Algorithmic and combinatoric aspects of multiple harmonic sums

Christian Costermans and Jean-Yves Enjalbert and Hoang Ngoc Minh

Université Lille II, 1, Place Déliot, 59024 Lille, France

Ordinary generating series of *multiple* harmonic sums admit a *full* singular expansion in the basis of functions $\{(1-z)^{\alpha}\log^{\beta}(1-z)\}_{\alpha\in\mathbb{Z},\beta\in\mathbb{N}}$, near the singularity z=1. A *constructive* proof of this result is given, and, by *combinatoric* aspects, an explicit evaluation of Taylor coefficients of functions in some *polylogarithmic* algebra is obtained. In particular, the *asymptotic expansion* of multiple harmonic sums is easily deduced.

Keywords: polylogarithms, polyzêtas, multiple harmonic sums, singular expansion, shuffle algebra, Lyndon words

1 Introduction

Hierarchical data structure occur in numerous domains, like computer graphics, image processing or biology (pattern matching). Among them, quadtrees, whose construction is based on a recursive definition of space, constitute a classical data structure for storing and accessing collection of points in multidimensional space. Their characteristics (depth of a node, number of nodes in a given subtree, number of leaves) are studied by Laforest [12], with probabilistic tools. In particular, she shows, for a quadtree of size N in a d-dimension space, that the probability $\pi_{N,k}$ for the first subtree to have size k can be expressed as an algebraic combination of j-th order harmonic numbers $H_j(N)$ and $H_j(k)$, $j \geq 1$, defined by

$$H_j(n) = \sum_{m=1}^n \frac{1}{m^j}.$$
 (1)

For instance, for d = 3, one has

$$\pi_{N,k} = \frac{[H_1(N) - H_1(k)]^2 + H_2(N) - H_2(k)}{2N}.$$
 (2)

Flajolet et al. [2] give this general expression for the splitting probability

$$\pi_{N,k} = \sum_{N > i_1 \dots > i_{d-1} > k} \frac{1}{i_1 \dots i_{d-1}}.$$
(3)

The probability $\pi_{N,k}$ appears as a particular case of the following sum $A_s(N)$ associated to the *multi-index* $s = (s_1, \ldots, s_r)$, which is strongly related to multiple harmonic sums $H_s(N)$:

$$A_{\mathbf{s}}(N) = \sum_{N \ge n_1 \ge \dots \ge n_r > 0} \frac{1}{n_1^{s_1} \dots n_r^{s_r}} \quad \text{and} \quad H_{\mathbf{s}}(N) = \sum_{N \ge n_1 > \dots > n_r > 0} \frac{1}{n_1^{s_1} \dots n_r^{s_r}}. \tag{4}$$

Let us note that there exist explicit relations, given by Hoffman [10] between the $A_s(N)$ and $H_s(N)$. Indeed, let $\mathrm{Comp}(n)$ be the *set of compositions* of n, i.e. sequences (i_1,\ldots,i_r) of positive integers summing to n. If $I=(i_1,\ldots,i_r)$ (resp. $J=(j_1,\ldots,j_p)$) is a composition of n (resp. of r) then $J\circ I=(i_1+\ldots+i_{j_1},i_{j_1+1}+\ldots+i_{j_1+j_2},\ldots,i_{k-j_p+1}+\ldots+i_k)$ is a composition of n. By Möbius inversion, one has

$$A_{\mathbf{s}}(N) = \sum_{J \in Comp(r)} H_{J \circ \mathbf{s}}(N) \quad \text{and} \quad H_{\mathbf{s}}(N) = \sum_{J \in Comp(r)} (-1)^{l(J)-r} A_{J \circ \mathbf{s}}(N), \tag{5}$$

where l(J) is the number of parts of J.

Example 1. For s = (1, 1, 1), since the set of compositions of 3 is $\{(1, 1, 1), (1, 2), (2, 1), (3)\}$, we get

$$\mathbf{A}_{1,1,1}(N) \ = \ \mathbf{H}_{1,1,1}(N) + \mathbf{H}_{1,2}(N) + \mathbf{H}_{2,1}(N) + \mathbf{H}_{3}(N),$$

$$H_{1,1,1}(N) = A_{1,1,1}(N) - A_{1,2}(N) - A_{2,1}(N) + A_{3}(N).$$

Therefore, the $A_s(N)$ are \mathbb{Z} -linear combinations on $H_s(N)$ (and *vice versa*). Thus, the remaining problem is to know the asymptotic behaviour of $\pi_{N,k}$, for $N\to\infty$ [11]. For that, in this work, we are interested in the *combinatorial* aspects of these sums by use of a symbolic encoding by words. This enables then to transfer *shuffle relations* on words into algebraic relations between multiple harmonic sums, or between *polylogarithm* functions, defined for a multi-index $\mathbf{s}=(s_1,\ldots,s_r)$ by

$$\operatorname{Li}_{\mathbf{s}}(z) = \sum_{n_1 > \dots > n_r > 0} \frac{z^{n_1}}{n_1^{s_1} \dots n_r^{s_r}}, \quad \text{for} \quad |z| < 1.$$
 (6)

These relations are recalled in Section 2. The reason to call upon polylogarithms is given in Section 3, since the generating function $P_{\mathbf{s}}(z) = \sum_{n>0} H_{\mathbf{s}}(n) z^n$ of $\{H_{\mathbf{s}}(n)\}_{n\geq 0}$, verifies

$$P_{\mathbf{s}}(z) = \frac{1}{1-z} \operatorname{Li}_{\mathbf{s}}(z). \tag{7}$$

So, we set the polylogarithmic algebra of $\{P_s\}_s$, with coefficients in $\mathcal{C}=\mathbb{C}[z,z^{-1},(z-1)^{-1}]$, and we then establish *exact* transfer results between a function g in this algebra and its Taylor coefficients $[z^N]g(z)$, in the \mathbb{C} -algebra generated by $\{N^k H_s(N)\}_{s,\ k\in\mathbb{Z}}$ in both directions. The main result of this paper is finally stated in Section 4, which gives a computation of the *full* singular expansion of g, in the basis of functions $\{(1-z)^\alpha \log^\beta (1-z)\}_{\alpha\in\mathbb{Z},\beta\in\mathbb{N}}$, near the singularity z=1. We deduce from this a *full* asymptotic expansion of its Taylor coefficients. These results are based on the analysis of the *noncommutative* generating series of functions of the form (7), in particular on its infinite factorization indexed by *Lyndon words*.

2 Background

2.1 Combinatorics on words

To the multi-index s we can canonically associate the word $u=x_0^{s_1-1}x_1\dots x_0^{s_r-1}x_1$ over the finite alphabet $X=\{x_0,x_1\}$. In the same way, s can be canonically associated to the word $v=y_{s_1}\dots y_{s_r}$ over the infinite alphabet $Y=\{y_i\}_{i\geq 1}$. Moreover, in both alphabets, the empty multi-index will correspond to the empty word ϵ . We shall henceforth identify the multi-index s with its encoding by the word u (resp. v). We denote by X^* (resp. Y^*) the free monoid generated by X (resp. Y), which is the set of words over X (resp. Y). Noting $\mathbb{C}\langle X\rangle$ (resp. $\mathbb{C}\langle Y\rangle$) the algebra of noncommutative polynomials with coefficients in \mathbb{C} , we obtain so a concatenation isomorphism from the \mathbb{C} -algebra of multi-indexes into the algebra $\mathbb{C}\langle X\rangle$ (resp. $\mathbb{C}\langle Y\rangle$). The coefficient of $w\in X^*$ in a polynomial $S\in \mathbb{C}\langle X\rangle$ is denoted by (S|w) or S_w . The duality between polynomials is defined as follows

$$(S|p) = \sum_{w \in X^*} S_w p_w, \ p \in \mathbb{C}\langle X \rangle.$$
 (8)

The set of Lie monomials is defined by induction: the letters in X are Lie monomials and the Lie bracket [a,b]=ab-ba of two Lie monomials a and b is a Lie monomial. A Lie polynomial is a \mathbb{C} -linear combination of Lie monomials. The set of Lie polynomials is called the *free Lie algebra*.

2.2 Shuffle products

Let $a, b \in X$ (resp. $y_i, y_j \in Y$) and $u, v \in X^*$ (resp. Y^*). The *shuffle* (resp. *stuffle*) of u = au' and v = bv' (resp. $u = y_i u'$ and $v = y_i v'$) is the polynomial recursively defined by

$$\epsilon \sqcup u = u \sqcup \epsilon = u \quad \text{and} \quad u \sqcup v = a(u' \sqcup v) + b(u \sqcup v'),$$
 (9)

(resp.
$$\epsilon \sqcup u = u \sqcup \epsilon = u$$
 and $u \sqcup v = y_i(u' \sqcup v) + y_i(u \sqcup v') + y_{i+j}(u' \sqcup v')$). (10)

Example 2.

$$x_0 x_1 \sqcup x_1 = x_1 x_0 x_1 + 2x_0 x_1^2 y_2 \sqcup y_1 = y_1 y_2 + y_2 y_1 + y_3.$$
 (11)

This product is extended to $\mathbb{C}\langle X\rangle$ (resp. $\mathbb{C}\langle Y\rangle$) by linearity. With this product, $\mathbb{C}\langle X\rangle$ (resp. $\mathbb{C}\langle Y\rangle$) is a commutative and associative \mathbb{C} -algebra.

l	Q_l	\mathcal{S}_l
x_0	x_0	x_0
x_1	$ x_1 $	$ x_1 $
x_0x_1	$[x_0, x_1]$	x_0x_1
$x_0^2 x_1$	$[x_0, [x_0, x_1]]$	$ x_0^2x_1 $
$x_0x_1^2$	$[[x_0, x_1], x_1]$	$ x_0x_1^2 $
$x_0^3 x_1$	$[x_0, [x_0, [x_0, x_1]]]$	$x_0^3 x_1$
:	:	:
$x_0^3 x_1^3$	$[x_0, [x_0, [[[x_0, x_1], x_1], x_1]]]$	$x_0^3 x_1^3$
$x_0^2 x_1 x_0 x_1^2$	$[x_0, [[x_0, x_1], [[x_0, x_1], x_1]]]$	$3x_0^3x_1^3 + x_0^2x_1x_0x_1^2$
$x_0^2 x_1^2 x_0 x_1$	$[[x_0, [[x_0, x_1], x_1]], [x_0, x_1]]$	$\left 6x_0^3x_1^3 + 3x_0^2x_1x_0x_1^2 + x_0^2x_1^2x_0x_1 \right $
$x_0^2 x_1^4$	$[x_0, [[[[x_0, x_1], x_1], x_1], x_1]]$	$ x_0^2x_1^4 $
$x_0x_1x_0x_1^3$	$ [[x_0, x_1], [[[x_0, x_1], x_1], x_1] $	
$x_0x_1^{5}$	$ [[[[[x_0, x_1], x_1], x_1], x_1], x_1] $	$x_0x_1^{5}$

Tab. 1: Lyndon words, bracket forms and dual basis

2.3 Lyndon words and Radford's theorem

By definition, a *Lyndon word* is a non empty word $l \in X^*$ (resp. $\in Y^*$) which is lower than any of its proper right factors [14] (for the lexicographical ordering) i.e. for all $u, v \in X^* \setminus \{\epsilon\}$ (resp. $\in Y^* \setminus \{\epsilon\}$), $l = uv \Rightarrow l < v$. The set of Lyndon words of X (resp. Y) is denoted by $\mathcal{L}yn(X)$ (resp. $\mathcal{L}yn(Y)$).

Example 3. For $X = \{x_0, x_1\}$ with the order $x_0 < x_1$ the Lyndon words of length ≤ 5 on X^* are (in lexicographical increasing order)

$$\{x_0, x_0^4x_1, x_0^3x_1, x_0^3x_1^2, x_0^2x_1, x_0^2x_1x_0x_1, x_0^2x_1^2, x_0^2x_1^3, x_0x_1, x_0x_1x_0x_1^2, x_0x_1^2, x_0x_1^3, x_0x_1^4, x_1\}.$$

For $Y = \{y_i, i \geq 1\}$, with the order $y_i < y_j$ when i > j, here are the corresponding Lyndon words over Y

$${y_5, y_4, y_4y_1, y_3, y_3y_2, y_3y_1, y_3y_1^2, y_2, y_2^2y_1, y_2y_1, y_2y_1^2, y_2y_1^3, y_1}.$$

Theorem 1 (Radford, [13, 14]). Let

$$C_1 = \mathbb{C} \oplus (\mathbb{C}\langle X \rangle \setminus x_0 \mathbb{C}\langle X \rangle x_1)$$
 and $C_2 = \mathbb{C} \oplus (\mathbb{C}\langle Y \rangle \setminus y_1 \mathbb{C}\langle Y \rangle)$

be the sets of convergent polynomials over X and Y respectively. Then,

$$(\mathbb{C}\langle X\rangle, \sqcup) \simeq (\mathbb{C}[\mathcal{L}yn(X)], \sqcup) = (C_1[x_0, x_1], \sqcup),$$

$$(\mathbb{C}\langle Y\rangle, \sqcup) \simeq (\mathbb{C}[\mathcal{L}yn(Y)], \sqcup) = (C_2[y_1], \sqcup).$$

Example 4.

$$\begin{array}{rcl} y_2y_4y_1 + y_2y_1y_4 + y_1y_2y_4 + y_2y_5 + y_3y_4 & = & y_4 \mathrel{\sqcup}\!\!\sqcup y_2 \mathrel{\sqcup}\!\!\sqcup y_1 - y_4y_2 \mathrel{\sqcup}\!\!\sqcup y_1 - y_6 \mathrel{\sqcup}\!\!\sqcup y_1 \in \mathbb{C}[\mathcal{L}yn(Y)] \\ & = & y_2y_4 \mathrel{\sqcup}\!\!\sqcup y_1 \in \mathbb{C}_2[y_1] \end{array}$$

2.4 Bracket forms and the dual basis

The bracket form Q_l of a Lyndon word l = uv, with $l, u, v \in \mathcal{L}yn(X)$ and the word v being as long as possible, is defined recursively by

$$\begin{cases} \mathcal{Q}_l &= [\mathcal{Q}_u, \mathcal{Q}_v] \\ \mathcal{Q}_x &= x \text{ for each letter } x \in X, \end{cases}$$

It is classical that the set $\mathcal{B}_1 = \{\mathcal{Q}_l : l \in \mathcal{L}yn(X)\}$, ordered lexicographically, is a basis for the free Lie algebra. Moreover, each word $w \in X^*$ can be expressed uniquely as a decreasing product of Lyndon words:

$$w = l_1^{\alpha_1} l_2^{\alpha_2} \dots l_k^{\alpha_k}, \quad l_1 > l_2 > \dots > l_k, \quad k \ge 0.$$
 (12)

The Poincaré–Birkhoff–Witt basis $\mathcal{B} = \{\mathcal{Q}_w; w \in X^*\}$ and its dual basis $\mathcal{B}^* = \{\mathcal{S}_w; w \in X^*\}$ are obtained from (12) by setting [14]

$$\begin{cases} \mathcal{Q}_w &= \mathcal{Q}_{l_1}^{\alpha_1} \mathcal{Q}_{l_2}^{\alpha_2} \dots \mathcal{Q}_{l_k}^{\alpha_k}, \\ \mathcal{S}_w &= \frac{\mathcal{S}_{l_1}^{\sqcup \sqcup \alpha_1} \sqcup \sqcup \ldots \sqcup \mathcal{S}_{l_k}^{\sqcup \sqcup \alpha_k}}{\alpha_1! \alpha_2! \ldots \alpha_k!}, \\ \mathcal{S}_l &= x \mathcal{S}_w, \quad \forall l \in \mathcal{L}yn(X), \text{ where } l = xw, \, x \in X, \, w \in X^*. \end{cases}$$

In [14], it is proved that \mathcal{B} and \mathcal{B}^* are dual bases of $\mathbb{C}\langle X\rangle$ i.e. $(\mathcal{Q}_u|\mathcal{S}_v)=\delta_u^v$, for all words $u,v\in X^*$ with $\delta_u^v=1$ if u=v, otherwise 0.

Lemma 1. For all $w \in x_0 X^* x_1$, one has $S_w \in x_0 \mathbb{Z}\langle X \rangle x_1$.

Proof. The Lyndon words involved in the decomposition (12) of a word $w \in X^*x_1$ (resp. $w \in x_0X^*x_1$) all belong to X^*x_1 (resp. $x_0X^*x_1$).

2.5 Polylogarithms

Let $\mathcal{C} = \mathbb{C}[z, 1/z, 1/(z-1)]$ and let ω_0 and ω_1 be the two following differential forms

$$\omega_0(z) = \frac{dz}{z}$$
 and $\omega_1(z) = \frac{dz}{1-z}$. (13)

One verifies the polylogarithm $\mathrm{Li}_{\mathbf{s}}(z)$, defined by Formula (6), is also the following *iterated integral* with respect to ω_0 and ω_1

$$\operatorname{Li}_{\mathbf{s}}(z) = \int_{0 \to z} \omega_0^{s_1 - 1} \omega_1 \cdots \omega_0^{s_r - 1} \omega_1. \tag{14}$$

Thanks to the bijection from Y^* to X^*x_1 previously explained, we can index the polylogarithms by the words of X^*x_1 , or indistinctly by the words of Y^* . We can extend (14) over X^* by putting

$$\operatorname{Li}_{\epsilon}(z) = 1$$
, $\operatorname{Li}_{x_0}(z) = \log z$, $\operatorname{Li}_{x_i w}(z) = \int_{0 \leadsto z} \omega_i(t) \operatorname{Li}_w(t)$, for $x_i \in X, w \in X^*$. (15)

Therefore, Li_w verifies the following identity [4]

$$\forall u, v \in X^*, \quad \operatorname{Li}_{u + 1 + v} = \operatorname{Li}_u \operatorname{Li}_v.$$
 (16)

The extended definition enables to construct the noncommutative generating series [4]

$$L = \sum_{w \in X^*} \operatorname{Li}_w w \tag{17}$$

as being the unique solution of the *Drinfel'd equation*, i.e. the differential equation [4]

$$d\mathbf{L} = [x_0\omega_0 + x_1\omega_1]\mathbf{L},\tag{18}$$

satisfying the boundary condition

$$L(\varepsilon) = e^{x_0 \log \varepsilon} + o(\sqrt{\varepsilon}), \text{ when } \varepsilon \to 0^+.$$
 (19)

Proposition 1 ([5]). Let σ be the monoid morphism defined over X^* by $\sigma(x_0) = -x_1$ and $\sigma(x_1) = -x_0$. Then,

$$L(1-z) = [\sigma L(z)] \prod_{l \in \mathcal{L}yn(X) \setminus \{x_0, x_1\}} e^{\zeta(S_l)Q_l}.$$

Example 5 ([5]).

2.6 Harmonic sums

Definition 1. Let $w = y_{s_1} \dots y_{s_r} \in Y^*$. For $N \ge r \ge 1$, the harmonic sum $H_w(N)$ is defined as

$$H_w(N) = \sum_{N \ge n_1 > \dots > n_r > 0} \frac{1}{n_1^{s_1} \dots n_r^{s_r}}.$$

For $0 \le N < r$, $H_w(N) = 0$ and, for the empty word ϵ , we put $H_{\epsilon}(N) = 1$, for any $N \ge 0$.

Let $w = y_{s_1} \dots y_{s_r} \in Y^*$. If $s_1 > 1$ then, by an Abel's theorem,

$$\lim_{N \to \infty} H_w(N) = \lim_{z \to 1} \text{Li}_w(z) = \sum_{n_1 > \dots > n_r > 0} \frac{1}{n_1^{s_1} \dots n_r^{s_r}}.$$

That is nothing but the polyzêta (or MZV [16]) $\zeta(w)$ and the word $w \in Y^* \setminus y_1 Y^*$ is said to be *convergent*. A polynomial of $\mathbb{C}\langle Y \rangle$ is said to be convergent when it is a linear combination of convergent words. The *double* shuffle algebra of polyzêtas is already pointed out and extensively studied in [3].

For $w = y_s w'$, we have

$$\zeta(w) = \sum_{l>1} \frac{H_{w'}(l-1)}{l^s},$$
 (20)

$$H_w(N+1) - H_w(N) = (N+1)^{-s} H_{w'}(N)$$
 (21)

and, for any $u, v \in Y^*$ [9]

$$H_{u \perp v}(N) = H_{u}(N)H_{v}(N). \tag{22}$$

3 Generating series

3.1 Definition and first properties

Definition 2 ([8]). Let $w \in Y^*$ and let $P_w(z)$ be the ordinary generating series of $\{H_w(N)\}_{N\geq 0}$

$$P_w(z) = \sum_{N>0} H_w(N) z^N.$$

Proposition 2 ([8]). Extended by linearity, the map $P: u \mapsto P_u$ is an isomorphism from $(\mathbb{C}\langle Y \rangle, \bowtie)$ to the Hadamard algebra of $(\{P_w\}_{w \in Y^*}, \odot)$. Therefore, the map $H: u \mapsto H_u = \{H_u(N)\}_{N \geq 0}$ is an isomorphism from $(\mathbb{C}\langle Y \rangle, \bowtie)$ to the algebra of $(\{H_w\}_{w \in Y^*}, .)$.

Proof. The definition of the Hadamard product $\sum_{n=0}^{\infty} a_n z^n \odot \sum_{n=0}^{\infty} b_n z^n = \sum_{n=0}^{\infty} a_n b_n z^n$, and the formula (22) gives P as an algebra morphism. Since the functions $\{\operatorname{Li}_w\}_{w\in X^*}$ are linearly independent over \mathcal{C} [4], P is the expected isomorphism.

Proposition 3 ([8]). For every word $w \in Y^*$ and for $z \in \mathbb{C}$ satisfying |z| < 1, one has $\mathrm{Li}_w(z) = (1-z)\mathrm{P}_w(z)$.

Proof. For $w = y_s w'$, since $P_w(z) = \sum_{N>0} H_w(N) z^N$ and by using (21),

$$(1-z)P_w(z) = H_w(0) + \sum_{N>1} \frac{H_{w'}(N-1)}{N^s} z^N = \text{Li}_w(z).$$

A direct consequence of this proposition and Identity (16) is

Corollary 1. For all $u, v \in X^*$, for all $z \in \mathbb{C}$ satisfying |z| < 1, $P_u(z)P_v(z) = (1-z)^{-1}P_{u \sqcup v}(z)$.

Example 6. Since $x_1 = x_1 x_0 x_1 = x_1 x_0 x_1 + 2x_0 x_1^2$ then we get

$$P_{1,2}(z) = (1-z)P_1(z)P_2(z) - 2P_{2,1}(z).$$

Proposition 3 allows to extend the definition of P_w over X^* as we have already extended the definition of Li_w over X^* . Moreover,

Definition 3 ([8]). Let P be the noncommutative generating series of $\{P_w\}_{w \in X^*}$:

$$P = \sum_{w \in X^*} P_w w.$$

Proposition 4 ([8]). Let σ be the monoid morphism defined over X^* by $\sigma(x_0) = -x_1$ and $\sigma(x_1) = -x_0$. Then

$$P(1-z) = \frac{1-z}{z} [\sigma P(z)] \prod_{l \in \mathcal{L}yn(X) \setminus \{x_0, x_1\}}^{\searrow} e^{\zeta(S_l)Q_l}.$$

Proof. It follows immediately from Proposition 1.

Example 7.

$$P_{2,1}(1-z) = \frac{1-z}{z} \left(-P_3(z) + \log(z)P_2(z) - \log^2(z)P_1(z) + \frac{\zeta(3)}{1-z} \right)$$

Thus,

$$P_{2,1}(z) = -\frac{z}{1-z}P_3(1-z) + \frac{z\log(1-z)}{1-z}P_2(1-z) - \frac{1}{2}\frac{z\log^2(1-z)}{1-z}P_1(1-z) + \frac{\zeta(3)}{1-z}.$$

By Formula (22) and Proposition 2, for $w \in Y^*$, there exist a finite set I and $(c_i)_{i \in I} \in \mathcal{C}_2^I$ such that the three following identities are equivalent

$$w = \sum_{i \in I} c_i \bowtie y_1^{\bowtie i}, \tag{23}$$

$$P_w = \sum_{i \in I} P_{c_i} \odot P_{y_1}^{\odot i}, \tag{24}$$

$$\mathbf{H}_w = \sum_{i \in I} \mathbf{H}_{c_i} \, \mathbf{H}_{y_1}^i. \tag{25}$$

In particular, for $w = y_1^k$, we have,

Lemma 2. Let $M = (m_{i,j})_{1 \le i,j \le k}$ be the matrix defined by $m_{i,j} = \delta_{i,j+1}$ (Kronecker symbol). Let $e_{i,j}$ the matrix of size $k \times k$, whose coefficients are all zero, except the one equal to 1 at line i and column j. Let

$$A = \begin{pmatrix} y_1 & 0 & \dots & 0 \\ -\frac{y_2}{2} & \frac{y_1}{2} & \dots & 0 \\ \vdots & \ddots & \ddots & 0 \\ \frac{(-1)^{k-1}y_k}{k} & \frac{(-1)^{k-2}y_{k-1}}{k} & \dots & \frac{y_1}{k} \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} H_{y_1} & 0 & \dots & 0 \\ -\frac{H_{y_2}}{2} & \frac{H_{y_1}}{2} & \dots & 0 \\ \vdots & \ddots & \ddots & 0 \\ \frac{(-1)^{k-1}H_{y_k}}{k} & \frac{(-1)^{k-2}H_{y_{k-1}}}{k} & \dots & \frac{H_{y_1}}{k} \end{pmatrix}.$$

Then

$$\begin{pmatrix} y_1 \\ \vdots \\ y_1^k \end{pmatrix} = A \prod_{\ell=1}^{k-1} \left[M^\ell A(^t M)^\ell + \sum_{\iota=1}^\ell e_{\iota,\iota} \right] \begin{pmatrix} \epsilon \\ \vdots \\ \epsilon \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} \mathcal{H}_{y_1} \\ \vdots \\ \mathcal{H}_{y_1^k} \end{pmatrix} = B \prod_{\ell=1}^{k-1} \left[M^\ell B(^t M)^\ell + \sum_{\iota=1}^\ell e_{\iota,\iota} \right] \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$$

Proof. The formula $y_1^k = (-1)^{k-1}k^{-1}\sum_{l=0}^{k-1}(-1)^ly_1^l \bowtie y_{k-l}$ [6] can be written matricially as follows

$$\begin{pmatrix} y_1 \\ y_1^2 \\ \vdots \\ y_1^k \end{pmatrix} = A \bowtie \begin{pmatrix} \epsilon \\ y_1 \\ \vdots \\ y_1^{k-1} \end{pmatrix} = A \bowtie \begin{pmatrix} \epsilon & 0 & \dots & 0 \\ 0 & y_1 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & \frac{(-1)^{k-2}y_{k-1}}{k-1} & \dots & \frac{y_1}{k-1} \end{pmatrix} \bowtie \begin{pmatrix} \epsilon \\ \epsilon \\ \vdots \\ y_1^{k-2} \end{pmatrix}.$$

Here all powers and products are carried out with the stuffle product. Successively, we get the expected result. \Box

The word y_1^k appears then as a computable stuffle product of words of length 1. Hence,

Proposition 5. $H_{y_k^k}$ is a combination of $\{H_{y_r}\}_{1 \le r < k}$ which are algebraically independent.

Proof. The $\{H_{y_r}\}_{1 \le r < k}$ are algebraically independent according to Proposition 2, as image by the isomorphism H of the Lyndon words $\{y_r\}_{1 \le r < k}$. By Lemma 2, we get the expected result.

Example 8. Since

$$y_1^2 = \frac{y_1 \coprod y_1 - y_2}{2}$$
 and $y_1^3 = \frac{2(y_3 - y_1 \coprod y_2) + (y_1 \coprod y_1 - y_2) \coprod y_1}{6}$

then we have

$$\mathbf{H}_{y_1^2} = \frac{\mathbf{H}_{y_1}^2 - \mathbf{H}_{y_2}}{2} \quad \textit{and} \quad \mathbf{H}_{y_1^3} = \frac{2(\mathbf{H}_{y_3} - \mathbf{H}_{y_1}\mathbf{H}_{y_2}) + (\mathbf{H}_{y_1}^2 - \mathbf{H}_{y_2})\mathbf{H}_{y_1}}{6}.$$

Identities (23-25) give rise to two interpretations: (24) enables to decompose P_w in a basis of singular functions $(1-z)^{\alpha}\log^{\beta}(1-z)$ while (25) enables to compute an asymptotic expansion of its Taylor coefficients in terms of $N^a\log^b N$ (or equivalently in terms of $N^aH^b_{y_1}(N)$). Before stating a theorem linking these two interpretations, we are interested in the action of $\mathcal C$ on Taylor coefficients; reciprocally, we are interested in the effects of changing Taylor coefficients on a function in $\mathcal C[\{P_w\}_{w\in Y^*}]$.

3.2 Operations on the generating functions P_w

For $f(z) = \sum_{n \geq 0} a_n z^n$, we will henceforth denote $[z^n] f(z) = a_n$ its *n*-th Taylor coefficient. Since multiplying or dividing by z acts very simply on $[z^n] f(z)$, we only have to study the effect of multiplying or dividing by 1 - z.

$$[z^n](1-z)P_w(z) = H_w(n) - H_w(n-1).$$
(26)

$$[z^n] \frac{P_w(z)}{1-z} = \sum_{k=0}^n H_w(k)$$
 (27)

$$=\begin{cases} (n+1)H_w(n) - H_{y_{s-1}w'}(n) & \text{if } w = y_sw', \text{ with } s \neq 1\\ (n+1)H_w(n) - \sum_{j=1}^n H_{w'}(j-1) & \text{if } w = y_1w'. \end{cases}$$
(28)

and, more generally,

Proposition 6.

$$[z^n](1-z)^k P_w(z) = \sum_{j=0}^k \binom{k}{j} (-1)^j H_w(n-j) \quad \text{and} \quad [z^n] \frac{P_w(z)}{(1-z)^k} = \sum_{n \geq j_1 > \dots > j_k \geq 0} H_w(j_k).$$

3.3 Operations on Taylor coefficients of P_w

We are now to find how multiplying or dividing $H_w(N)$ by N acts on P_w .

3.3.1 A particular case : $w = \epsilon$

The simple case $w = \epsilon$, corresponding to $H_{\epsilon}(N) = 1$, can be studied and treated by the following

Proposition 7. For any $q \in \mathbb{Z}$, one has

$$n^{q} = \begin{cases} [z^{n}](1-z)P_{-q}(z) & \text{if } q < 0, \\ [z^{n}](1-z)^{-1} & \text{if } q = 0, \\ [z^{n}]\frac{z}{1-z}N_{q}\left(\frac{1}{1-z}\right) & \text{if } q > 0, \end{cases}$$

where N_q is defined by the following recurrence

$$N_0(X) = 1$$
, and $N_q(X) = X \left(\sum_{j=0}^{q-1} (-1)^{q-1-j} \binom{q}{j} N_j(X) \right)$.

Example 9.

$$n = [z^n] \left(\frac{z}{(1-z)^2} \right) = [z^n] \left(\frac{1}{(1-z)^2} - \frac{1}{1-z} \right),$$

$$n^2 = [z^n] \left(\frac{2z}{(1-z)^3} - \frac{z}{(1-z)^2} \right) = [z^n] \left(\frac{2}{(1-z)^3} - \frac{3}{(1-z)^2} + \frac{1}{1-z} \right).$$

3.3.2 How to divide by n^k ?

Let $w = y_{s_1} \cdots y_{s_r}$ and $w' = y_{s_2} \cdots y_{s_r}$ be the suffix of w, of length r-1. The expression $n^{-k}H_w(n)$, k positive integer, can be identified as follows

$$n^{-k}H_w(n) = n^{-k}H_w(n-1) + n^{-s_1-k}H_{w'}(n-1)$$
(29)

$$= [z^n] \operatorname{Li}_{y_k w + y_{s_1 + k} w'}(z) \tag{30}$$

$$= [z^n][(1-z)P_{y_kw+y_{s_1+k}w'}(z)].$$
(31)

3.3.3 How to multiply by n^k ?

In order to study the effect of multiplying by n^k , k positive integer, we denote by $\theta = z\partial/\partial z$ the Euler operator. Then for any integer k,

$$n^k \mathbf{H}_w(n) = [z^n] \theta^k \mathbf{P}_w(z). \tag{32}$$

So, we just have to compute $\theta^k P_w(z)$. As in [7], let us introduce

Definition 4. For any word $w = x_{i_1} \cdots x_{i_k}$ and for any composition $\mathbf{r} = (r_1, \dots, r_k)$, let $\tau_{\mathbf{r}}(w)$ be defined by $\tau_{\mathbf{r}}(w) = \tau_{r_1}(x_{i_1}) \cdots \tau_{r_k}(x_{i_k})$ with,

$$au_0(x_0) = x_0\,, \qquad au_r(x_1) = x_1, \ and, \ for \ r \in \mathbb{N}^*, \quad au_r(x_0) = heta^r x_0 = 0 \quad and \quad au_r(x_1) = heta^r rac{zx_1}{1-z} = rac{r!x_1}{(1-z)^{r+1}}.$$

We define the degree of \mathbf{r} by $\deg(\mathbf{r}) = k$ and its weight by $\operatorname{wgt}(\mathbf{r}) = k + r_1 + \cdots + r_k$.

By applying successively the operator θ to L, we get

Lemma 3. $\theta^l L = A_l L$, where A_l is defined by

$$A_l(z) = \sum_{\text{wgt}(\mathbf{r}) = l} \sum_{w \in X^{\text{deg}(\mathbf{r})}} \prod_{i=1}^{\text{deg}(\mathbf{r})} {\binom{\sum_{j=1}^i r_i + j - 1}{r_i}} \tau_{\mathbf{r}}(w).$$

Proof. This is a consequence of the recurrence relation verified by A_l , which is $A_0(z)=1$, and, for all $l\in\mathbb{N}, A_{l+1}(z)=[\tau_0(x_0)+\tau_0(x_1)]A_l(z)+\theta A_l(z).$

This lemma enables to extract the expression of $\theta^l \operatorname{Li}_w$, for any word $w \in X^*$.

Example 10.

$$A_0(z) = 1,$$

$$A_1(z) = x_0 + \frac{z}{1-z}x_1,$$

$$A_2(z) = x_0^2 + \frac{z}{1-z}x_0 \sqcup x_1 + \frac{z^2}{(1-z)^2}x_1^2 + \frac{1}{(1-z)^2}x_1.$$

So, for $w = x_0^2 x_1$,

$$\begin{split} \theta \operatorname{Li}_{x_0^2 x_1} &= \left((x_0 + \frac{z}{1-z} x_1) \operatorname{L}(z) \mid x_0^2 x_1 \right) \\ &= \operatorname{Li}_{x_0 x_1}, \\ \theta^2 \operatorname{Li}_{x_0^2 x_1} &= \left((x_0^2 + \frac{z}{1-z} x_0 \sqcup x_1 + \frac{z^2}{(1-z)^2} x_1^2 + \frac{1}{(1-z)^2} x_1) \operatorname{L}(z) \mid x_0^2 x_1 \right) \\ &= \operatorname{Li}_{x_1}. \end{split}$$

Lemma 4. Let \bot be the linear operator of $\mathbb{Z}[X]$ defined by $\bot X^n = (n+1)X^{n+1} + nX^n$ and $\{B_l\}_{l \in \mathbb{N}} \in \mathbb{Z}[X]$ defined by $B_0(X) = 1$ and $B_{l+1}(X) = \bot B_l(X)$. Then

$$\theta^{l}(1-z)^{-1} = (1-z)^{-1}B_{l}(z(1-z)^{-1}).$$

Note that the head term of B_l , $l \ge 1$, is $l!X^l$ and its trail term is X.

Example 11. $B_0(X) = 1$, $B_1(X) = X$, $B_2(X) = 2X^2 + X$, $B_3(X) = 6X^3 + 6X^2 + X$.

Proposition 8. With the notations of Lemma 4,

$$\theta^k P(z) = \sum_{j=1}^k \sum_{\text{wgt}(\mathbf{r})} \sum_{w \in X^{\text{deg}(\mathbf{r})}} \prod_{i=1}^{\text{deg}(\mathbf{r})} {\sum_{j=1}^i r_i + j - 1 \choose r_i} {\binom{k}{j}} \tau_{\mathbf{r}}(w) B_j \left(\frac{z}{1-z}\right) P(z).$$

Using Leibniz formula, one has

$$\theta^k \mathcal{P}_w(z) = \sum_{j=0}^k \binom{k}{j} \theta^{k-j} \operatorname{Li}_w(z) \theta^j \frac{1}{1-z}$$
(33)

$$= \sum_{j=0}^{k} {k \choose j} B_j \left(\frac{z}{1-z}\right) \frac{1}{1-z} \theta^{k-j} \operatorname{Li}_w(z). \tag{34}$$

Thanks to Lemma 3, we can extract the coefficient $\theta^l \operatorname{Li}_w$ of w in $\theta^l \operatorname{L}$: this can be written as \mathcal{C} -linear combination of Li_v , with $|v| \leq |w| - l$ (where |u| denotes the length of a word $u \in X^*$). We deduce so the expression of $\theta^k \operatorname{P}_w$.

Example 12. For $w = x_0^2 x_1$ and k = 2,

$$\begin{split} \theta^2 \mathbf{P}_{x_0^2 x_1}(z) &= \sum_{j=0}^2 \binom{2}{j} B_j \left(\frac{z}{1-z}\right) \frac{1}{1-z} \theta^{2-j} \operatorname{Li}_w(z) \\ &= \frac{1}{1-z} \operatorname{Li}_{x_1}(z) + 2 \frac{z}{1-z} \frac{1}{1-z} \operatorname{Li}_{x_0 x_1}(z) + \left(2 \left(\frac{z}{1-z}\right)^2 + \frac{z}{1-z}\right) \operatorname{Li}_{x_0^2 x_1}(z) \\ &= \mathbf{P}_{x_1}(z) + \frac{2z}{1-z} \mathbf{P}_{x_0 x_1}(z) + \frac{z^2+z}{1-z} \mathbf{P}_{x_0^2 x_1}(z). \end{split}$$
 So,
$$n^2 \mathbf{H}_3(n) &= [z^n] \left(\mathbf{P}_1(z) + \frac{2z}{1-z} \mathbf{P}_2(z) + \frac{z^2+z}{1-z} \mathbf{P}_3(z)\right).$$

4 The main theorem

Throughout the section, we will write

$$f_n \sim \sum_{i=0}^{\infty} g_i(n)$$
 for $n \to +\infty$,

for a scale of functions $(g_i)_{i\in\mathbb{N}}$ – i.e. verifying $g_{i+1}(n) = O(g_i(n))$, for all i – to express that

$$f_n = \sum_{i=0}^{I} g_i(n) + O(g_{I+1}(n)), \quad \text{for any } I \ge 0.$$

In the same way, given a scale of functions $(h_i)_{i\in\mathbb{N}}$ around z=1 (i.e. verifying $h_{i+1}(1-z)=O(h_i(1-z))$, when $z\to 1$) we will write

$$g(z) \sim \sum_{i=0}^{\infty} h_i (1-z)$$
 for $z \to 1$,

to mean

$$g(z) = \sum_{i=0}^{I} h_i(1-z) + O(h_{I+1}(1-z))$$
 for all $I \ge 0$.

For $w=y_1^k$, we know the expression of $[z^N]P_{y_1^k}(z)=H_{y_1^k}(N)$ is given by Lemma 2. From the second form of Euler-MacLaurin formula, involving the Bernoulli numbers $\{B_k\}_{k\geq 0}$, we get the following asymptotic expansions

$$\begin{split} & \mathbf{H}_{y_1}(N) & \sim & \log N + \gamma - \sum_{k=1}^{+\infty} \frac{B_k}{k} \frac{1}{N^k}, \\ & \mathbf{H}_{y_r}(N) & \sim & \zeta(r) - \frac{1}{(r-1)N^{r-1}} - \sum_{k=r}^{+\infty} \frac{B_{k-r+1}}{k-r+1} \binom{k-1}{r-1} \frac{1}{N^k}, \text{ for } r > 1. \end{split}$$

Thus, we can deduce the asymptotic expansions of $H_{y_1^k}(N)$, for $N \to +\infty$, from the asymptotic expansions of $\{H_{y_r}(N)\}_{1 \le r \le k}$:

Example 13. From Example 8, we can deduce then

$$\begin{split} \mathrm{H}_{y_1^2}(N) &= \frac{1}{2}(\log(N) + \gamma)^2 - \frac{1}{2}\zeta(2) + \frac{1}{2}\frac{\log(N) + \gamma + 1}{N} - \frac{1}{12N^2} + \mathrm{O}\left(\frac{1}{N^2}\right), \\ \mathrm{H}_{y_1^3}(N) &= \frac{1}{6}\log^3(N) + \frac{1}{2}\gamma\log^2(N) + \frac{1}{2}(\gamma^2 - \zeta(2))\log(N) - \frac{1}{2}\zeta(2)\gamma + \frac{1}{3}\zeta(3) + \frac{1}{6}\gamma^3 + \frac{1}{4}\frac{\log^2(N)}{N} \\ &+ \frac{1}{2}(\gamma + 1)\frac{\log(N)}{N} + \frac{1}{4}\left(2\gamma + \gamma^2 - \zeta(2)\right)\frac{1}{N} - \frac{1}{24}\frac{\log^2(N)}{N^2} - \left(\frac{1}{8} + \frac{\gamma}{12}\right)\frac{\log(N)}{N^2} + \mathrm{O}\left(\frac{1}{N^2}\right). \end{split}$$

Let us see in the general case how to reach the Taylor expansion of $g \in \mathcal{C}[(P_w)_{w \in Y^*}]$.

Theorem 2. Let $g \in \mathcal{C}[(P_w)_{w \in Y^*}]$. There exist $a_j \in \mathbb{C}$, $\alpha_j \in \mathbb{Z}$ and $\beta_j \in \mathbb{N}$ such that

$$g(z) \sim \sum_{j=0}^{+\infty} a_j (1-z)^{\alpha_j} \log^{\beta_j} (1-z), \text{ for } z \to 1.$$

Therefore, there exist $b_i \in \mathbb{C}$, $\eta_i \in \mathbb{Z}$ and $\kappa_i \in \mathbb{N}$ such that

$$[z^n]g(z) \sim \sum_{i=0}^{+\infty} b_i n^{\eta_i} \log^{\kappa_i}(n), \quad for \quad n \to \infty.$$

Proof. Considering Corollary 1, we only have firstly to obtain the asymptotic expansion for the case $g(z) = P_w(z)$. Indeed, we get then the expansions of f(z)g(z), for $f \in \mathcal{C}$ by remarking that z = 1 - (1 - z) and that $z^{-1} = \sum_{n \geq 0} (1 - z)^n$.

The first expansion can be derived from Proposition 4 which links the behaviour of P_w around z=1 to the behaviour of some algebraic combination of functions $\{P_u\}_{u\in X^*}$ around z=0. Moreover, by Radford theorem 1, we can assume that each word u involved in this combination is a Lyndon word and so belongs to $x_0X^*x_1\cup\{x_0,x_1\}$. But, remind that, in this case, we have $P_u(z)=\sum_{n\geq 0}H_u(n)z^n$ and that $P_{x_0}(z)=(1-z)^{-1}\log(z)$. So, the expected first expansion follows.

From

$$(1-z)^{\alpha}\log(1-z)^{\beta} = (-1)^{\beta}\beta!(1-z)^{\alpha+1}P_{y_1^{\beta}}(z), \tag{35}$$

we derive the second expansion by computing the Taylor coefficient $[z^n](1-z)^{\alpha}\log^{\beta}(1-z)$. Since we have already explained how the multiplication by $(1-z)^{\alpha}$ acts on the Taylor coefficients, we just have then to compute $[z^n]P_{y_1^{\beta}}=H_{y_1^{\beta}}(n)$. For this, we use Lemma 2 which completes our proof.

Unfortunately, in the general case, knowing even the complete expansion of $[z^n]g(z)$ only enables to get an asymptotic expansion of g(z), as $z \to 1$ up to order 0 (i.e. the *singular part* of the expansion). Indeed, Taylor coefficients of all functions $(1-z)^k$, $k \ge 0$ eventually vanish as in the following identity:

$$\frac{1}{n} = [z^n] \operatorname{Li}_1(z) = [z^n] [\operatorname{Li}_1(z) + (1-z)^2], \quad \text{as soon as } n > 2.$$
 (36)

In fact, to obtain this singular part, it is sufficient to know the asymptotic expansion of $[z^n]g(z)$ up to order $2 - \epsilon$, $\epsilon > 0$ [15].

Remark 1. In the case of a finite sum $\sum_{i \in I} b_i n^{\eta_i} H_1^{\kappa_i}(n)$, we are able to construct the unique function $f \in \mathcal{C}[(P_w)_{w \in Y^*}]$ such that,

$$\forall n \in \mathbb{N}, \qquad [z^n] f(z) = \sum_{i \in I} b_i n^{\eta_i} \mathcal{H}_1^{\kappa_i}(n), \tag{37}$$

as illustrated in Examples 9 and 12.

Remark 2. Note that the proof of Theorem 2 gives an effective construction of the asymptotic expansion of Taylor coefficients. In particular, applied to $g(z) = P_w(z)$ directly, it enables to find an asymptotic expansion of $H_w(N)$, as shown in the corollary below. Another algorithm, based on Euler Mac-Laurin formula, is available in [1].

Corollary 2. Let \mathcal{Z} be the \mathbb{Q} -algebra generated by convergent polyzêtas and let \mathcal{Z}' be the $\mathbb{Q}[\gamma]$ -algebra generated by \mathcal{Z} . Then there exist algorithmically computable coefficients $b_i \in \mathcal{Z}'$, $\kappa_i \in \mathbb{N}$ and $\eta_i \in \mathbb{Z}$ such that, for any $w \in Y^*$,

$$H_w(N) \sim \sum_{i=0}^{+\infty} b_i N^{\eta_i} \log^{\kappa_i}(N), \quad for \quad N \to +\infty.$$

Example 14. From Example 7 we get, for $z \rightarrow 1$

$$P_{2,1}(z) = \frac{\zeta(3)}{1-z} + \log(1-z) - 1 - \frac{\log^2(1-z)}{2} + (1-z)\left(-\frac{\log^2(1-z)}{4} + \frac{\log(1-z)}{4}\right) + O(|1-z|).$$

But

$$\begin{split} [z^N]\zeta(3)(1-z)^{-1} &=& \zeta(3),\\ [z^N]\log(1-z) &=& -N^{-1},\\ [z^N]\frac{\log^2(1-z)}{2} &=& [z^N]\frac{2!(1-z)\mathrm{P}_{y_1^2}(z)}{2}\\ &=& [z^N](1-z)\mathrm{P}_{y_1^2}(z)\\ &=& \mathrm{H}_{y_1^2}(N)-\mathrm{H}_{y_1^2}(N-1),\\ \vdots &\vdots \end{split}$$

We find finally, using Example 13:

$$[z^N]P_{2,1}(z) = H_{2,1}(N) = \zeta(3) - \frac{\log(N) + 1 + \gamma}{N} + \frac{1}{2}\frac{\log(N)}{N^2} + O\left(\frac{1}{N^2}\right).$$

Otherwise, by Example 6,

$$\begin{array}{lcl} {\rm P}_{1,2}(z) & = & (1-z){\rm P}_1(z){\rm P}_2(z) - 2{\rm P}_{2,1}(z) \\ & = & (1-z)\frac{-\log(1-z)}{1-z}\frac{z}{1-z}\left(-{\rm P}_2(1-z) + \log(1-z){\rm P}_1(1-z) + \frac{\zeta(2)}{z}\right) - 2{\rm P}_{2,1}(z), \end{array}$$

calculated thanks to Proposition 4. So,

$$[z^N]P_{1,2}(z) = H_{1,2}(N) = \zeta(2)\gamma - 2\zeta(3) + \zeta(2)\log(N) + \frac{\zeta(2) + 2}{2N} + O\left(\frac{1}{N^2}\right).$$

Corollary 3 ([8]). For any $w \in Y^*$, the N-free term in the asymptotic expansion of $H_w(N)$, when $N \to +\infty$, is a polynomial q_w in $\mathbb{Z}[\gamma]$. This term is an element in \mathbb{Z} , if and only if w is a convergent word.

Example 15.
$$q_{y_1y_2} = \zeta(2)\gamma - 2\zeta(3)$$
 and $q_{y_2y_1} = \zeta(3) = \zeta(2,1)$.

Question. For any convergent word w, are $\zeta(w)$ and γ algebraically independent?

Now, let us go back to the A_s introduced in Section 1. We have seen that they are \mathbb{Z} -linear combinations on H_s , hence we get their asymptotic expansions with coefficients in \mathbb{Z}' .

Example 16. For s = (1, 1, 1),

$$\begin{split} \mathbf{A}_{1,1,1}(N) &=& \ \mathbf{H}_{1,1,1}(N) + \mathbf{H}_{1,2}(N) + \mathbf{H}_{2,1}(N) + \mathbf{H}_{3}(N), \\ &=& \ \frac{1}{6} \log^3(N) + \frac{1}{2} \gamma \log^2(N) + \frac{1}{2} [\gamma^2 + \zeta(2)] \log(N) - \frac{1}{2} \zeta(2) \gamma + \frac{1}{3} \zeta(3) + \frac{1}{6} \gamma^3 + \frac{1}{4} \frac{\log^2(N)}{N} \\ &+& \ \frac{1}{2} (\gamma - 1) \frac{\log(N)}{N} + \frac{1}{4} [\gamma^2 - 2\gamma + \zeta(2)] \frac{1}{N} - \frac{1}{24} \frac{\log^2(N)}{N^2} + \frac{1}{24} (9 - 2\gamma) \frac{\log(N)}{N^2} + \mathcal{O}\left(\frac{1}{N^2}\right). \end{split}$$

Acknowledgements

We acknowledge the influence of Cartier's lectures at the GdT *Polylogarithmes et Polyzêtas*. We greatly appreciated fruitful discussions with Boutet de Monvel, Jacob, Petitot and Waldschmidt.

References

- [1] C. Costermans, J.Y. Enjalbert, Hoang Ngoc Minh, M. Petitot.— *Structure and asymptotic expansion of multiple harmonic sums*, in the proceeding of ISSAC, Beijing, 24-27 July, (2005).
- [2] P. Flajolet, G. Gonnet, C. Puech, and J. M. Robson. *Analytic variations on quadtrees*, Algorithmica, 10, pp. 473-500, 1993.
- [3] Hoang Ngoc Minh & M. Petitot.— Lyndon words, polylogarithmic functions and the Riemann ζ function, Discrete Math., 217, 2000, pp. 273-292.
- [4] Hoang Ngoc Minh, M. Petitot & J. Van der Hoeven.— *Polylogarithms and Shuffle Algebra*, FP-SAC'98, Toronto, Canada, Juin 1998.
- [5] Hoang Ngoc Minh, M. Petitot & J. Van der Hoeven.— L'algèbre des polylogarithmes par les séries génératrices, FPSAC'99, Barcelone, Espagne, Juillet 1999.
- [6] Hoang Ngoc Minh, G. Jacob, N.E. Oussous, M. Petitot.— De l'algèbre des ζ de Riemann multivariées à l'algèbre des ζ de Hurwitz multivariées, journal électronique du Séminaire Lotharingien de Combinatoire B44e, 2001.
- [7] Hoang Ngoc Minh.— Differential Galois groups and noncommutative generating series of polylogarithms, in the proceeding of 7th World Multiconference on Systemics, Cybernetics and informatics, pp. 128-135, Orlando, Florida, July (2003).
- [8] Hoang Ngoc Minh.– Finite polyzêtas, Poly-Bernoulli numbers, identities of polyzêtas and noncommutative rational power series, in the proceeding of 4th International Conference on Words, pp. 232-250, Turku, Finland, September (2003)
- [9] M. Hoffman.- The algebra of multiple harmonic series, Jour. of Alg., August 1997.
- [10] M. Hoffman.– *Hopf Algebras and Multiple Harmonic Sums*, Loops and Legs in Quantum Field Theory, Zinnowitz, Germany, April 2004.
- [11] G. Labelle. Communication privée, SFCA,96, Minneapolis.
- [12] L. Laforest.— *Etude des arbres hyperquaternaires*, Tech. Rep. 3, LACIM, UQAM, Montreal, Nov. 1990. (Ph.D. thesis, McGill University).
- [13] D.E. Radford.— A natural ring basis for shuffle algebra and an application to group schemes, Journal of Algebra, 58, pp. 432-454, 1979.
- [14] C. Reutenauer. Free Lie Algebras, Lon. Math. Soc. Mono., New Series-7, Oxford Science Publications, 1993.
- [15] M. Waldschmidt.— http://www.institut.math.jussieu.fr/~miw/articles/pdf/dea-juin2002.pdf, http://www.institut.math.jussieu.fr/~miw/articles/pdf/corrige-dea-juin2002.pdf
- [16] D. Zagier.— *Values of zeta functions and their applications*, First European congress of Mathematics, Vol.2, Birkhäuser, Basel, 1994, pp. 497-512.