. The coefficient of variation satisfies

ρ >
1√
3

γ − 1
γ + 1

. (15)

The bound is achieved by largest-allocation selection, i.e., in the limit asα →∞.

Proof. For a givenγ and a given average allocationx, a lower bound to the coefficient of variation is
given by the (deterministic) periodic saw-tooth

x(t) = t− 2x
γ − 1
γ + 1

∞∑
i=1

1{t>2xi γ−1
γ+1 }

+
2x

γ + 1
,

which rises at unit rate from2x
γ+1 to 2γx

γ+1 in every time interval[
2xi(γ − 1)

γ + 1
,
2x(i + 1)(γ − 1)

γ + 1

)
, i > 0.

A routine calculation ofx2/x2 for this function shows that (15) holds. To verify that, in the limitα →∞,
this lower bound is achieved, introduce into (14) the earlier estimates forΓ(x) andq(α− i) to obtain

lim
α→∞

ρ =

√
4
3

(γ − 1)(γ3 − 1)
(γ2 − 1)2

− 1 =
1√
3

γ − 1
γ + 1

.

As examples, note that, forα = ∞, size bisection givesρ = 1
3
√

3
, and size reset givesρ = 1√

3
.
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3 Service differentiation
Proper functioning of a distributed application of the AIMD algorithm is based on the willingness of users
to participate. This motivates the extensions below to non-uniform users and varying grades of service.
Let the set of all users be partitioned intoK groups such that users within a given group behave in the
same fashion. The size of thei-th group is given byθiN with θi > 0 for all i. (Hereafter,i andj are
reserved for indexing groups, and are attached as needed to the parameters of the preceding section.) In
order to quantify the advantage gained by different groups we defineχij(r) as the ratio of therth moments
of allocations of users in groupsi andj, i.e.,

χij(r) :=

∫∞
0

xrgi(x) dx∫∞
0

xrgj(x) dx
.

3.1 Varying randomization
A selected user from thei-th group reduces its size (by the factorγ) only with probabilitypi. Following
the analysis in the preceding section, it is straightforward to conclude that densitiesgi(·) of allocations
for users in groupi satisfy the following equation

gi(s) = λpi
(x− b)+

xα

∫ γs

s

xαgi(x) dx, (16)

wherexα is the average over all users, i.e.,xα =
∑K

i=1 θi

∫∞
0

xαgi(x) dx. Based on (9) and (16) it is
easy to see thatχij(r) = (ξj/ξi)r = (pj/pi)r/(α+1). We note in passing that this formula is related to the
well-known expression (

√
p-formula (Floyd (1991))) for the throughput of TCP connections. Specifically,

for linear selection (α = 1) and the throughput measure (r = 1), one hasχij(1) =
√

pj/pi.

3.2 Varying growth rates
For varying rates of increase, let the rate beκi for users in thei-th group (all other parameters are group
independent). Thenχij = (κi/κj)r/(α+1), since the functionsgi(·) satisfy

gi(s) = λκ−1
i

(x− b)+

xα

∫ γs

s

xαgi(x) dx

3.3 Varying size preference
Finally, consider the case in which different groups of users employ different parametersα (all other
parameters are the same for all groups). In this case a user is chosen to reduce its rate with a probability
proportional to itsαi allocation, wherei is the index of the group to which the user belongs. From (9) it
follows that

χij(r) :=

∫∞
0

xrgi(x) dx∫∞
0

xrgj(x) dx
=
(

ξj

ξi

)r

,

where the dependence oni is restricted toξi = ηαi with η the same for all groups.

4 Concluding remarks
Our current research has turned to applications, initially the TCP application, within realistic simulation
models. The Random Early Detection (RED) protocol (Floyd and Jacobson (1995)) provides a framework
for testing nonlinear AIMD in practice. The packet flows ofN source-destination pairs share the band-
width supplied by the network. According to RED, when the boundB is exceeded, a packet is marked
at random by a router; when received a marked packet causes a reduction in size of the corresponding
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window by the factorγ. Marking packets uniformly at random means that the probability of marking a
packet from a given window, and hence reducing the size of that window, becomes proportional to the
window’s size; this is the linear caseα = 1. This mechanism can be extended toα = 2. A source does
not change its window size in response to at most one marked packet; only when it receives two or more
marked packets of a window does it make a reduction in window size. The result is quadratic selection
whereby the probability of window reduction increases as the square of window size.
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