
2005 International Conference on Analysis of Algorithms DMTCS proc.AD, 2005, 115–124

Cache miss analysis of WHT algorithms

Mihai Furis1 and Paweł Hitczenko2† and Jeremy Johnson1‡

1Dept. of Computer Science, Drexel University, Philadelphia, PA 19104, USA.{mfuris,jjohnson}@cs.drexel.edu
2Dept. of Mathematics, Drexel University, Philadelphia, PA 19104, USA. phitczenko@cs.drexel.edu

On modern computers memory access patterns and cache utilization are as important, if not more important, than
operation count in obtaining high-performance implementations of algorithms. In this work, the memory behavior of
a large family of algorithms for computing the Walsh-Hadamard transform, an important signal processing transform
related to the fast Fourier transform, is investigated. Empirical evidence shows that the family of algorithms exhibit
a wide range of performance, despite the fact that all algorithms perform the same number of arithmetic operations.
Different algorithms, while having the same number of memory operations, access memory in different patterns and
consequently have different numbers of cache misses. A recurrence relation is derived for the number of cache misses
and is used to determine the distribution of cache misses over the space of WHT algorithms.

Keywords: Cache, Divide and Conquer Recurrences, Geometric Distributions, Memory Access Patterns, Perfor-
mance Analysis, Random Compositions, Walsh-Hadamard Transform

1 Introduction
The complexity of modern computer architectures has made it increasingly difficult to optimize the im-
plementation of an algorithm to the underlying architecture on which it is implemented. Moreover, high-
performance demands that an implementation be tuned to take advantage of features of the architecture
such as pipelining, superscalar execution, and the memory hierarchy (see Hennessy and Patterson (2002)
for a discussion of these and many other features of modern computer architectures). In particular, ef-
fective utilization of cache can be more important than operation count in obtaining high-performance
implementations, and can lead to an order of magnitude improvement in performance.

The importance of cache utilization for high-performance implementation of algorithms has been known
for some time. Optimizing compilers perform many transformations to obtain better locality of reference
and hence better cache utilization (see for example Allen and Kennedy (2002)). Several theoretical models
have been proposed that abstract memory performance and allow the algorithm designer to focus on the
key issues involved in designing algorithms with efficient utilization of the memory hierarchy Aggarval
and Vitter (1988); Ladner et al. (1999); Sen et al. (2002). Most of this work deals with lower bounds
for the worst case behavior and the design of asymptotically optimal algorithms for key problems such
as sorting and the fast Fourier transform (FFT). The paper by Ladner et al. includes some probabilistic
analysis for certain memory access patterns.

Despite the theoretical results and the tools available through optimizing compilers obtaining practical
algorithms that efficiently utilize cache remains a major challenge. The difficulty in achieving high-
performance on modern architectures with deep memory hierarchies, combined with the short time be-
tween the introduction of new architectures, has led to the field of automated-performance tuning, where
a large class of algorithm and implementation choices are automatically generated and searched to find an
“optimal” implementation (see Moura et al. (2005)).

This paper continues the exploration in Hitczenko et al. (2004) on the analysis of the performance
of a family of algorithms (see Johnson and Püschel (2000)) to compute the Walsh-Hadamard transform
(WHT). The WHT is a transform used in signal and image processing and coding theory Beauchamp
(1984); Elliott and Rao (1982); MacWilliams and Sloane (1992) and has an algorithmic structure similar
to the FFT. The algorithms in Johnson and Püschel (2000) have a wide range of performance despite hav-
ing exactly the same number of arithmetic operations. Different numbers of instruction due to different

†Supported in part by NSA Grants #MSPF-02G-043 and #MSPF-04G-054.
‡Supported in part by NSF Grant ITR/NGS #0325687: Intelligent HW/SW Compilers for DSP.

1365–8050c© 2005 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France



116 Mihai Furis and Paweł Hitczenko and Jeremy Johnson

amounts of recursion and iteration can account for some of the differences in performance, and the work
in Hitczenko et al. (2003) developed and analyzed a performance model based on instruction count. How-
ever, instruction count by itself does not accurately predict performance; especially for larger sizes where
cache performance becomes a significant factor. In this paper a model for cache performance is developed
and the space of WHT algorithms is analyzed with respect to this model. A recurrence relation is derived
for the number of cache misses, for a direct-mapped cache, and it is used to determine the distribution of
cache misses over the space of WHT algorithms. The restriction to a direct-mapped cache simplifies some
of the analysis, though the framework is general, and a similar analysis should be possible for other cache
configurations.

2 Walsh-Hadamard Transform Algorithms

The Walsh-Hadamard transform of a signalx, of sizeN = 2n, is the matrix-vector productWHTN · x,
where

WHTN =
n⊗

i=1

DFT2 =

n︷ ︸︸ ︷
DFT2 ⊗ · · · ⊗DFT2 .

The matrix

DFT2 =
[

1 1
1 −1

]

is the2-point DFT matrix, and⊗ denotes the tensor or Kronecker product. The tensor product of two
matrices is obtained by replacing each entry of the first matrix by that element multiplied by the second
matrix. Different algorithms for computing the WHT can be derived from different factorizations of the
WHT matrix (see Johnson and Püschel (2000)). Letn = n1 + · · ·+ nt, then

WHT2n =
t∏

i=1

(I2n1+···+ni−1 ⊗WHT2ni ⊗ I2ni+1+···+nt ) (1)

This equation encompasses both the iterative (t = n, ni = 1 for i = 1, . . . , t) and recursive algorithms
(t = 2, n1 = 1 andn2 = n− 1), and provides a mechanism for exploring different breakdown strategies
and combinations of recursion and iteration. The breakdown strategy used by a particular algorithm can
be encoded in a tree called a partition tree. The root of the tree is labeled byn, the exponent of the size
of the transform, and the children of a node are labeled by the exponents,n1, . . . , nt of the recursive
transforms used in the application of Equation 1. Figure 1 shows the trees corresponding iterative and
recursive algorithms forWHT16.

4
���

� @ PPP

1 1 1 1 1
�

1
@

1
�

2
@

1
�

3
@

4

Fig. 1: Partition Trees for Iterative and Recursive WHT Algorithms

The WHT package, from Johnson and Püschel (2000), provides a mechanism to implement all of the
algorithms that can be derived from Equation 1. LetN = N1 · · ·Nt, whereNi = 2ni , and letxM

b,s denote
the subvector(x(b), x(b+ s), . . . , x(b+(M − 1)s)). Then evaluation ofx = WHTN ·x using Equation



Cache miss analysis of WHT algorithms 117

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11
0

100

200

300

400

500

600

700

Distribution of WHT
16

 Runtimes on Pentium III

Time in Seconds
N

um
be

r o
f A

lg
or

ith
m

s

Fig. 2: Performance histogram on the Pentium III

1 is performed using

R = N ; S = 1;
for i = 1, . . . , t
R = R/Ni;
for j = 0, . . . , R− 1
for k = 0, . . . , S − 1
xNi

jNiS+k,S = WHTNi · x
Ni

jNiS+k,S ;
S = S ∗Ni;

The computation ofWNi
is computed recursively in a similar fashion until a base case of the recursion

is encountered. Observe thatWHTNi
is calledN/Ni times. Small WHT transforms, used in the base

case, are computed using the same approach; however, the code is unrolled in order to avoid the overhead
of loops or recursion. This scheme assumes that the algorithm works in-place and is able to accept stride
parameters.

Equation 1 leads to many different algorithms with a wide range in performance, as shown in the
histogram of runtimes in Figure 2 for 10,000 randomly generated WHT algorithms.

It is easy to show that all algorithms derived from Equation 1 have exactly the same number of arithmetic
operations (N lg(N)). Since arithmetic operations can not distinguish algorithms, the distribution of
runtimes must be due to other factors. In Huang (2002), other performance metrics, such as instruction
count, memory accesses, and cache misses, were gathered and their influence on runtime was investigated.
Different algorithms can have vastly different instruction counts due to the varying amounts of control
overhead from recursion, iteration, and straight-line code. Different algorithms access data in different
patterns, with varying amounts of locality. Consequently different algorithms can have different amounts
of instruction and data cache misses.

3 Cache Model
Measurements from Huang (2002) and Furis (2003) show that different WHT algorithms have different
numbers of cache misses and that the number of cache misses affects the runtime performance. In general
the number of cache misses do not fully account for memory performance (other factors are the number of
memory operations, miss penalty, and the overlap of memory operations with other instructions); however,
since all of the WHT algorithms have similar number of memory operations, the number of cache misses
provides an effective way of measuring memory performance.

In this section an idealized memory model is presented from which it is possible to determine the
exact number of cache misses for each of the WHT algorithms using different cache configurations. A
cache configuration is specified by the size of the cache, the block size and its associativity (see Hennessy
and Patterson (2002)). The memory model includes only the elements of the vectorx used to compute
x = WHTx (memory to hold instructions, index variable and temporary values are not considered) and
each element occupies a single memory location.



118 Mihai Furis and Paweł Hitczenko and Jeremy Johnson

Tab. 1: Memory Access Pattern for Algorithm (a) in Figure 3

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
(I8 ⊗WHT2)x16

0,1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
WHT8x

8
0,2 2 2 2 2 2 2 2 2

3 3 3 3
3 3 3 3

WHT8x
8
1,2 2 2 2 2 2 2 2 2

3 3 3 3
3 3 3 3

The memory access pattern of a WHT algorithm is obtained from a trace of the read and write ac-
cesses to the vectorx. This pattern can be determined from the partition tree representing the algorithm
(all accesses correspond to leaf nodes of the tree). Tables 1 and 2 show the access patterns for the algo-
rithms represented by the trees in Figure 3. The memory accesses proceed from left to right and from
top to bottom and are labeled by the leaf node in the tree where the memory access occur (leaf nodes
are labeled right to left). The actual implementation from Johnson and Püschel (2000) accesses some of
these elements multiple times. In particular, the computation of the base caseWHTxm

b,S performed by
small[m] of sizeM = 2m, accesses the elementsx[b], x[b+S], x[b], x[b+S], x[b+2S], x[b+3S], x[b+
2S], x[b + 3S], . . . , x[b + (M − 2)S], x[b + (M − 1)S], x[b + (M − 2)S], x[b + (M − 1)S], x[b], x[b +
S], . . . , x[b+(M−1)S]. The first2M accesses are reads and the lastM accesses are writes. The elements
are read twice, first to compute their sum and second to compute their difference. The sum and difference
are stored in temporary variables and the rest of the computation proceeds without accessing the vectorx
until the result ofWHTxm

b,S is stored back tox.

1
@

2
�

1
@

3
�

4

1
�

2
@

1
�

3
@

4

Fig. 3: Partition Trees for Algorithm (a) and (b) forWHT16

A program was written to generate the memory trace (reads and writes were not distinguished) of
a WHT algorithm specified by a partition tree and the trace was fed to a cache simulator to count the
number of cache misses. For example, the trace generated by Algorithms (a) and (b) in Figure 3 have 144
memory accesses and 80 and 112 misses respectively when using a direct-mapped cache of size 4 with
blocks of size 1. When the associativity is increased to 4 (fully associative) the number of misses drops
to 48 for both algorithms. If a direct-mapped cache of size 4 with blocks of size 2 is used the number
of misses is 72 and 88 respectively. In contrast, the iterative and recursive algorithms from Figure 1 both
have 192 accesses with 128 and 112 misses when using a direct-mapped cache of size 4.

Many experiments were performed and a particularly simple pattern was observed for direct-mapped
caches (for data sizes larger than cache sizeC = 2c, there arec different values for the number of misses).
For example, the possible values for the number of misses for a WHT algorithm of sizeN = 210 when
using a direct-mapped cache of size2c for c = 1, . . . , 6 is shown in Table 3.

4 A Formula for the Number of Cache Misses
There is a simple formula for the number of cache misses for a given WHT algorithm provided the cache
is direct-mapped (i.e. has associativity equal to one) and has block size one. The assumption of a direct-
mapped cache implies that the number of misses encountered when computing the WHT using the factor-
ization in Equation 1 can be computed independently for each of the factors provided the stride is taken
into account. It should be possible to analyze more general cache configurations, however, the simplifying
assumption allows a concise result which is the focus of this paper.



Cache miss analysis of WHT algorithms 119

Tab. 2: Memory Access Pattern for Algorithm (b) in Figure 3

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
WHT8x

8
0,1 1 1 1 1 1 1 1 1

2 2
2 2

2 2
2 2

WHT8x
8
8,1 1 1 1 1 1 1 1 1

2 2
2 2

2 2
2 2

(WHT2 ⊗ I8)x16
0,1 3 3

3 3
3 3

3 3
3 3

3 3
3 3

3 3

Tab. 3: Possible Number of Cache Misses forWHT210 on Direct-Mapped Cache of Size2c

c m1 m2 m3 m4 m5 m6

1 28672
2 25600 26624
3 22528 23552 24576
4 19456 20480 21504 22528
5 16384 17408 18432 19456 20480
6 13312 14336 15360 16384 17408 18432



120 Mihai Furis and Paweł Hitczenko and Jeremy Johnson

Let Misses(Wn, r) be the number of misses to computeWnxN
b,S whereS = 2r is the input stride. The

following theorem provides a recurrence relation for computingMisses(Wn, r) under the assumption of
a direct-mapped cache.

The first test is to determine if the input data, accessed at stride2r fits in cache. The second and third
conditions, assume that the data does not fit in cache and that the base case in the algorithm has been
encountered. If the stride is larger than the cache size, the consecutive pair of reads (see the memory
access pattern discussed in the previous section) both cause misses due to the assumption that the cache
has associativity one. Even if the stride is not bigger than the cache, the assumption that the data does not
fit in cache and the fact that the size of the data and cache are both powers of two implies that the writes
following the reads will all incur misses.

The last case assumes the data does not fit in cache and that Equation 1 was applied in the algorithm.
The computation of(In1+···+ni−1 ⊗Wni⊗Ini+1+···+nt) makes2n−ni recursive calls to computeWni with
input data accessed at stride2ni+1+···+nt+r. Since the input does not fit in cache and the associativity is
one, the data accessed in each of the recursive calls will not be in cache when the recursive call is made.
This implies that the number of misses for each recursive call can be computed independently.

Theorem 1 LetWn be a WHT algorithm to computeWHTN with N = 2n. AssumeWn is split into t
childrenWn1 , . . . ,Wnt

, whereWni
computesWHT2ni . Then the number of misses to computeWnxN

b,S

whereS = 2r using a direct-mapped cache of sizeC = 2c is

Misses(Wn, r) =


2n, if 2n ≤ dC/2re
3 · 2n, if Wn is small and2r ≥ C
2 · 2n, if Wn is small and2r < C∑t

i=1 2n−niMisses(Wni
, ni+1 + · · ·+ nt + r), otherwise.

This recurrence relation can be used to compute the number of cache misses without having to do a
simulation. For example, letW4 be Algorithm (a) from Figure 3. The number of misses encountered by
W4 with a direct-mapped cache of size 4 with blocksize 1, is equal to

Misses(W4, 0) = 2Misses(W3, 1) + 8Misses(W1, 0)
= 2(2Misses(W2, 2) + 4Misses(W1, 1)) + 8Misses(W1, 0)
= 22Misses(W2, 2) + 23Misses(W1, 1) + 23Misses(W1, 0)
= 3 · 24 + 24 + 24 = 5 · 24 = 80.

Similarly, letW ′
4 be Algorithm (b) from Figure 3.

Misses(W ′
4, 0) = 8Misses(W1, 3) + 2Misses(W3, 0)

= 8Misses(W1, 3) + 2(22Misses(W1, 2) + 2Misses(W2, 0))
= 23Misses(W1, 3) + 23Misses(W1, 2) + 22Misses(W2, 0)
= 3 · 24 + 3 · 24 + 24 = 7 · 24 = 112.

It is possible to obtain a closed form solution to this recurrence, and from the closed form solution it
is easy to determine the possible values for cache misses. LetC = 2c be the cache size andN = 2n the
size of the transform. To simplify the analysis, the algorithms considered are restricted to fully expanded
partition trees (i.e. those trees whose leaf nodes are all equal to one) – the general analysis is similar but
more complicated to write down.

Under this assumption, whenn ≥ c, the partition tree induces a composition (ordered partition) ofc
(see Andrews (1976) for basic properties of compositions). Starting at the right, include the values of the
children until the sum is greater than or equal toc. If the sum is equal toc, a composition ofc is obtained.
Otherwise, the process is recursively applied to the last child selected until a sum exactly equal toc is
obtained (this will always happen since the tree is fully expanded). For example, if the trees in Figure 3
are fully expanded so that the leaf node equal to two is further split into two children of size one, then the
induced compositions ofc = 2 for Tree (a) is [1,1] and Tree (b) is [2].

The formula in the following theorem is easily proven by induction.

Theorem 2 LetWn be a fully expanded WHT algorithm of sizeN = 2n and assume a direct-mapped
cache of sizeC = 2c with blocksize one andn > c. The number of cache misses is equal to

3(n− c)2n + k2n,

wherek is the number of parts in the composition ofc induced from the partition tree forWn.



Cache miss analysis of WHT algorithms 121

This theorem implies that there arec different values for the number of misses, and the formula can be
used to check the misses found by the simulator for the applicable examples in the previous section. For
example, the number of misses for a direct-mapped cache of sizeC = 22 using the iterative and recursive
algorithms is equal to3(4 − 2)24 + 2 · 24 = 128 and3(4 − 2)24 + 24 = 112 respectively, and these
are the only two possible values. In the next section, the distribution ofk for random WHT algorithms is
determined.

5 Distribution of Cache Misses
Let T (n, c) denote the value ofk in Theorem 2, which is equal to the number of parts in the composi-
tion of c induced by a partition tree of sizen. For notational convenience we will consider the induced
composition from the left instead of the right. In order to analyze the distribution ofT (n, c) we will use
a bijection between compositions and strings of black and white dots of lengthn whose last dot is black.
A detailed description of this bijection is given e.g. in Hitczenko and Louchard (2001); Hitczenko and
Savage (2004) and its consequence is that a random composition can be identified with a sequence

(Γ1,Γ2, . . . ,Γτ−1, n− Sτ−1)

whereΓ1,Γ2 . . . are i.i.d. geometric r.v.s with parameter1/2, GEOM(1/2) (that is Pr(Γ1 = j) =
1/2j , j = 1, 2 . . . ,), Sk = Γ1 + · · ·+Γk, S0 = 0, andτ = inf{k ≥ 1 : Sk ≥ n}. It follows, in particular,

thatτ
d= 1 + BIN(n− 1, 1/2), where BIN(m, p) denotes a binomial random variable with parametersm

anp and
d= denotes equality in distribution.

To analyzeT (n, c) defineτc = inf{k ≥ 1 : Sk > c} = inf{k ≥ 1 : Sk ≥ c + 1}. As is evident from
the following picture

◦
S1

• ◦
S2

• ◦ ◦ ◦
S3

•
. . .
. . .

Sτc−1

• ◦ ◦
c
• ◦ ◦

Sτc

•︸ ︷︷ ︸
Γτc

◦

T (n, c) is the sum of the number of parts obtained at the first partitioning step, plus the number of parts
obtained in the subsequent partitioning of a block of the sizeΓτc . To be precise, the size of this block
is Γτc ∧ (n − Sτc−1), but the second term is smaller, iffSτc ≥ n. Since this happens with probability
1/2n−c and, realistically,n is much larger thanc by adopting this simplification we commit only expo-
nentially small error; more precise analysis could be carried out with minimal changes, but would result
in more complicated expressions. For the purpose of this note we will contend ourselves with this slightly
simplified model. We have

T (n, c) = (τc − 1) + T (Γτc , c− Sτc−1).

This formula is also correct whenSτc−1 = c provided we setT (k, 0) = δk,0, whereδk,j is Kronecker’s
symbol. It follows from the above discussion thatτc − 1 is BIN(c, 1/2). To analyze the second summand,
for j = 1, . . . , c write

Pr(T (n, c) = j) =
j∑

m=0

Pr(τc − 1 = m,T (Γτc
, c− Sτc−1) = j −m), (2)

and then, for the term underneath summation

Pr(τc − 1 = m,T (Γτc
, c− Sτc−1) = j −m)

=
c∑

k=0

Pr(Sm = k,Γm+1 > c− k, T (Γm+1, c− k) = j −m)

Conditioning on{Sm = k,Γm+1 > c − k}, using independence ofSm andΓm+1, and memoryless
property of geometric random variables, after calculation similar in spirit to those in (Hitczenko et al.,
2003, Section 5.5) we obtain the following expression for the right hand side of (2)

1
2c

j∑
m=0

c∑
k=0

2kPr(Sm = k)Pr(T (Γ + c− k, c− k) = j −m),



122 Mihai Furis and Paweł Hitczenko and Jeremy Johnson

whereT (Γ + r, r) is to be understood as a compound distribution. Fork, m ≥ 1,

2kPr(Sm = k) = 2k
∑

i1,...,im≥1
i1+···+im=k

Pr

(
m⋂

`=1

{Γ` = i`}

)
= 2k

∑
i1,...,im≥1

i1+···+im=k

1
2i1+···+im

,

is the number of compositions ofk into m parts. That number is
(

k−1
m−1

)
. Further,Pr(Sm = k) and

Pr(T (Γ + c− k, c− k) = j −m) vanish unlessk ≥ m andc− k ≥ j −m, and ifm = 0 then the only
nonvanishing term in the inner sum corresponds tok = 0. Combining all of these observations with (2)
we obtain

Pr(T (n, c) = j) =
1
2c

Pr(T (Γ + c, c) = j) (3)

+
1
2c

j∑
m=1

m+c−j∑
k=m

(
k − 1
m− 1

)
Pr(T (Γ + c− k, c− k) = j −m).

We need to find the numbersPr(T (Γ + r, r) = q), for 0 ≤ r ≤ c and0 ≤ q ≤ r. In fact, these
are the only numbers we need to find because, up to an exponentially small (inn − c) error, we have
Pr(T (n, r) = q) = Pr(T (Γ + r, r) = q). This equality follows from (that is the place where we
approximate)

Pr(T (n, r) = q) = Pr(T (Sτr
, r) = q) + O(2c−n),

and then conditioning on the value ofSτr and calculating thatPr(Sτr = k + r) = 2−k. Let pj,r :=
Pr(T (Γ + r, r) = j). Then, (3) reads as

pj,c =
1

2c − 1

j∑
m=1

m+c−j∑
k=m

(
k − 1
m− 1

)
pj−m,c−k

=
1

2c − 1

j∑
m=1

c−j∑
k=0

(
m− 1 + k

m− 1

)
pj−m,c−m−k (4)

for j = 1, . . . , c. For any givenc this system, together with the initial conditionp0,c = δc,0 can be solved
recursively. The solutions for the first five nontrivial values ofc, rounded to three significant digits are
given below. These values were compared to empirical values obtained from generating 10,000 random
WHT algorithms of size210 and counting the number of misses for each algorithm using a cache of size
C = 2c for c = 2, . . . , 6. The first value listed is the theoretical result and the second is the empirical
value.

c\j 1 2 3 4 5 6 7 8
2 .333,.336 .667, .664
3 .143,.145 .476, .473 .381,.382
4 .0667,.0691 .298,.303 .432,.424 .203,.206
5 .0323,.0316 .179,.178 .363,.361 .321,.326 .105,.103
6 .0159,.0149 .104,.103 .269,.269 .342,.348 .215,.212 .0533,.0535

Remark. Although the recurrence (4) does not look very inviting it can be used to gain an additional
information about the variableT (n, c). For example, one can show that

ET (n, c) =
c−1∑
j=0

2j

2j+1 − 1
.

We will not include the details, but only mention that after changing the order of summation in

ET (n, c) =
c∑

j=1

jpj,c =
1

2c − 1

c∑
j=1

j−1∑
r=0

c−j∑
`=0

j

(
c− `− r − 1

j − r − 1

)
pr,r+`,

and further manipulations involving binomial coefficients identities and geometric summation one is led
to recurrence

(2c − 1)ET (n, c) =
c−1∑
k=0

2c−1 ET (n, k)
2k

+ c2c−1, T (n, 0) ≡ 0.



Cache miss analysis of WHT algorithms 123

This immediately gives,

ET (n, c) = ET (n, c− 1) +
2c−1

2c − 1
= · · · =

c−1∑
j=0

2j

2j+1 − 1
,

as claimed.

References
A. Aggarval and J. S. Vitter. The input/output complexity of sorting and related problems.Communica-

tions of the ACM, 31:1116–1127, 1988.

R. Allen and K. Kennedy.Optimizing Compilers for Modern Architectures. Morgan Kaufmann Publishers,
San Francisco, 2002.

G. E. Andrews.The theory of partitions. Addison–Wesley, Reading, MA, 1976.

K. Beauchamp.Applications of Walsh and related functions. Academic Press, 1984.

D. F. Elliott and K. R. Rao.Fast Transforms: Algorithms, Analyses, Applications. Academic Press, 1982.

M. Furis. Cache miss analysis of Walsh-Hadamard Transform algorithms. Master’s thesis, Drexel Uni-
versity, 2003.

J. L. Hennessy and D. A. Patterson.Computer Architecture: A Quantitative Approach. Morgan Kaufmann,
third edition, 2002.

P. Hitczenko, J. R. Johnson, and H.-J. Huang. Distribution of a class of divide and conquer recurrences
arizing from the computation of the Walsh–Hadamard transform. preprint, 2003.

P. Hitczenko, J. R. Johnson, and H.-J. Huang. Distribution of WHT recurrences. InMathematics and
computer science. III, Trends Math., pages 161–162. Birkhäuser, Basel, 2004.

P. Hitczenko and G. Louchard. Distinctness of compositions of an integer: a probabilistic analysis.Ran-
dom Struct. Alg., 19:407–437, 2001.

P. Hitczenko and C. D. Savage. On the multiplicity of parts in a random composition of a large integer.
SIAM J. Discrete Math., 18:418–435, 2004.

H.-J. Huang. Performance analysis of an adaptive algorithm for the Walsh-Hadamard transform. Master’s
thesis, Drexel University, 2002.

J. Johnson and M. P̈uschel. In Search for the Optimal Walsh-Hadamard Transform. InProceedings
ICASSP, volume IV, pages 3347–3350, 2000.

R. E. Ladner, J. D. Fix, and A. LaMarca. Cache performance analysis of traversals and random accesses. In
SODA: ACM-SIAM Symposium on Discrete Algorithms (A Conference on Theoretical and Experimental
Analysis of Discrete Algorithms), pages 613–622, 1999.

F. MacWilliams and N. Sloane.The theory of error-correcting codes. North-Holland Publ.Comp., 1992.

J. Moura, M. P̈uschel, J. Dongarra, and D. Padua, editors.Proceedings of IEEE, volume 93, Feb. 2005.
Program Generation, Optimization, and Adaptation.

S. Sen, S. Chatterjee, and N. Dumir. Towards a theory of cache–efficient algorithms.Journal of the ACM,
49:828–858, 2002.



124 Mihai Furis and Paweł Hitczenko and Jeremy Johnson


