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Profiles of random trees: plane-oriented
recursive trees (Extended Abstract)†
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We summarize several limit results for the profile of random plane-oriented recursive trees. These include the limit
distribution of the normalized profile, asymptotic bimodality of the variance, asymptotic approximations of the ex-
pected width and the correlation coefficients of two level sizes. We also unveil an unexpected connection between
the profile of plane-oriented recursive trees (with logarithmic height) and that of random binary trees (with height
proportional to the square root of tree size).
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1 Introduction
Plane-oriented recursive trees, abbreviated as PORTs throughout this extended abstract, were introduced
in the literature under a few different names such as heap-ordered trees ([4, 17]), nonuniform recursive
trees ([20]), scale-free trees ([3, 19]), and have been widely addressed recently due most notably to the
stimulating paper [1] by Barabási and Albert on network models. We give without proof in this extended
abstract the major phenomena exhibited by the profile of random PORTs, following our recent papers
[8, 9, 12]. While bearing many similarities to the profiles of random recursive trees and random binary
search trees, the profile of random PORTs gives rise to several different behaviors, as highlighted by the
lack of a fixed-point equation for the limit distribution of the normalized profile and its special connection
to profile of random binary trees.

PORTs. PORTs are labelled ordered (or plane) trees with the property that labels along any path down
from the root are increasing. Such a characterization first appeared in [18] by Prodinger and Urbanek.
The total numberTn of such trees ofn nodes is given by the(2n− 2)-nd moment of the standard normal
distribution

Tn = (2n− 3)!! = 1 · 3 · · · (2n− 3) = n!21−nCn,

whereCn =
(
2n−2
n−1

)
/n denotes the Catalan numbers. By random PORTs, we assume that all PORTs ofn

nodes are equally likely.
An alternative construction of random PORTs, first given in [20] by Szymański in a more general

setting, is as follows. We begin by a tree with one root node labelled1 and then insert the labels{2, . . . , n}
successively such that the(i + 1)-st node (with labeli + 1) is attached to an existing node withd children
with probability (d + 1)/(2i − 1). Note that random recursive trees are constructed similarly but each
existing node is chosen with equal probability.

Profile of PORTs. Let Xn,k denote the number of nodes at levelk (the root being at level0) in a random
PORT ofn nodes. By definition and by conditioning on the size of the first subtree, we have the recurrence
for Xn,k

Xn,k
d= XJn,k−1 + X∗

n−Jn,k,

†All proofs of the results in this extended abstract and more detailed discussions are given in the full version of this paper.
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with Xn,0 = 1 for n ≥ 1, where theX∗
n,k are independent copies ofXn,k and

P(Jn = j) = πn,j :=
2(n− j)CjCn−j

nCn
(1 ≤ j < n).

Note that, by the estimate

Cn ∼ π−1/2n−3/24n−1, (1)

we see thatJn
d−→ J , whereP(J = j) = 2Cj/4j . It also follows from (1) thatJn converges in

distribution toJ but without convergence of any integral moment.

Expected profile. Let µn,k := E(Xn,k). It is known that (see [2, 17])∑
n,k

4−nCnµn,kukzn =
1
4
(1− z)−u/2

∫ z

0

(1− t)(u−1)/2 dt,

from which we deduce, by singularity analysis (see [11]) and the saddle-point method used in [13], that

µn,k =
√

πn

(1 + 2αn,k)Γ(1 + αn,k)
·
( 1
2 log n)k−1

(k − 1)!
(
1 + O((log n)−1)

)
, (2)

uniformly for 1 ≤ k = O(log n), where,here and throughout this paper, Γ is the Gamma function and
αn,k := k/ log n. See [3, 19] for crude estimates forµn,k.

Rough descriptions of the shapes of random PORTs based on (2).From (2), we see first thatµn,k →
∞ when

k ≤ α+ log n− α+

2α+ + 1
log log n− ωn,

whereα+ ≈ 1.79556 solves the equation12 +z−z log(2z) = 0 andωn is any sequence tending to infinity.
Note thatα+ is the leading constant for the expected height derived in [16].

Secondly, the root has about
√

πn subtrees, which is to be compared withlog n for random recursive
trees and2 for random binary search trees; see [2, 12]. The result (2) also says that except for the root
each node roughly attracts about1

2 log n new nodes (up to order of subtrees).
Finally, most nodes in a random PORT lie at the levelsk = 1

2 log n + O(
√

log n), each of these levels
having roughlyn/

√
log n nodes.

For other results for random PORTs, see the full version of the paper and the references therein.

Limit distribution. Let α := limn→∞ k/ log n if the limit exists. Our first result states thatXn,k/µn,k
converges in distribution to some law whenα ∈ [0, 1

2 ].

Theorem 1. If α ∈ [0, 1
2 ], then

Xn,k

µn,k

d−→ X(α), (3)

with convergence of all moments, whereX(α) is uniquely characterized by its moment sequenceξm(α) :=
E(X(α)m), which satisfies the recurrence (ᾱ := α + 1

2 )

ξm(α) =
1√

π(2mᾱ− (2α)m − 1)

∑
1≤`<m

(
m

`

)
ξ`(α)ξm−`(α)(2α)`

Γ(`ᾱ− 1
2 )Γ((m− `)ᾱ + 1

2 )
Γ(mᾱ− 1

2 )
, (4)

for m ≥ 2 with ξ1(α) = 1.

The range[0, 1
2 ] is the best possible for convergence of all moments because forα > 1

2 only convergence
of finite moments (depending onα) holds. Indeed, letζm denote the positive real zero of the polynomial
2m(z + 1

2 ) − (2z)m − 1 for m ≥ 2. ThenE(Xn,k/µn,k)j converges toξj(α) for j = 0, . . . ,m but not
for j ≥ m + 1 whenα ∈ [0, ζm). Note thatX(α) is well-defined whenα ∈ [0, 1

2 ] since the (infinite)
moment sequence uniquely characterize its distribution. However, whenα ∈ ( 1

2 , α+), it is unclear how to
properly defineX(α) since only finite moments are available.

Unlike random recursive trees and binary search trees, no fixed-point equation is known forX(α). Thus
the contraction method, as that used in [12], does not directly apply. This leaves open the (anticipated)
convergence in distribution ofXn,k/µn,k for α ∈ ( 1

2 , α+).
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m 2 3 4 5 6
ζm 1.20711 1 0.89217 0.82531 0.77946
m 7 8 9 10 11
ζm 0.74589 0.72016 0.69975 0.68312 0.66929

Tab. 1: Approximate numeric values ofζm, the positive zeros of the equation2m(z + 1
2
) − (2z)m = 1, for m =

2, . . . , 11.

Corollary 1. If α ∈ [0, ζ2), then

V(Xn,k) ∼
(
ξ2(α)− ξ1(α)2

)( √
πn( 1

2 log n)k−1

(1 + 2α)Γ(1 + α)(k − 1)!

)2

.

Note that

ξ2(α)− ξ1(α)2 =
4Γ(1 + α)2

√
π(1 + 4α− 4α2)Γ(2α + 1

2 )
− 1

∼
(

6− π2

2

)(
α− 1

2

)2 (
α ∼ 1

2

)
,

so thatV(Xn,k) = o(µ2
n,k) whenα = 1

2 . See (6) for a more precise asymptotic approximation. On the
other hand,ξ2(α)− ξ1(α)2 → 4/π − 1 whenα → 0+.

The caseα = 0. Whenα = 0, the right-hand side of recurrence (4) is to be interpreted as the limit when
α → 0+, so that it becomesξ1(0) = 1 and form ≥ 2

ξm(0) =
mΓ(m/2)√

πΓ((m + 1)/2)
ξm−1(0),

which is solved to be

ξm(0) =
m!

Γ((m + 1)/2)
π−(m−1)/2 = 2mπ−m/2Γ((m + 2)/2) (m ≥ 1).

It follows that

E(e
√
πX(0)y) =

∑
m≥0

Γ((m + 2)/2)
m!

(2y)m =
1
2

∫ ∞

0

tety−t
2/4 dt;

thus when1 ≤ k = o(log n)

Xn,k√
n( 1

2 log n)k−1/(k − 1)!
d−→
√

π X(0),

which is a Rayleigh distribution with density functionte−t
2/4/2.

The middle rangeα = 1
2 . Whenα = 1

2 , all ξm( 1
2 )’s are identically1, so thatX( 1

2 ) = 1. We can refine
the convergence in distribution (3) as follows.

Theorem 2. If k = 1
2 log n + sn,k, where|sn,k| → ∞ andsn,k = o(log n), then

Xn,k − µn,k

sn,k
√

πn( 1
2 log n)k−1/k!

d−→ Y,

whereY is completely characterized by its moment sequenceηm := E(Y m) satisfying the recurrence

ηm =
Γ(m− 1)

2
√

πΓ(m− 1
2 )

∑
a+b+c=m
0≤a,b<m
0≤c≤m

(
m

a, b, c

)
ηaηb

∫ 1

0

xa−3/2(1− x)b−1/2ϕ1(x)c dx,

for m ≥ 2 with η0 = 1 andη1 = 0. Hereϕ1(x) := (x log x + (1− x) log(1− x) + 2x)/(2
√

π).
If sn,k = O(1), then the sequence of random variables(Xn,k − µn,k)/

√
V(Xn,k) does not converge

to a fixed limit law.
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Let Yn :=
∑
k kXn,k denote the total path length of random PORTs.

Theorem 3. The total path lengthYn satisfies

Yn − E(Yn)√
π n

d−→ Y,

with convergence of all moments.

Thus the total path length has the same limit law as the profileXn,k when k ∼ 1
2 log n and |k −

1
2 log n| → ∞. Convergence in distribution was given in [15] by a martingale approach but without
characterization ofY ; see also [17] for the first two moments.

To prove the second part of Theorem 2, the crucial step is to show that

E
(

Xn,k − µn,k

sn,k
√

πn( 1
2 log n)k−1/k!

)m
∼ pm(sn,k), (5)

for m ≥ 2, wherepm(s) is a polynomial of degreem. Then the non-convergence follows from the
arguments used in [5].

Corollary 2. If k = 1
2 log n + sn,k, wheresn,k = o(log n), then

V(Xn,k) ∼
p2(sn,k)
(log n)2

(
√

n
( 1
2 log n)k−1

(k − 1)!

)2

, (6)

wherep2(s) = c2s
2 + 2c1s + c0, with
c2 = 6− π2

2
,

c1 = −c2(2 log 2− 1 + γ) + 8− 7ζ(3),

c0 = −c2

(
(2 log 2− 1 + γ)2 − 6

)
− 2c1(2 log 2− 1 + γ) + 8− π4

8
,

(7)

γ being the Euler constant andζ(3) :=
∑
j≥1 j−3.

Sincep2(s) is a quadratic polynomial with positive leading coefficient,the variance exhibits asymptot-
ically a bimodal behavior for largen and varyingk with a valley atk = 1

2 log n + o(log n); see Figure 1
and cf. [8].

Covariance of two levels. Define

f(u, v) :=
16
√

π uv

(1 + 2u)(1 + 2v)(1 + 2u + 2v − 4uv)Γ(u + v + 1/2)
− 4π

(1 + 2u)(1 + 2v)Γ(u)Γ(v)
,

andp(s, t) := c2st + c1(s + t) + c0, with the coefficients given by (7). Note that

c2 = f ′′uv
(

1
2 , 1

2

)
, c1 = − 1

2f ′′′uv2
(

1
2 , 1

2

)
, c0 = 1

4f
(4)
u2v2

(
1
2 , 1

2

)
.

Also define{
c3 := f ′v(α, 1

2 ) = − 2
√
π(ψ(1+α)−2α+2 log 2−1+γ)

(1+2α)Γ(α) ,

c4 := − 1
2f ′′v2(α, 1

2 ) = −
√
π((ψ(1+α)−2α)2+(2α−1)2−(1−γ)2+4 log(2)(1−γ−log 2)−ψ′(1+α)+π2/2)

(1+2α)Γ(α) .

Let k, h ≥ 1, βn,h := h/ log n andβ := limn βn,h if the limit exists.

Theorem 4. If α, β ∈ [0, ζ2), then the correlation coefficient ofXn,k andXn,h satisfies

ρ(Xn,k, Xn,h) ∼



f(α, β)√
f(α, α)f(β, β)

, if α, β 6= 1
2 ;

c3tn,h + c4√
f(α, α)p(tn,h, tn,h)

, if α 6= 1
2 , β = 1

2 ;

p(sn,k, tn,h)√
p(sn,k, sn,k)p(tn,h, tn,h)

, if α = β = 1
2 ,

(8)

wheresn,k := k − 1
2 log n andtn,h := h− 1

2 log n.
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Fig. 1: The polynomialp2(s) (left) and the asymptotic correlation coefficient (right) of levels in the range1
2

log n +

O(1): p(s, s + `)/
p

p(s, s)p(s + `, s + `) for ` = 1, . . . , 12 (in increasing order from top to bottom).

Corollary 3. The correlation coefficient ofYn,k andYn,h is asymptotic to1 (i) if α = β 6= 1
2 (0 ≤ α, β <

ζ2); or (ii) if both |sn,k|, |tn,h| → ∞ (not necessarily at the same rate) whenα = β = 1
2 .

A salient feature of the profile is that the correlation coefficient of neighboring levels is asymptotic to1
except whenk, h = 1

2 log n + O(1) (we leave aside the correlation of levels whose distances to the root
are≥ (ζ2 − ε) log n since there are relatively less nodes there). In particular,

min
s∈R

p(s, s + 1)√
p(s, s)p(s + 1, s + 1)

= 1− 2(π2 − 12)
π6 + 13π4 − 664π2 + 3344 + 1792ζ(3)− 784ζ(3)2

≈ 0.770444 . . . ;

see Figure 1 for a plot ofp(s, s + `)/
√

p(s, s)p(s + `, s + `). This feature is closely connected with the
bimodality of the variance ofYn,k and the concentration of the width; see [6].

Corollary 4. The correlation coefficientρ(Xn,k, Xn,h) exhibits asymptotically a sharp sign-change at
β = 1

2 whenα ∈ (0, ζ2) is fixed andβ is varying from0 to ζ2.

Two plots of the asymptotic correlation coefficient are given in Figures 2, highlighting in particular the
discontinuous sign-change at1

2 .
Our method of proof relies on the relation∑

n,k,h

4−nCnE(Xn,kXn,h)ukvhzn =
uv(1− z)−(u+v+1)/2

(1 + u)(1 + v)(1 + u + v − uv)

+
(1− z)−u/2 + (1− z)−v/2 − (1− z)1/2

2(1 + u)(1 + v)
− (1− z)−uv/2

2(1 + u + v − uv)
.

Then (8) is derived, similarly as in [9], by a uniform estimate for the function on the right-hand side in the
u, v plane (by applying the singularity analysis of Flajolet and Odlyzko [11]) and then by extending the
saddle point method used in [13].

Width. DefineWn := maxk Xn,k. By (2), we easily have the lower bound

E(Wn) ≥ max
k

µn,k =
n√

π log n

(
1 + Θ

(
(log n)−1

))
.

This lower bound is indeed tight; a very general approach is recently proposed in [6] to showing that

E(Wn) =
n√

π log n

(
1 + Θ

(
(log n)−1

))
.

Estimates for higher central moments and concentration of the distribution of the width are also given
there. The method proof is direct, correlation-free and relies on the estimates for higher central moments
of the profile in the middle range.
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Fig. 2: Asymptotic correlation coefficient of the number of nodes at two levels. The discontinuity of the sign
at 1

2
is visible from both figures. Hereα = log 2 ≈ 0.69 (left) and a 3-dimensional rendering (right) of

f(α, β)/
p

f(α, α)f(β, β).

An unexpected connection. Profile of recursive trees can essentially be regarded as counting only left-
branches in random binary search trees. This is seen by the standard transformation of a multiway tree
to a binary tree, called thenatural correspondencebetween forests and binary trees in [14, Sec. 2.3.3].
For details, see [12]. Both profiles (of recursive trees and of binary search trees) turn out to behave very
similarly. Note that since the order of the subtrees of any node in recursive trees are not distinguished, we
can always arrange the subtrees in increasing order of their root labels when we read them off from left
to right; then applying the binary-tree transformation on recursive trees results in a binary increasing tree
(with labels on any path down from the root still forming an increasing sequence).

We can apply the same transformation to convert a random PORT into a binary tree; see Figure 3 for a
plot. While the resulting tree is combinatorially less interesting because the monotonicity property of the
labels along paths is destroyed, the profile in such binary trees is identically distributed as the profile of
random binary trees although there is no bijection between their shapes; for example, whenn = 3,

1

2

3

=⇒ 1

2

1

2 3

=⇒
1

2

1

3 2

=⇒
2

1 .

We see that the profiles of the resulting transformed binary trees have the same distribution as those of
binary trees of two nodes

but without bijection between shapes.
Intuitively, since the root of random PORTs has already about

√
πn nodes, nodes in the corresponding

transformed binary tree is expected to be more dispersed. Thusthe “log-profile phenomena” exhibited
by the profile of random PORTs becomes the “square-root profile phenomena” after the transformation.
Such a change of order for the transformation was first observed by Chen and Ni [4] for the expected total
path length, which can be proved to have the same Airy limit distribution as that of random binary trees;
see [10] for many objects leading to that law. Random trees with square-root height have been extensively
studied in the literature; see [7] and the references therein.

A comparison of some shape parameters.We list in Table 2 the asymptotics of some properties related
to the profiles of random binary search trees, random recursive trees and random PORTs.
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removing the root and decreasing all label values by1 (right).
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